机械原理重点总结
(完整版)机械原理知识点归纳总结

第一章绪论基本概念:机器、机构、机械、零件、构件、机架、原动件和从动件。
第二章平面机构的结构分析机构运动简图的绘制、运动链成为机构的条件和机构的组成原理是本章学习的重点。
1. 机构运动简图的绘制机构运动简图的绘制是本章的重点,也是一个难点。
为保证机构运动简图与实际机械有完全相同的结构和运动特性,对绘制好的简图需进一步检查与核对(运动副的性质和数目来检查)。
2. 运动链成为机构的条件判断所设计的运动链能否成为机构,是本章的重点。
运动链成为机构的条件是:原动件数目等于运动链的自由度数目。
机构自由度的计算错误会导致对机构运动的可能性和确定性的错误判断,从而影响机械设计工作的正常进行。
机构自由度计算是本章学习的重点。
准确识别复合铰链、局部自由度和虚约束,并做出正确处理。
(1) 复合铰链复合铰链是指两个以上的构件在同一处以转动副相联接时组成的运动副。
正确处理方法:k个在同一处形成复合铰链的构件,其转动副的数目应为(k-1)个。
(2) 局部自由度局部自由度是机构中某些构件所具有的并不影响其他构件的运动的自由度。
局部自由度常发生在为减小高副磨损而增加的滚子处。
正确处理方法:从机构自由度计算公式中将局部自由度减去,也可以将滚子及与滚子相连的构件固结为一体,预先将滚子除去不计,然后再利用公式计算自由度。
(3) 虚约束虚约束是机构中所存在的不产生实际约束效果的重复约束。
正确处理方法:计算自由度时,首先将引入虚约束的构件及其运动副除去不计,然后用自由度公式进行计算。
虚约束都是在一定的几何条件下出现的,这些几何条件有些是暗含的,有些则是明确给定的。
对于暗含的几何条件,需通过直观判断来识别虚约束;对于明确给定的几何条件,则需通过严格的几何证明才能识别。
3. 机构的组成原理与结构分析机构的组成过程和机构的结构分析过程正好相反,前者是研究如何将若干个自由度为零的基本杆组依次联接到原动件和机架上,以组成新的机构,它为设计者进行机构创新设计提供了一条途径;后者是研究如何将现有机构依次拆成基本杆组、原动件及机架,以便对机构进行结构分类。
机械原理知识点总结

机械原理知识点总结一、机械原理概述机械原理是一门研究机械运动、力学、动力等问题的学科。
它主要研究物体的运动规律、力的作用以及这些规律和作用导致的各种运动机构以及机械结构的设计原理等问题。
机械原理是机械工程学科的基础,它在机械工程设计、工业制造、机械运动控制等领域的应用中具有重要意义。
二、机械运动1. 机械运动的基本概念机械运动是指物体的运动,它是机械原理研究的基本对象。
物体的运动可以分为直线运动和转动运动两类,直线运动是指物体沿着直线路径运动,而转动运动是指物体绕着某一轴旋转运动。
2. 机械运动的描述描述机械运动的基本工具是位移、速度和加速度。
位移描述物体在运动过程中从一个位置到另一个位置的距离和方向的变化;速度描述物体在单位时间内移动的距离和方向的变化;加速度描述速度在单位时间内的变化率。
3. 机械运动的运动规律机械运动的运动规律是指描述物体运动的基本定律,主要包括牛顿运动定律、运动规律和牛顿万有引力定律。
牛顿运动定律包括惯性定律、动量定律和作用与反作用定律,它们描述了物体在运动过程中受力、产生加速度和改变动量等基本规律。
三、机械力学1. 机械力的基本概念机械力是指物体相互作用产生的力,它是实现机械运动的基本动力。
机械力可以分为接触力和非接触力两类,接触力是指物体直接接触产生的力,而非接触力是指物体之间不直接接触产生的力。
2. 机械力的作用规律机械力的作用规律包括牛顿定律、弹性力学定律等。
牛顿定律描述了物体受力产生加速度的规律,弹性力学定律描述了弹性体变形时受力和变形之间的关系。
3. 机械力的传递机械力在机械系统中的传递是实现机械运动的基本条件。
在机械系统中,机械力的传递可以通过轴承、齿轮、皮带等机构来实现,不同的传递机构具有不同的特点和适用范围。
四、机械结构1. 机械结构的基本概念机械结构是由多个部件组成的机械系统,它是实现机械运动和力学功能的基本组成。
机械结构可以分为静态结构和动态结构两类,静态结构是指不产生运动的机械系统,而动态结构是指能够产生运动的机械系统。
机械原理知识点总结大全

机械原理知识点总结大全机械原理是研究机械系统中机械零部件之间相互作用以及运动、力学性能等基本原理的科学。
它是机械工程中的基础学科,是研究和分析机械系统中的运动和力学性能的重要工具。
下面将对机械原理中的一些重要知识点进行总结。
1. 机械运动基础知识机械运动是机械系统中的基本运动形式,常见的机械运动包括旋转运动和直线运动。
在机械运动中,常涉及到速度、加速度、力和动能等物理量的变化。
对机械运动进行分析需要运用运动学知识,了解运动物体的位置、速度和加速度随时间的变化规律。
2. 力学性能分析力学性能分析是机械原理研究的重点内容之一,它涉及到静力学和动力学的知识。
在力学性能分析中,需要掌握静力平衡、牛顿定律、力的合成和分解、力矩、动量和动量守恒等重要原理。
这些知识可以帮助工程师分析机械系统中力的平衡和传递,从而保证机械系统的正常运行。
3. 机械传动机械传动是机械系统中常见的运动传递方式,常见的传动方式包括齿轮传动、皮带传动、链条传动和联轴器传动等。
在机械传动中,需要掌握传动比的计算方法、传动效率的影响因素、传动系统的设计和优化等内容。
这些知识可以帮助工程师选择合适的传动方式,并设计稳定可靠的传动系统。
4. 机械振动机械振动是机械系统中常见的运动形式,它会给机械系统带来一些不利影响,如增加能量损失、加大零部件的磨损和损坏等。
因此,对机械振动进行分析和控制是非常重要的。
在机械振动中,需要掌握振动的基本规律、振动传递路径、振动的干扰和控制方法等知识。
5. 机械零部件设计机械零部件设计是机械原理中的关键内容之一,它涉及到零部件的材料选择、结构设计、强度计算、疲劳寿命分析等方面。
在零部件设计中,需要考虑零部件的功能需求、工作环境、制造工艺等因素,以确保零部件具有足够的强度和刚度,并能够在长期使用中不发生故障。
6. 机械系统优化机械系统优化是机械原理研究的另一个重要方面,它涉及到机械系统的结构设计、传动方式选择、工作性能优化等内容。
机械原理知识点总结归纳

机械原理知识点总结归纳机械原理是研究机械运动、力学和能量转换的一门学科,它对于理解和设计各种机械设备和系统具有重要意义。
下面我将对机械原理的相关知识点进行总结归纳。
机械原理的基本概念和原理1. 机械原理的基本概念机械原理是研究机械系统内部相对运动、力学和能量转换的科学。
它包括静力学、动力学、运动学、力学和能量转换等科学原理。
2. 力和力的分析力是使物体发生形变或者改变其状态的原因,力的大小用牛顿(N)为单位。
力的分析包括受力分析、合力分析、平衡条件、力的合成和分解等。
3. 运动学运动学是研究物体的运动状态和运动规律的学科,它包括物体的运动描述、位移、速度、加速度、曲线运动等内容。
4. 动力学动力学是研究物体运动的原因和规律的学科。
它包括牛顿定律、质点动力学、刚体动力学、动量守恒定律以及动力学运动规律等内容。
5. 力矩和力矩分析力矩是使物体绕某一轴转动的效果,力矩的大小用牛顿•米(N•m)为单位。
力矩分析包括力矩的计算、平衡条件、力矩的合成和分解等。
机械原理的实际应用1. 齿轮传动齿轮传动是一种通过齿轮进行相互啮合传递力和转动的机械传动方式。
齿轮传动可以实现速度比和力矩比的变换,广泛应用于汽车、机床、风力发电机等各种机械设备中。
2. 带传动带传动是一种通过带轮和传动带进行力的传递和速度的变换的机械传动方式。
带传动简单、结构紧凑,广泛应用于风扇、工程机械、输送带等各种场合。
3. 杠杆原理杠杆原理是利用杠杆进行力的受力和转矩的传递的原理,广泛应用于剪切机、千斤顶、摇臂等各种机械设备中。
4. 液压传动液压传动是通过液体的压力传递力和运动的原理,它具有传动平稳、传力稳定、速度连续可调和传动功率大等特点,广泛应用于各种工程机械、冶金设备和船舶等领域。
机械原理的发展趋势1. 智能化随着人工智能和自动化技术的不断发展,智能化的机械装备将成为未来的发展趋势。
智能化的机械装备具有智能诊断、自适应控制、远程监控等特点,将大大提高机械装备的智能化程度和生产效率。
机械原理基础知识点总结,复习重点

机械原理知识点总结第一章平面机构的结构分析3一. 基本概念31. 机械: 机器与机构的总称。
32. 构件与零件33. 运动副34. 运动副的分类35. 运动链36. 机构3二. 基本知识和技能31. 机构运动简图的绘制与识别图32.平面机构的自由度的计算及机构运动确定性的判别33. 机构的结构分析4第二章平面机构的运动分析6一. 基本概念:6二. 基本知识和基本技能6第三章平面连杆机构7一. 基本概念7(一)平面四杆机构类型与演化7二)平面四杆机构的性质7二. 基本知识和基本技能8第四章凸轮机构8一.基本知识8(一)名词术语8(二)从动件常用运动规律的特性及选用原则8三)凸轮机构基本尺寸的确定8二. 基本技能9(一)根据反转原理作凸轮廓线的图解设计9(二)根据反转原理作凸轮廓线的解析设计10(三)其他10第五章齿轮机构10一. 基本知识10(一)啮合原理10(二)渐开线齿轮——直齿圆柱齿轮11(三)其它齿轮机构,应知道:12第六章轮系14一. 定轴轮系的传动比14二.基本周转(差动)轮系的传动比14三.复合轮系的传动比15第七章其它机构151.万向联轴节:152.螺旋机构163.棘轮机构164. 槽轮机构166. 不完全齿轮机构、凸轮式间歇运动机构177. 组合机构17第九章平面机构的力分析17一. 基本概念17(一)作用在机械上的力17(二)构件的惯性力17(三)运动副中的摩擦力(摩擦力矩)与总反力的作用线17二. 基本技能18第十章平面机构的平衡18一、基本概念18(一)刚性转子的静平衡条件18(二)刚性转子的动平衡条件18(三)许用不平衡量及平衡精度18(四)机构的平衡(机架上的平衡)18二. 基本技能18(一)刚性转子的静平衡计算18(二)刚性转子的动平衡计算18第十一章机器的机械效率18一、基本知识18(一)机械的效率18(二)机械的自锁19二. 基本技能20第十二章机械的运转及调速20一. 基本知识20(一)机器的等效动力学模型20(二)机器周期性速度波动的调节20(三)机器非周期性速度波动的调节20二. 基本技能20(一)等效量的计算20(二)飞轮转动惯量的计算20第一章平面机构的结构分析一. 基本概念1. 机械: 机器与机构的总称。
机械原理知识点汇总

机械原理知识点汇总机械原理是研究机械设备运动规律和相互作用的学科,是机械工程的基础和核心部分。
以下是机械原理的常见知识点:1. 力的作用点和载荷:力矩和力偶、力的合成与分解、静力学平衡条件、力的传递与转换等。
2. 运动学:位移、速度、加速度、平均速度与瞬时速度、匀速直线运动、变速直线运动、曲线运动、旋转运动等。
3. 动力学:运动物体的力学特性、牛顿三定律、质量与权重、动量、力对动量的作用、功、功率、能量守恒、动能与势能、机械效率等。
4. 科里奥利力:物体在旋转坐标系中受到的惯性力,与转动半径、转动角速度和线速度有关。
用于解释离心力和科里奥利力。
5. 惯性力和离心力:物体在非惯性系或旋转系中受到的假想力。
离心力是惯性力的一种,是旋转体上各质点因受到转动约束而有的离心趋向于离开该转轴的力。
6. 摩擦力:摩擦的本质是接触面内的分子间作用力产生的力。
静摩擦力和动摩擦力。
7. 力的矩和力偶:力矩是力绕某一轴产生的力力矩,力偶是力矩的特殊情况,力的两组等大的力共线并且同向或反向。
8. 杆的受力分析:使用平衡方程和受力平衡条件计算杆的受力。
9. 原动机和传动机构:涉及到动力传输和转动传递的相关原理和机械装置设计,包括各种起动器、接触传动装置、减速器和平动机构等。
10. 齿轮传动:引入齿轮传动的定义、工作原理、齿轮参数和齿轮组合的计算与选择等。
11. 制动与离合器:机械制动器的原理和分类,包括盘式制动器和钳式制动器,离合器的原理和应用等。
12. 螺旋传动:螺旋副的类型、应用和计算等。
总之,机械原理涵盖了力学、动力学、运动学以及各种机械装置的设计和应用原理。
以上是机械原理中的一些重要知识点。
大学机械原理知识点总结

大学机械原理知识点总结一、基本定义1. 机械原理的定义机械原理是指研究机械系统结构、运动和受力等方面的一门基础理论。
机械原理是机械设计和工程技术的基础,是制定机械设计规范和标准的依据,也是机械设计和生产中的必备理论依据。
2. 机械原理的基本内容机械原理的基本内容包括机械系统的结构分析、运动分析和受力分析等方面。
其中,结构分析主要研究机械系统的构成和相互关系;运动分析主要研究机械系统的运动规律和特性;受力分析主要研究机械系统的受力情况和稳定性。
3. 机械原理的研究对象机械原理的研究对象包括各种机械系统和机械零部件,如机床、汽车、飞机、轮船等。
同时,机械原理也适用于其他技术领域,如建筑、航天、航空、电子、通信等领域。
二、机械系统的结构分析1. 机械系统的基本构成机械系统是由各种机械零部件和机械元件组成的,包括机床、传动装置、连杆机构、液压系统、气动系统等。
机械系统的基本构成包括机械零部件和机械元件的搭配和连接。
2. 机械系统的结构分类根据机械系统的功能和用途,可以将机械系统分为传动系统、控制系统、动力系统、工作系统等。
其中,传动系统主要用于传递动力和运动;控制系统主要用于控制机械系统的运动和工作;动力系统主要用于提供能源和动力;工作系统主要用于完成机械系统的工作任务。
3. 机械系统的设计原则机械系统的设计原则包括结构合理、功能完善、工艺先进、经济合理、安全可靠等。
在机械系统的设计中,需要考虑各种因素的综合影响,满足机械系统的使用要求和性能指标。
三、机械系统的运动分析1. 机械系统的运动类型机械系统的运动类型包括直线运动、旋转运动、往复运动、连续运动等。
不同的机械系统有不同的运动类型,需要根据实际情况进行分析和设计。
2. 机械系统的运动规律机械系统的运动规律可以根据牛顿运动定律和达朗贝尔原理进行分析和计算。
需要考虑机械系统的受力情况和运动特性,确定机械系统的运动规律和参数。
3. 机械系统的运动参数机械系统的运动参数包括速度、加速度、位移、角速度、角加速度等。
机械原理知识点汇总

机械原理知识点汇总机械原理是研究机械中机构的结构和运动,以及机器的动力和传动的学科。
它是机械工程的基础,对于设计、制造和维护各种机械装备都具有重要的指导意义。
以下是对机械原理中一些关键知识点的汇总。
一、机构的结构分析机构是由若干个构件通过运动副连接而成的具有确定相对运动的组合体。
在机构的结构分析中,需要了解构件、运动副和运动链的概念。
构件是机器中独立的运动单元,它可以是一个零件,也可以是由若干个零件刚性连接而成的组合体。
运动副是两个构件直接接触并能产生相对运动的连接,常见的运动副有低副(如转动副、移动副)和高副(如齿轮副、凸轮副)。
运动链是由若干个构件通过运动副连接而成的相对可动的系统。
机构的自由度是指机构具有确定运动时所必须给定的独立运动参数的数目。
通过计算机构的自由度,可以判断机构是否具有确定的运动,以及其运动的可能性和复杂性。
二、平面连杆机构平面连杆机构是由若干个刚性构件用平面低副连接而成的机构。
常见的平面连杆机构有四杆机构、曲柄滑块机构和导杆机构等。
四杆机构是平面连杆机构中最基本的形式,根据其有无曲柄,可以分为曲柄摇杆机构、双曲柄机构和双摇杆机构。
在四杆机构中,存在着一些重要的特性,如急回特性、压力角和传动角等。
急回特性可以使机构在工作行程和回程中具有不同的速度,提高工作效率;压力角是作用在从动件上的驱动力与该力作用点绝对速度之间所夹的锐角,传动角则是压力角的余角,传动角越大,机构的传动性能越好。
曲柄滑块机构是由曲柄摇杆机构演化而来的,它可以将曲柄的转动转化为滑块的直线运动,或者将滑块的直线运动转化为曲柄的转动。
导杆机构则是通过改变构件的形状和运动副的位置,实现不同形式的运动传递。
三、凸轮机构凸轮机构是由凸轮、从动件和机架组成的高副机构。
凸轮通常作为主动件,通过其轮廓曲线的形状和运动规律,推动从动件实现预期的运动。
凸轮的轮廓曲线决定了从动件的运动规律,常见的运动规律有等速运动、等加速等减速运动和简谐运动等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机械原理重点总结第一篇:机械原理重点总结机械原理零件:独立的制造单元什么叫机械?什么叫机器?什么叫机构?它们三者之间的关系机械是机器和机构的总称机器是一种用来变换和传递能量、物料与信息的机构的组合。
讲运动链的某一构件固定机架,当它一个或少数几个原动件独立运动时,其余从动件随之做确定的运动,这种运动链便成为机构。
零件→构件→机构→机器(后两个简称机械)构件:机器中每一个独立的运动单元体运动副:由两个构件直接接触而组成的可动的连接运动副元素:把两构件上能够参加接触而构成的运动副表面运动副的自由度和约束数的关系f=6-s运动链:构件通过运动副的连接而构成的可相对运动系统平面运动副的最大约束数为2,最小约束数为1;引入一个约束的运动副为高副,引入两个约束的运动副为平面低副机构具有确定运动的条件:机构的原动件的数目应等于机构的自由度数目;根据机构的组成原理,任何机构都可以看成是由原动件、从动件和机架组成高副:两构件通过点线接触而构成的运动副低副:两构件通过面接触而构成的运动副由M个构件组成的复合铰链应包括M-1个转动副平面自由度计算公式:F=3n-(2Pl+Ph)局部自由度:在有些机构中某些构件所产生的局部运动而不影响其他构件的运动虚约束:在机构中有些运动副带入的约束对机构的运动只起重复约束的作用虚约束的作用:为了改善机构的受力情况,增加机构刚度或保证机械运动的顺利基本杆组:不能在拆的最简单的自由度为零的构件组速度瞬心:互作平面相对运动的两构件上瞬时速度相等的重合点。
若绝对速度为零,则该瞬心称为绝对瞬心相对速度瞬心与绝对速度瞬心的相同点:互作平面相对运动的两构件上瞬时相对速度为零的点;不同点:后者绝对速度为零,前者不是三心定理:三个彼此作平面平行运动的构件的三个瞬心必位于同一直线上速度多边形:根据速度矢量方程按一定比例作出的各速度矢量构成的图形驱动力:驱动机械运动的力阻抗力:阻止机械运动的力矩形螺纹螺旋副:拧紧:M=Qd2tan(α+φ)/2放松:M’=Qd2tan(α-φ)/2三角螺纹螺旋副:拧紧:M=Qd2tan(α+φv)/2放松:M=Qd2tan(α-φv)/2质量代换法:为简化各构件惯性力的确定,可以设想把构件的质量按一定条件用集中于构件上某几个选定点的假想集中质量来代替,这样便只需求各集中质量的惯性力,而无需求惯性力偶距,从而使构件惯性力的确定简化质量代换法的特点:代换前后构件质量不变;代换前后构件的质心位置不变;代换前后构件对质心轴的转动惯量不变机械自锁:有些机械中,有些机械按其结构情况分析是可以运动的,但由于摩擦的存在却会出现无论如何增大驱动力也无法使其运动判断自锁的方法:1、根据运动副的自锁条件,判定运动副是否自锁移动副的自锁条件:传动角小于摩擦角或当量摩擦角转动副的自锁条件:外力作用线与摩擦圆相交或者相切螺旋副的自锁条件:螺旋升角小于摩擦角或者当量摩擦角2、机械的效率小于或等于零,机械自锁3、机械的生产阻力小于或等于零,机械自锁4、作用在构件上的驱动力在产生有效分力Pt的同时,也产生摩擦力F,当其有效分力总是小于或等于由其引起的最大摩擦力,机械自锁机械自锁的实质:驱动力所做的功总是小于或等于克服由其可能引起的最大摩擦阻力所需要的功提高机械效率的途径:尽量简化机械传动系统;选择合适的运动副形式;尽量减少构件尺寸;减小摩擦铰链四杆机构有曲柄的条件:1、最短杆与最长杆长度之和小于或等于其他两杆长度之和2、连架杆与机架中必有一杆为最短杆在曲柄摇杆机构中改变摇杆长度为无穷大而形成的曲柄滑块机构在曲柄滑块机构中改变回转副半径而形成偏心轮机构曲柄摇杆机构中只有取摇杆为主动件是,才可能出现死点位置,处于死点位置时,机构的传动角为0急回运动:当平面连杆机构的原动件(如曲柄摇杆机构的曲柄)等从动件(摇杆)空回行程的平均速度大于其工作行程的平均速度极为夹角:机构在两个极位时原动件AB所在的两个位置之间的夹角θθ=180°(K-1)/(K+1)压力角:力F与C点速度正向之间的夹角α传动角:与压力角互余的角(锐角)行程速比系数:用从动件空回行程的平均速度V2与工作行程的平均速度V1的比值K=V2/V1=180°+θ/(180°—θ)平面四杆机构中有无急回特性取决于极为夹角的大小试写出两种能将原动件单向连续转动转换成输出构件连续直线往复运动且具有急回特性的连杆机构:偏置曲柄滑块机构、摆动导杆加滑块导轨(牛头刨床机构)曲柄滑块机构:偏置曲柄滑块机构、对心曲柄滑块机构、双滑块四杆机构、正弦机构、偏心轮机构、导杆机构、回转导杆机构、摆动导杆机构、曲柄摇块机构、直动滑杆机构机构的倒置:选运动链中不同构件作为机架以获得不同机构的演化方法刚性冲击:出现无穷大的加速度和惯性力,因而会使凸轮机构受到极大的冲击柔性冲击:加速度突变为有限值,因而引起的冲击较小在凸轮机构机构的几种基本的从动件运动规律中等速运动规律使凸轮机构产生刚性冲击,等加速等减速,和余弦加速度运动规律产生柔性冲击,正弦加速度运动规律则没有冲击在凸轮机构的各种常用的推杆运动规律中,等速只宜用于低速的情况;等加速等减速和余弦加速度宜用于中速,正弦加速度可在高速下运动凸轮的基圆半径是从转动中心到理论轮廓的最短距离,凸轮的基圆的半径越小,则凸轮机构的压力角越大,而凸轮机构的尺寸越小齿廓啮合的基本定律:相互啮合传动的一对齿轮,在任一位置时的传动比,都与其连心线O1O2被其啮合齿廓在接触点处的公法线所分成的两线段长成反比渐开线:当直线BK沿一圆周作纯滚动时直线上任一一点K的轨迹AK渐开线的性质:1、发生线上BK线段长度等于基圆上被滚过的弧长AB2、渐开线上任一一点的发线恒于其基圆相切3、渐开线越接近基圆部分的曲率半径越小,在基圆上其曲率半径为零4、渐开线的形状取决于基圆的大小5、基圆以内无渐开线6、同一基圆上任意弧长对应的任意两条公法线相等渐开线函数:invαK=θk=tanαk-αk渐开线齿廓的啮合特点:1、能保证定传动比传动且具有可分性传动比不仅与节圆半径成反比,也与其基圆半径成反比,还与分度圆半径成反比I12=ω1/ω2=O2P/O1P=rb2/rb12、渐开线齿廓之间的正压力方向不变渐开线齿轮的基本参数:模数、齿数、压力角、(齿顶高系数、顶隙系数)记P180表10-2一对渐开线齿轮正确啮合的条件:两轮的模数和压力角分别相等一对渐开线齿廓啮合传动时,他们的接触点在实际啮合线上,它的理论啮合线长度为两基圆的内公切线N1N2渐开线齿廓上任意一点的压力角是指该点法线方向与速度方向间的夹角渐开线齿廓上任意一点的法线与基圆相切根切:采用范成法切制渐开线齿廓时发生根切的原因是刀具齿顶线超过啮合极限点N1 一对涡轮蜗杆正确啮合条件:中间平面内蜗杆与涡轮的模数和压力角分别相等重合度:B1B2与Pb的比值ξα;齿轮传动的连续条件:重合度大于或等于许用值定轴轮系:如果在轮系运转时其各个轮齿的轴线相对于机架的位置都是固定的周转轮系:如果在连续运转时,其中至少有一个齿轮轴线的位置并不固定,而是绕着其它齿轮的固定轴线回转复合轮系:包含定轴轮系部分,又包含周转轮系部分或者由几部分周转轮系组成定轴轮系的传动比等于所有从动轮齿数的连乘积与所有主动轮齿数的连乘积的比值中介轮:不影响传动比的大小而仅起着中间过渡和改变从动轮转向的作用第二篇:机械原理知识点归纳总结第一章绪论基本概念:机器、机构、机械、零件、构件、机架、原动件和从动件。
第二章平面机构的结构分析机构运动简图的绘制、运动链成为机构的条件和机构的组成原理是本章学习的重点。
1.机构运动简图的绘制机构运动简图的绘制是本章的重点,也是一个难点。
为保证机构运动简图与实际机械有完全相同的结构和运动特性,对绘制好的简图需进一步检查与核对(运动副的性质和数目来检查)。
2.运动链成为机构的条件判断所设计的运动链能否成为机构,是本章的重点。
运动链成为机构的条件是:原动件数目等于运动链的自由度数目。
机构自由度的计算错误会导致对机构运动的可能性和确定性的错误判断,从而影响机械设计工作的正常进行。
机构自由度计算是本章学习的重点。
准确识别复合铰链、局部自由度和虚约束,并做出正确处理。
(1)复合铰链复合铰链是指两个以上的构件在同一处以转动副相联接时组成的运动副。
正确处理方法:k个在同一处形成复合铰链的构件,其转动副的数目应为(k-1)个。
(2)局部自由度局部自由度是机构中某些构件所具有的并不影响其他构件的运动的自由度。
局部自由度常发生在为减小高副磨损而增加的滚子处。
正确处理方法:从机构自由度计算公式中将局部自由度减去,也可以将滚子及与滚子相连的构件固结为一体,预先将滚子除去不计,然后再利用公式计算自由度。
(3)虚约束虚约束是机构中所存在的不产生实际约束效果的重复约束。
正确处理方法:计算自由度时,首先将引入虚约束的构件及其运动副除去不计,然后用自由度公式进行计算。
虚约束都是在一定的几何条件下出现的,这些几何条件有些是暗含的,有些则是明确给定的。
对于暗含的几何条件,需通过直观判断来识别虚约束;对于明确给定的几何条件,则需通过严格的几何证明才能识别。
3.机构的组成原理与结构分析机构的组成过程和机构的结构分析过程正好相反,前者是研究如何将若干个自由度为零的基本杆组依次联接到原动件和机架上,以组成新的机构,它为设计者进行机构创新设计提供了一条途径;后者是研究如何将现有机构依次拆成基本杆组、原动件及机架,以便对机构进行结构分类。
第三章平面机构的运动分析1.基本概念:速度瞬心、绝对速度瞬心和相对速度瞬心(数目、位置的确定),以及“三心定理”。
2.瞬心法在简单机构运动分析上的应用。
3.同一构件上两点的速度之间及加速度之间矢量方程式、组成移动副两平面运动构件在瞬时重合点上速度之间和加速度的矢量方程式,在什么条件下,可用相对运动图解法求解?4.“速度影像”和“加速度影像”的应用条件。
5.构件的角速度和角加速度的大小和方向的确定以及构件上某点法向加速度的大小和方向的确定。
6.哥氏加速度出现的条件、大小的计算和方向的确定。
第四章平面机构的力分析1.基本概念:“静力分析”、“动力分析”及“动态静力分析”、“平衡力”或“平衡力矩”、“摩擦角”、“摩擦锥”、“当量摩擦系数”和“当量摩擦角”(引入的意义)、“摩擦圆”。
2.各种构件的惯性力的确定:①作平面移动的构件;②绕通过质心轴转动的构件;③绕不通过质心的轴转动的构件;④作平面复合运动的构件。
3.机构的动态静力分析的方法和步骤。
4.总反力方向的确定:根据两构件之间的相对运动(或相对运动的趋势)方向,正确地确定总反力的作用方向是本章的难点之一。
移动副(斜面摩擦、槽面摩擦):总反力Rxy总是与相对速度vyx 之间呈90°+φ的钝角;斜面摩擦问题的分析方法是本章的重点之一。