信号与系统奥本海姆习题答案
奥本海姆《信号与系统》(第2版)配套模拟试题及详解(上册)

奥本海姆《信号与系统》(第2版)配套模拟试题及详解一、单项选择题(本大题共5小题,每题3分,共15分;在每小题列出的四个选项中只有一个是符合题目要求的,错选、多选或未选均无分。
)1.用下列差分方程描述的系统为线性系统的是______。
A.B.C.D.【答案】C查看答案【解析】A项,方程右边出现常数3,是非线性关系。
B项,出现y(k-1)y(k-2)项,是非线性关系。
D项,出现|f(k)|,是非线性关系。
2.单边Z变换的原序列,f(k)等于______。
【答案】A查看答案【解析】3.系统的幅频特性和相频特性如图1(a)、(b)所示,则下列信号通过该系统时,不产生失真的是______。
图1A.B.C.D.【答案】B查看答案【解析】由系统的幅频特性和相频特性可知:若输入信号的频率均处于w=-5~5之间,既不产生幅度失真又不产生相位失真。
只有B满足这一条件。
4.试确定序列是否为周期序列。
若是,其周期N为______。
A.不是周期序列B.是,N=24C.是,N=12D.是,N=8【答案】B查看答案【解析】因为,得,得。
又因为是有理数,因此是周期序列。
设共同周期为N,则有。
5.信号f(t)的傅里叶变换为,则的傅里叶变换为______。
【答案】B查看答案【解析】因为,由傅里叶变换的时移性质,有,由傅里叶变换的频移性质,有二、填空题(本大题共5小题,每题3分;共15分。
)1.对连续时间信号,按采样频率采样得到的离散时间信号=______。
【答案】查看答案【解析】,其中,为离散域的频率,为连续域的频率,。
2.周期性方波x(t)如图2所示,T=2,它的四次谐波频率=______rad/s。
图2【答案】查看答案【解析】基波频率,则四次谐波频率为。
3.周期矩形信号f(t)的波形如图3,则该信号的谱线间隔为0.1Hz,其中,直流分量为______。
图3【答案】0.4查看答案【解析】由f(t)波形可知T=l0S,基波频率即谱线间隔为0.1Hz。
奥本海姆 信号与系统 习题参考答案

.第三章作业解答3.1解:420ππω==T , j a a 4*33-==- 则:t j t j t j t j k tjk ke a e a e a e a ea t x 00000333311)(ωωωωω----∞-∞=+++==∑-)243cos(84cos 443sin 84cos 4)](21[8)(2144422434344434344πππππππππππππ++=-=--⨯++⨯=-++=------t t tt e e je e jejeeet j t j t j t j t jt jt j t j3.3解:)35sin(4)32cos(2)(t t t x ππ++= 则3)32cos(1=→T t π 56)35s i n (2=→T t π故:6],[21==T T lcm T 320ππω==T )(214)(21235353232t j t j t j t j e e je e ππππ---⨯+++=则:20=a 2122==-a a 25j a -= 25j a =- 3.9x[n]波形如下图所示:0 1 4 5 n…- 4 -3则:N=4,220ππω==N ]84[41]}1[8][4{41][41][122302300πππωδδjk n jk n n jk n n jk N n k e e n n e n x e n x N a --=-=->=<+=-+===∑∑∑即:2112133210j a a j a a +=-=-==3.15解:6π=T ,1220==Tπω )(ωj H 如下图所示:则:⎩⎨⎧>≤=9||08||1)(0k k jk H ωtjk k kea t x 0)(ω∑∞-∞==tjk k ktjk k k ea ea jk H t y 00880)()(ωωω∑∑-=∞-∞===而:)()(t y t x =,即:t jk k k tjk k k e a t y ea t x 0088)()(ωω∑∑-=∞-∞====故:当9||≥k 时,0=k a3.22解:(a )2=T ,ππω==T20 ]|[12121)(11111110dt e te jk dt te dt e t x T a tjk t jk t jk T t jk k ⎰⎰⎰---------===πππωπkjk t jk t jk k j k j k k je k j e jk te k j )1(k ]02[21]|1|[211111-=⎪⎪⎩⎪⎪⎨⎧-=--=---=-----πππππππππ为奇数为偶数021110==⎰-dt t a(注意:与性质验证,由于x(t)是实奇函数,则a k 为纯虚的奇函数,满足: *k k k a a a -=-=- 且:00=a ) (d) 2=T ,ππω==T20 ])1(21[21]21[21)]1(2)([21)(1200k jk t jk T tjk k e dt e t t dt e t x T a --=-=--==---⎰⎰--ππωδδ21)]1(2)([21200-=--=⎰--dt t t a δδ3.28(b )解:)(21)(21)2cos()32sin(][223232nj n j n jnje e eejn n n x ππππππ--++== )(416/76/6/6/7n j n j n j n j e e e e j ππππ----+=12/2.712/2.12/2.12/2..7(41ππππn j jn jn n j e e e e j----+=⎪⎪⎪⎩⎪⎪⎪⎨⎧++=-++==othersrN rN k j rN rN k j a k 05,11417,141 则:⎪⎩⎪⎨⎧++++==othersrN rN rN rN k a k 05,11,7,141||⎪⎪⎪⎩⎪⎪⎪⎨⎧++=++=-=∠othersrN rN k rN rN k a k 05,1127,12ππ 3.34解:(b)∑∞-∞=--=n nn t t x )()1()(δ其波形如下图所示:其周期T=2,基波频率为:ππω==T20 ⎩⎨⎧=--=-=--==---⎰⎰--是偶数是奇数k 01])1(1[21]1[21)]1()([21)(1200k e dt e t t dt e t x T a k jk t jk T tjk k ππωδδ而:⎪⎩⎪⎨⎧<>==--00)(44||4t et e et h t tt则:240401684141)()(s s s dte e dt e e dt e t h s H st t st t st -=++-=+==--∞-∞--∞∞-⎰⎰⎰故:2)(168)(ππjk jk H -=故:⎪⎩⎪⎨⎧-==∑∞-∞=为偶数为奇数(k k e jk ea jk H t y tjk tjk k k 0)168)()(200πωπω3.357π=T ,1420==Tπω 解:)(ωj H 如下图所示:则:⎩⎨⎧<>=17||017||1)(0k k jk H ωtjk k kea t x 0)(ω∑∞-∞==tjk k k tjk k k ea ea jk H t y 0018||0)()(ωωω∑∑∞=∞-∞===而:)()(t y t x =,即:tjk k ktjk k kea t y ea t x 0018||)()(ωω∑∑∞=∞-∞====故:当18||<k 时,0=k a3.44解:(1)*k k a a =- (2)6=T ,320ππω==T (3)⎩⎨⎧===其他,不为02||1||0k k a k(4)k jk k k a e b t x a t x π--=→--→)3()(k jk k a ea π--= 则:当为偶数k a k 0=结合(3)则:⎩⎨⎧==其他不为01||0k a k(5)帕斯瓦尔关系式:21||21||||12121=⇒=+-a a a (6)211=a 211=-a 则t e e ea e a t x t j t j t j tj 3cos )(21)(333131πππππ=+=+=--- 故:03,1===C B A π。
奥本海姆信号与系统(第二版)复习题参考答案

第一章作业解答1.9解:(b )jt t t j e e e t x --+-==)1(2)(由于)()(2)1()1())(1(2t x e e e T t x T j t j T t j ≠==++-+-++-,故不是周期信号;(或者:由于该函数的包络随t 增长衰减的指数信号,故其不是周期信号;) (c )n j e n x π73][= 则πω70= 7220=ωπ是有理数,故其周期为N=2; 1.12解:]4[1][1)1(]1[1][43--=--==+---=∑∑∞=∞=n u m n mk k n n x m k δδ-3 –2 –1 0 1 2 3 4 5 6 n1…减去:-3 –2 –1 0 1 2 3 4 5 6 nu[n-4]等于:-3 –2 –1 0 1 23 4 5 6 n…故:]3[+-n u 即:M=-1,n 0=-3。
1.14解:x(t)的一个周期如图(a)所示,x(t)如图(b)所示:而:g(t)如图(c)所示……dtt dx )(如图(d )所示:……故:)1(3)(3)(--=t g t g dtt dx 则:1t ,0t 3,32121==-==;A A 1.15解:该系统如下图所示: 2[n](1)]4[2]3[5]2[2]}4[4]3[2{21]}3[4]2[2{]3[21]2[][][1111111222-+-+-=-+-+-+-=-+-==n x n x n x n x n x n x n x n x n x n y n y即:]4[2]3[5]2[2][-+-+-=n x n x n x n y(2)若系统级联顺序改变,该系统不会改变,因为该系统是线性时不变系统。
(也可以通过改变顺序求取输入、输出关系,与前面做对比)。
1.17解:(a )因果性:)(sin )(t x t y =举一反例:当)0()y(,0int s x t =-=-=ππ则时输出与以后的输入有关,不是因果的;(b )线性:按照线性的证明过程(这里略),该系统是线性的。
奥本海姆信号与系统第一章部分习题答案

(e)
x[n], n 1
y[n] 0,
n0
x[n 1], n 1
(e)
Байду номын сангаас[n], n 1
y[n] 0,
n0
x[n 1], n 1
(g )
y[n] x[4n 1]
+++
1.31 在本题中将要说明线性时不变性质的重要结果之一,即一旦知道了一个线性
∴ 1 = 3,1 = 0,2 = −3,2 =1(或-1)
1.19判定下列输入-输出关系的系统是否具有线性性质、时不变性质,或两者俱有。
线
性: 3 = 1 + 2
时不变性: 2 = 1 ( − 0 )
(a) = 2 ( − 1)
∴ 是线性的
∴ 不是时不变的
基波周期0 : 使[] = + 成立的最小正整数。
离散时间复指数信号的周期: 0 , 0 = 是有理数,则是周期的,
2
2 0
且和无公因子时,基波周期为,角频率为 =
常数通常不讨论它的周期性,但可以认为周期为1。
1
4
2
=
= ,1 = 7
2 7 × 2 7
1
3
1
[] = [cos + cos( )]
2
4
4
N1
2
* m 8, m 3
3 / 4
N1
∴ 是周期的,基波周期为 =8
2
* m 8, m 1
/4
+ + + 1.27 这一章介绍了系统的几个一般性质,这就是一个系统可能是或不是:
信号与系统 奥本海姆1-4答案.doc

Signals and SystemChap11.6 Determine whether or not each of the following signals is periodic:(a): (/4)1()2()j t x t e u t π+= (b): 2[][][]x n u n u n =+-(c): 3[]{[4][14]}k x n n k n k δδ∞=-∞=----∑Solution:(a).No 【周期信号无始无终,单边肯定不周期】Because 12cos()2sin(),0()440,0t j t t x t t ππ⎧+++>⎪=⎨⎪<⎩ when t<0, )(1t x =0. (b).No 【注意n =0】 Because 21,0[]2,01,0n n n n x >⎧⎪==⎨⎪<⎩(c).Y es 【画图、归纳】 Because∑∞-∞=--+--+=+k k m n k m n m n x ]}414[]44[{]4[3δδ∑∞-∞=------=k m k n m k n )]}(41[)](4[{δδ{[4][14]}k n k n k δδ∞=-∞=----∑N=4.1.9 Determine whether or not each of the following signals is periodic, if a signal is periodic, specify its fundamental period:(a): 101()j tx t je =(b): (1)2()j t x t e -+=(c): 73[]j n x n e π=(d): 3(1/2)/54[]3j n x n e π+= (e): 3/5(1/2)5[]3j n x n e += Solution: (a). T=π/5Because 0w =10, T=2π/10=π/5. (b). Aperiodic.Because jt t e e t x --=)(2, while t e -is not periodic, )(2t x is not periodic. (c). N=2Because 0w =7π, N=(2π/0w )*m, and m=7. (d). N=10Because n j j e e n x )5/3(10/343)(ππ=, that is 0w =3π/5,N=(2π/0w )*m, and m=3. (e). Aperiodic.Because 0w =3/5, N=(2π/0w )*m=10πm/3 , it ’s not a rational number.1.14 consider a periodic signal 1,01()2,12t x t t ≤≤⎧=⎨-<<⎩with periodT=2. The derivative of this signal is related to the “impulsetrain ”()(2)k g t t k δ∞=-∞=-∑, with period T=2. It can be shownthat1122()()()dx t A g t t A g t t dt=-+-. Determine the values of1A , 1t , 2A , 2t .Solution:A 1=3, t 1=0, A 2=-3, t 2=1 or -1 Because∑∞-∞=-=k k t t g )2()(δ,)1(3)(3)(--=t g t g dtt dx1.15. Consider a system S with input x[n] and output y[n].This system is obtained through a series interconnection of a system S 1 followed by a system S2. The input-output relationships for S 1 and S 2 areS 1: ],1[4][2][111-+=n x n x n y S 2: ]3[21]2[][222-+-=n x n x n yWhere ][1n x and ][2n x denote input signals.(a) Determine the input-output relationship for system S.(b)Does the input-output relationship of system S change if the order in which S 1 and S 2 are connected in series is reversed(ie., if S2 follows S 1)? Solution: (a)]3[21]2[][222-+-=n x n x n y]3[21]2[11-+-=n y n y]}4[4]3[2{21]}3[4]2[2{1111-+-+-+-=n x n x n x n x]4[2]3[5]2[2111-+-+-=n x n x n xThen, ]4[2]3[5]2[2][-+-+-=n x n x n x n y【可以考虑先求取单位脉冲响应,再做卷积】(b).No. because it ’s linear, S 1 and S 2 do not diverge.1.16. Consider a discrete-time system with input x[n] and output y[n].The input-output relationship for this system is]2[][][-=n x n x n y(a) Is the system memory less?(b) Determine the system output when the input is ][n A δ, where A is any real or complex number . (c) Is the system invertible? Solution: (a). No.For example, when n=0, y[0]=x[0]x[-2]. So the system is memory. (b). y[n]=0.When the input is ][n A δ,]2[][][2-=n n A n y δδ, so y[n]=0.(c). No.For example, when x[n]=0, y[n]=0; when x[n]=][n A δ, y[n]=0. So the system is not invertible.1.17.Consider a continuous-time system with input x(t) and output y(t) related by ))(sin()(t x t y =, (a) Is this system causal? (b) Is this system linear? Solution: (A). No.For example,)0()(x y =-π. So it ’s not causal.【得到什么启示?】 (b). Y es.Because : ))(sin()(11t x t y = , (sin()(22tx t y =)()())(sin())(sin()(21213t by t ay t bx t ax t y +=+=1.21. A continuous-time signal ()x t is shown in Figure P1.21. Sketch and label carefully each of the following signals:(a): (1)x t - (b): (2)x t - (c): (21)x t + (d): (4/2)x t - (e): [()()]()x t x t u t +-(f): ()[(3/2)(3/2)]x t t t δδ+--Solution: (a).(b).(c). (d).1.22. A discrete-time signal ][n x is shown in as the following. Sketch and label carefully each of the following signals: (a): [4]x n - (b): [3]x n - (c): [3]x n(d): [31]x n + (e): [][3]x n u n -(f): [2][2]x n n δ--(g): 11[](1)[]22nx n x n +-(h): 2[(1)]x n -Solution:(a).(b).(e).(f) ]2[-n δ(g)1.25. Determine whether or not each of the following continuous-time signals is periodic. If the signal is periodic, determine its fundamental period.(a): ()3cos(4)3x t t π=+ (b): (1)()j t x t e π-=(c): 2()[cos(2)]3x t t π=-(d): (){cos(4)()}x t t u t ενπ=(e): (){sin(4)()}x t t u t ενπ= (f): (2)()t n n x t e∞--=-∞=∑Solution:(a).Periodic. T=π/2. Solution: T=2π/4=π/2. (b). Periodic. T=2.Solution: T=2π/π=2.(c). Periodic. T=π/2.【括号内周期,平方后仍然周期,或者做三角变换】 (d). Periodic. T=0.5. Solution: )}()4{cos()(t u t E t x v π= )}())(4cos()()4{cos(21t u t t u t --+=ππ )}()(){4cos(21t u t u t -+=π)4cos(21t π=So, T=2π/4π=0.5【值得商榷】 (e)、(f)非周期信号。
《信号与系统》奥本海姆英文版课后答案

2
2 (f) x [n] = . Therefore, E = = = , 3 cos x cos( n) cos( n) 3[n]
4
4
4
2 )1 lim 1 ( 2 2 N 2 N 1 n N 1.4. (a) The signal x[n] is shifted by 3 to the right. The shifted signal will be zero for n<1, And n>7. (b) The signal x[n] is shifted by 4 to the left. The shifted signal will be zero for n<-6. And n>0. (c) The signal x[n] is flipped signal will be zero for n<-1 and n>2. (d) The signal x[n] is flipped and the flipped signal is shifted by 2 to the right. The new Signal will be zero for n<-2 and n>4. (e) The signal x[n] is flipped and the flipped and the flipped signal is shifted by 2 to the left. This new signal will be zero for n<-6 and n>0. 1.5. (a) x(1-t) is obtained by flipping x(t) and shifting the flipped signal by 1 to the right. Therefore, x (1-t) will be zero for t>-2. (b) From (a), we know that x(1-t) is zero for t>-2. Similarly, x(2-t) is zero for t>-1, Therefore, x (1-t) +x(2-t) will be zero for t>-2. (c) x(3t) is obtained by linearly compression x(t) by a factor of 3. Therefore, x(3t) will be zero for t<1.
奥本海姆《信号与系统(第二版)》习题参考答案

第一章作业解答解:(b )jt t t j e e e t x --+-==)1(2)(由于)()(2)1()1())(1(2t x e e e T t x T j t j T t j ≠==++-+-++-,故不是周期信号;(或者:由于该函数的包络随t 增长衰减的指数信号,故其不是周期信号;) (c )n j e n x π73][= 则πω70= 7220=ωπ是有理数,故其周期为N=2;解:]4[1][1)1(]1[1][43--=--==+---=∑∑∞=∞=n u m n mk k n n x m k δδ-3 –2 –1 0 1 2 3 4 5 6 n1…减去:-3 –2 –1 0 1 2 3 4 5 6 nu[n-4]等于:-3 –2 –1 0 1 2 34 5 6 n…故:]3[+-n u 即:M=-1,n 0=-3。
解:x(t)的一个周期如图(a)所示,x(t)如图(b)所示:而:g(t)如图(c)所示……dtt dx )(如图(d )所示:……故:)1(3)(3)(--=t g t g dtt dx 则:1t ,0t 3,32121==-==;A A 1.15解:该系统如下图所示: 2[n](1)]4[2]3[5]2[2]}4[4]3[2{21]}3[4]2[2{]3[21]2[][][1111111222-+-+-=-+-+-+-=-+-==n x n x n x n x n x n x n x n x n x n y n y即:]4[2]3[5]2[2][-+-+-=n x n x n x n y(2)若系统级联顺序改变,该系统不会改变,因为该系统是线性时不变系统。
(也可以通过改变顺序求取输入、输出关系,与前面做对比)。
解:(a )因果性:)(sin )(t x t y =举一反例:当)0()y(,0int s x t =-=-=ππ则时输出与以后的输入有关,不是因果的;(b )线性:按照线性的证明过程(这里略),该系统是线性的。
奥本海姆 信号与系统 习题参考答案

第五、六、七、八章作业解答5.1解:(a )ωωωωωωj j j j n j n n j n n n e e e ee e n u F -----∞=--∞=--=-===-∑∑211211212)21(2)21(]}1[)21{(1111 其模为:ωωcos 4111|)(|-+=j e X5.4解:根据:∑∞-∞=-=k k F )2(2}1{πωπδ)2()2(}{c o s 000ωπωπδωπωπδω+-+--=∑∞-∞=k k F k故:n 2cos1)(1π+=t x5.23解:(a ) 因为:nj N j en x eX ωω-+∞-∞=∑=][)(则:6)1(121121)1(][)(0=-+++++++-==∑+∞-∞=N j n x e X(b )设]2[][1+=n x n x则]2[][1-=n x n x ωωω21)()(j j j e e X e X -=x1[n]是实偶对称信号,则⎪⎩⎪⎨⎧<>=∠0)(0)(0)(111ωωωπj j j e X e X e X故:⎪⎩⎪⎨⎧<->-=∠+-=∠0)(20)(2)(2)(111ωωωωωπωωj j j j e X e X e X e X(c )因为: ⎰=πωωωπ2)(21][d e e X n x n j j则:ππωππω4]0[2)(==⎰-x d e X j(d) 因为:nj N j en x eX ωω-+∞-∞=∑=][)(2)1()1(12)1(112)1(1)1()1()1(][][)(=-+-⨯++-⨯+++-⨯+-⨯-=-==∑∑+∞-∞=+∞-∞=nN nj N j n x en x e X ππ(e) 2][][][)}(Re{n x n x n x eX e Fj -+=−→←π(图略)(f) I 根据帕斯瓦尔关系式:⎰∑+∞-∞==πωωπ222|)(|21|][|d e X n x j n 则:πππωωππ28)11411411(2|][|2|)(|22=+++++++==∑⎰+∞-∞=-n j n x d e XII 根据:ωωd e dX n nx j FT)(][j −→←-则:πππωωωππ316)4925649119(2|][-j |2|)(|22=++++++==−→←∑⎰∞-∞=-n j FTn nx d d e dX6.5解:而:ttt h c πωsin )(1= 的傅里叶变换为:0 ωc ω -ωc则)()()(1t g t h t h = 而:)2()2()(11c c j H j H j H ωωωωω-++= 故:t e e t g c t j tj c c ωωω2cos 2)(22=+=-6.23(a) ttt h c πωsin )(=(b) ⎩⎨⎧<=othere j H c Tj 0||)(ωωωω则:)()(sin )(T t T t t h c ++=πω(c )⎪⎪⎪⎩⎪⎪⎪⎨⎧<<-<<=-othere e j H c j c j 000)(22ωωωωωππ故:ωπωπωωπωωπd e e d e e t h t j jtj jcc⎰⎰+=--02022121)(c c t j jt j je t e e t e ωωπωωπππ0202|j 2|j 2+=--c c t j jt j je te e t e ωωπωωπππ0202|j 2|j 2+=-- ]1[2]1[222-+-=--t j jt j jc c e t j e e t j e ωπωπππ]}[]{[21122t j t j j j c c e e e e jt ωωπππ---+-=]}[]{[211)2/()2/(22πωπωπππt j t j j j c c e e e e jt -+--+-=]1[cos 1-=t t c ωπ7.3解:(a))(t x 的最高频率为4000π,故奈奎斯特率为8000π; (b ) 同上;(c ) 时域相乘,频域相卷,故)(t x 的最高频率为8000π,则奈奎斯特率为16000π;7.22解: y(t)为:)()()(ωωωj H j X j Y =πωω1000||0)(>=j Y对y(t)进行采样,则要求采样频率fs>2000π,故采样周期因为ms T 120002=<ππ7.27解: (a )x (t)e ∑∞-∞=-=n nT t t p )()(δx p (t)因为:ω0如下图图所示,为ω1与ω2的中点位置:X(j ω) ωω1 -ω2 -ω11ω2 ω0(a ))()(01ωωω+=j X j X)()()(12ωωωj H j X j X =21X2(j ω) ω(ω2-ω1)/21-(ω2-ω1)/2(b )最大的采样周期为:122ωωπ-(c)该系统为:先通过如下图所示的低通滤波器,得到X2(j ω),然后将其乘以 e j ω0t ,则信号频移ω0,然后通过一个反折系统,其系统框图图下图所示:H (j ω) ω(ω2-ω1)/2T-(ω2-ω1)/2e j ω0t说明:因为)(X ωj a 为实数,则有:)(X )(X *ωωj j a a =而)()()}(Re{2)(x *t x t x t x t aa a +==)()()(*ωωωj X j X j X a a -+=又因为)(X )(X *ωωj j a a =故:)(X )(X *ωωj j aa -=-则:)()()(ωωωj X j X j X a a -+=得到结论8.3解:定性的理解由于载波信号与同步信号的相位相差为90o ,故输出信号为0; (也可以通过调制、解调的时域表达式计算出结果也为0)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Chapter 1 Answers1.6 (a).NoBecause when t<0, )(1t x =0.(b).NoBecause only if n=0, ][2n x has valuable.(c).Yes Because ∑∞-∞=--+--+=+k k m n k m n m n x ]}414[]44[{]4[δδ ∑∞-∞=------=k m k n m k n )]}(41[)](4[{δδ ∑∞-∞=----=k k n k n ]}41[]4[{δδ N=4.1.9 (a). T=π/5Because 0w =10, T=2π/10=π/5.(b). Not periodic.Because jt t e e t x --=)(2, while t e -is not periodic, )(2t x is not periodic.(c). N=2Because 0w =7π, N=(2π/0w )*m, and m=7.(d). N=10Because n j j e e n x )5/3(10/343)(ππ=, that is 0w =3π/5, N=(2π/0w )*m, and m=3.(e). Not periodic. Because 0w =3/5, N=(2π/0w )*m=10πm/3 , it ’s not a rational number.1.14 A1=3, t1=0, A2=-3, t2=1 or -1dtt dx )( isSolution: x(t) isBecause ∑∞-∞=-=k k t t g )2()(δ, dt t dx )(=3g(t)-3g(t-1) or dtt dx )(=3g(t)-3g(t+1) 1.15. (a). y[n]=2x[n-2]+5x[n-3]+2x[n-4]Solution:]3[21]2[][222-+-=n x n x n y ]3[21]2[11-+-=n y n y ]}4[4]3[2{21]}3[4]2[2{1111-+-+-+-=n x n x n x n x ]4[2]3[5]2[2111-+-+-=n x n x n xThen, ]4[2]3[5]2[2][-+-+-=n x n x n x n y(b).No. For it ’s linearity.the relationship between ][1n y and ][2n x is the same in-out relationship with (a). you can have a try.1.16. (a). No.For example, when n=0, y[0]=x[0]x[-2]. So the system is memory. (b). y[n]=0.When the input is ][n A δ,then, ]2[][][2-=n n A n y δδ, so y[n]=0. (c). No.For example, when x[n]=0, y[n]=0; when x[n]=][n A δ, y[n]=0. So the system is not invertible.1.17. (a). No.For example, )0()(x y =-π. So it ’s not causal.(b). Yes.Because : ))(sin()(11t x t y = , ))(sin()(22t x t y =))(sin())(sin()()(2121t bx t ax t by t ay +=+1.21. Solution:We have known:(a).(b).(c).(d).1.22. Solution:We have known:(a).(b).(e).(g)1.23. Solution:For )]()([21)}({t x t x t x E v -+= )]()([21)}({t x t x t x O d --= then,(a).(b).(c).1.24.For: ])[][(21]}[{n x n x n x E v -+= ])[][(21]}[{n x n x n x O d --=then,(a).(b).1.25. (a). Periodic. T=π/2.Solution: T=2π/4=π/2.(b). Periodic. T=2.Solution: T=2π/π=2.(d). Periodic. T=0.5. Solution: )}()4{cos()(t u t E t x v π=)}())(4cos()()4{cos(21t u t t u t --+=ππ )}()(){4cos(21t u t u t -+=π )4cos(21t π= So, T=2π/4π=0.51.26. (a). Periodic. N=7Solution: N=m *7/62ππ=7, m=3.(b). Aperriodic.Solution: N=ππm m 16*8/12=, it ’s not rational number.(e). Periodic. N=16 Solution as follow:)62cos(2)8sin()4cos(2][ππππ+-+=n n n n x in this equation,)4cos(2n π, it ’s period is N=2π*m/(π/4)=8, m=1.)8sin(n π, it ’s period is N=2π*m/(π/8)=16, m=1.)62cos(2ππ+-n , it ’s period is N=2π*m/(π/2)=4, m=1. So, the fundamental period of ][n x is N=(8,16,4)=16.1.31. SolutionBecause )()1()(),2()()(113112t x t x t x t x t x t x ++=--=. According to LTI property ,)()1()(),2()()(113112t y t y t y t y t y t y ++=--=Extra problems:Sketch ⎰∞-=t dt t x t y )()(. 1. SupposeSolution:2. SupposeSketch:(1). )]1(2)1()3()[(--+++t t t t g δδδ(2). ∑∞-∞=-k k t t g )2()(δ(2).Chapter 22.1 Solution:Because x[n]=(1 2 0 –1)0, h[n]=(2 0 2)1-, then(a).So, ]4[2]2[2]1[2][4]1[2][1---+-+++=n n n n n n y δδδδδ (b). according to the property of convolutioin:]2[][12+=n y n y(c). ]2[][13+=n y n y][*][][n h n x n y =][][k n h k x k -=∑∞-∞= ∑∞-∞=-+--=k k k n u k u ]2[]2[)21(2 ][211)21()21(][)21(12)2(0222n u n u n n k k --==+-++=-∑ ][])21(1[21n u n +-= the figure of the y[n] is:2.5 Solution:We have known: ⎩⎨⎧≤≤=elsewhere n n x ....090....1][,,, ⎩⎨⎧≤≤=elsewhere N n n h ....00....1][,,,(9≤N ) Then, ]10[][][--=n u n u n x , ]1[][][---=N n u n u n h∑∞-∞=-==k k n u k h n h n x n y ][][][*][][ ∑∞-∞=-------=k k n u k n u N k u k u ])10[][])(1[][(So, y[4] ∑∞-∞=-------=k k u k u N k u k u ])6[]4[])(1[][( ⎪⎪⎩⎪⎪⎨⎧≥≤=∑∑==4,...14, (140)0N N k Nk =5, then 4≥N And y[14] ∑∞-∞=------=k k u k u N k u k u ])4[]14[])(1[][(⎪⎪⎩⎪⎪⎨⎧≥≤=∑∑==14,...114, (1145)5N N k Nk =0, then 5<N ∴4=N2.7 Solution:[][][2]k y n x k g n k ∞=-∞=-∑(a )[][1]x n n δ=-,[][][2][1][2][2]k k y n x k g n k k g n k g n δ∞∞=-∞=-∞=-=--=-∑∑(b) [][2]x n n δ=-,[][][2][2][2][4]k k y n x k g n k k g n k g n δ∞∞=-∞=-∞=-=--=-∑∑ (c) S is not LTI system..(d) [][]x n u n =,0[][][2][][2][2]k k k y n x k g n k u k g n k g n k ∞∞∞=-∞=-∞==-=-=-∑∑∑2.8 Solution: )]1(2)2([*)()(*)()(+++==t t t x t h t x t y δδ )1(2)2(+++=t x t xThen,That is, ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<-≤<-+-=-<<-+=others t t t t t t t t y ,........010,....2201,.....41..,.........412,.....3)(2.10 Solution:(a). We know:Then,)()()(αδδ--='t t t h)]()([*)()(*)()(αδδ--='='t t t x t h t x t y )()(α--=t x t xthat is,So, ⎪⎪⎩⎪⎪⎨⎧+≤≤-+≤≤≤≤=others t t t t t t y ,.....011,.....11,....0,.....)(ααααα(b). From the figure of )(t y ', only if 1=α, )(t y ' would contain merely therediscontinuities.2.11 Solution:(a). )(*)]5()3([)(*)()(3t u et u t u t h t x t y t----==⎰⎰∞∞---∞∞--------=ττττττττd t u e u d t u eu t t )()5()()3()(3)(3⎰⎰-------=tt t t d e t u d et u 5)(33)(3)5()3(ττττ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥+-=-<≤-=<=---------⎰⎰⎰5,.......353,.....313.........,.........0315395)(33)(3393)(3t e e d e d e t e d e t tt t t t t t t t ττττττ(b). )(*)]5()3([)(*)/)(()(3t u e t t t h dt t dx t g t ----==δδ)5()3()5(3)3(3---=----t u e t u e t t(c). It ’s obvious that dt t dy t g /)()(=.2.12 Solution∑∑∞-∞=-∞-∞=--=-=k tk tk t t u ek t t u e t y )]3(*)([)3(*)()(δδ∑∞-∞=---=k k t k t u e)3()3(Considering for 30<≤t ,we can obtain33311])3([)(---∞=-∞-∞=--==-=∑∑ee e ek t u e e t y tk k tk kt. (Because k must be negetive ,1)3(=-k t u for 30<≤t ).2.19 Solution:(a). We have known:][]1[21][n x n w n w +-=(1) ][]1[][n w n y n y βα+-=(2)from (1), 21)(1-=E EE Hfrom (2), αβ-=E EE H )(2then, 212212)21(1)21)(()()()(--++-=--==E E E E E E H E H E H ααβαβ∴][]2[2]1[)21(][n x n y n y n y βαα=-+-+-but, ][]1[43]2[81][n x n y n y n y +-+--=∴⎪⎩⎪⎨⎧=⎪⎭⎫ ⎝⎛=+=143)21(:....812βααor ∴⎪⎩⎪⎨⎧==141βα(b). from (a), we know )21)(41()()()(221--==E E E E H E H E H21241-+--=E EE E ∴][)41()21(2][n u n h n n ⎥⎦⎤⎢⎣⎡-=2.20 (a). 1⎰⎰∞∞-∞∞-===1)0cos()cos()()cos()(0dt t t dt t t u δ(b). 0dt t t )3()2sin(5+⎰δπ has value only on 3-=t , but ]5,0[3∉-∴dt t t )3()2sin(5+⎰δπ=0(c). 0⎰⎰---=-641551)2cos()()2cos()1(dt t t u d u πτπττ⎰-'-=64)2cos()(dt t t πδ0|)2(s co ='=t t π 0|)2sin(20=-==t t ππ∑∞-∞=-==k t h kT t t h t x t y )(*)()(*)()(δ∑∞-∞=-=k kT t h )(∴2.27Solution()y A y t dt ∞-∞=⎰,()xA x t dt ∞-∞=⎰,()hA h t dt ∞-∞=⎰.()()*()()()y t x t h t x x t d τττ∞-∞==-⎰()()()()()()()()()(){()}y x hA y t dt x x t d dtx x t dtd x x t dtd x x d d x d x d A A ττττττττττξξτττξξ∞∞∞-∞-∞-∞∞∞∞∞-∞-∞-∞-∞∞∞∞∞-∞-∞-∞-∞==-=-=-===⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰(a) ()()(2)tt y t e x d τττ---∞=-⎰,Let ()()x t t δ=,then ()()y t h t =. So , 2()(2)(2)()(2)()(2)t t t t t h t ed e d e u t τξδττδξξ---------∞-∞=-==-⎰⎰(b) (2)()()*()[(1)(2)]*(2)t y t x t h t u t u t e u t --==+---(2)(2)(1)(2)(2)(2)t t u eu t d u e u t d ττττττττ∞∞-------∞-∞=+------⎰⎰22(2)(2)12(1)(4)t t t t u t e d u t e d ττττ---------=---⎰⎰(2)2(2)212(1)[]|(4)[]|t t t t u t e e u t ee ττ-------=--- (1)(4)[1](1)[1](4)t t e u t e u t ----=-----2.46 SolutionBecause)]1([2)1(]2[)(33-+-=--t u dtde t u e dt d t x dt d t t )1(2)(3)1(2)(333-+-=-+-=--t e t x t e t x t δδ.From LTI property ,we know)1(2)(3)(3-+-→-t h e t y t x dtdwhere )(t h is the impulse response of the system. So ,following equation can be derived.)()1(223t u e t h e t --=-Finally, )1(21)()1(23+=+-t u e e t h t 2.47 SoliutionAccording to the property of the linear time-invariant system: (a). )(2)(*)(2)(*)()(000t y t h t x t h t x t y ===(b). )(*)]2()([)(*)()(00t h t x t x t h t x t y --==)(*)2()(*)(0000t h t x t h t x --=012y(t)t4)2()(00--=t y t y(c). )1()1(*)(*)2()1(*)2()(*)()(00000-=+-=+-==t y t t h t x t h t x t h t x t y δ(d). The condition is not enough.(e). )(*)()(*)()(00t h t x t h t x t y --==τττd t h x )()(00+--=⎰∞∞-)()()(000t y dm m t h m x -=--=⎰∞∞-(f). )()]([)](*)([)(*)()(*)()(000000t y t y t h t x t h t x t h t x t y "=''='--'=-'-'==Extra problems:1. Solute h(t), h[n](1). )()(6)(5)(22t x t y t y dt dt y dtd =++ (2). ]1[][2]1[2]2[+=++++n x n y n y n y Solution:(1). Because 3121)3)(2(1651)(2+-++=++=++=P P P P P P P Hso )()()()3121()(32t u e e t P P t h t t ---=+-++=δ (2). Because )1)(1(1)1(22)(22i E i E EE E E E E E H -+++=++=++=iE Eii E E i -+-+++=1212 so []][)1()1(2][1212][n u i i i k i E E i i E E i n h n n +----=⎪⎪⎪⎪⎭⎫⎝⎛-+-+++=δChapter 33.1 Solution:Fundamental period 8T =.02/8/4ωππ==00000000033113333()224434cos()8sin()44j kt j t j t j t j tk k j t j t j t j tx t a e a e a e a e a e e e je je t t ωωωωωωωωωππ∞----=-∞--==+++=++-=-∑3.2 Solution:for, 10=a , 4/2πj ea --= , 4/2πj ea = , 3/42πj ea --=, 3/42πj ea =n N jk k N k e a n x )/2(][π∑>=<=n j n j n j n j e a e a e a e a a )5/8(4)5/8(4)5/4(2)5/4(20ππππ----++++=n j j n j j n j j n j j e e e e e e e e )5/8(3/)5/8(3/)5/4(4/)5/4(4/221ππππππππ----++++= )358cos(4)454cos(21ππππ++++=n n)6558sin(4)4354sin(21ππππ++++=n n3.3 Solution: for the period of )32cos(t πis 3=T , the period of )35sin(t πis 6=Tso the period of )(t x is 6 , i.e. 3/6/20ππ==w)35sin(4)32cos(2)(t t t x ππ++= )5sin(4)2cos(21200t w t w ++=)(2)(21200005522t w j t w j t w j t w j e e j e e ----++=then, 20=a , 2122==-a a , j a 25=-, j a 25-=3.5 Solution:(1). Because )1()1()(112-+-=t x t x t x , then )(2t x has the same period as )(1t x ,that is 21T T T ==, 12w w =(2). 212111()((1)(1))jkw t jkw tk T T b x t e dt x t x t e dt T--==-+-⎰⎰111111(1)(1)jkw tjkw t T Tx t e dt x t e dt T T --=-+-⎰⎰ 111)(jkw k k jkw k jkw k e a a e a e a -----+=+=3.8 Solution:kt jw k k e a t x 0)(∑∞-∞==while:)(t x is real and odd, then 00=a , k k a a --=2=T , then ππ==2/20wand0=k a for 1>kso kt jw k k e a t x 0)(∑∞-∞==t jw t jw e a e a a 00110++=--)sin(2)(11t a e e a t j t j πππ=-=-for12)(2121212120220==++=-⎰a a a a dt t x∴2/21±=a ∴)sin(2)(t t x π±=3.13 Solution:Fundamental period 8T =.02/8/4ωππ==kt jw k k e a t x 0)(∑∞-∞==∴t jkw k k e jkw H a t y 0)()(0∑∞-∞==0004, 0sin(4)()0, 0k k H jk k k ωωω=⎧==⎨≠⎩ ∴000()()4jkw t k k y t a H jkw e a ∞=-∞==∑Because 48004111()1(1)088T a x t dt dt dt T ==+-=⎰⎰⎰So ()0y t =.kt jw k k e a t x 0)(∑∞-∞==∴t jkw k k e jkw H a t y 0)()(0∑∞-∞== ∴dt e jkw H t y Ta t jkw Tk 0)()(10-⎰=for⎪⎩⎪⎨⎧>≤=100, (0100),.......1)(w w jw H ∴if 0=k a , it needs 1000>kwthat is 12100,........1006/2>>k kππand k is integer, so 8>K3.22 Solution:021)(1110===⎰⎰-tdt dt t x Ta Tdt te dt te dt e t x T a t jk t jk t jkw T k ππ-----⎰⎰⎰===1122112121)(10t jk tde jk ππ--⎰-=1121⎥⎥⎦⎤⎢⎢⎣⎡---=----111121ππππjk e te jk t jk tjk ⎥⎦⎤⎢⎣⎡---+-=--ππππππjk e e e e jk jk jk jk jk )()(21⎥⎦⎤⎢⎣⎡-+-=ππππjk k k jk )sin(2)cos(221[]πππππk jk k j k jk k)1()cos()cos(221-==-=0............≠k404402()()1184416tj tj t t j tt j t H j h t edt ee dte edt e e dtj j ωωωωωωωω∞∞----∞-∞∞----∞===+=+=-++⎰⎰⎰⎰A periodic continous-signal has Fourier Series:. 0()j kt k k x t a e ω∞=-∞=∑T is the fundamental period of ()x t .02/T ωπ=The output of LTI system with inputed ()x t is 00()()jk t k k y t a H jk e ωω∞=-∞=∑Its coefficients of Fourier Series: 0()k k b a H jk ω= (a)()()n x t t n δ∞=-∞=-∑.T=1, 02ωπ=11k a T==. 01/221/21()()1jkw t jk tk T a x t e dt t e dt Tπδ---===⎰⎰ (Note :If ()()n x t t nT δ∞=-∞=-∑,1k a T=) So 2282(2)16(2)4()k k b a H jk k k πππ===++ (b)()(1)()n n x t t n δ∞=-∞=--∑ .T=2, 0ωπ=,11k a T== 01/23/21/21/2111()()(1)(1)221[1(1)]2jkw t jk tjk t k T k a x t e dt t e dt t e dtT ππδδ----==+--=--⎰⎰⎰So 24[1(1)]()16()k k k b a H jk k ππ--==+, (c) T=1,02ωπ=01/421/4sin()12()jk t jk tk T k a x t e dt e dt Tk ωπππ---===⎰⎰28sin()2()[16(2)]k k k b a H jk k k ππππ==+ 3.35 Solution: T= /7π,02/14T ωπ==.kt jw k k e a t x 0)(∑∞-∞==∴t jkw k k e jkw H a t y 0)()(0∑∞-∞==∴0()k k b a H jkw =for⎩⎨⎧≥=otherwise w jw H ,.......0250,.......1)(,01,. (17)()0,.......k H jkw otherwise ⎧≥⎪=⎨⎪⎩that is 0250250, (14)k k ω<<, and k is integer, so 18....17k or k <≤. Let ()()y t x t =,k k b a =, it needs 0=k a ,for 18....17k or k <≤.3.37 Solution:11()[]()212()21312411511cos 224nj j nj n n n n j nn j nn n j j j H e h n ee ee e e e ωωωωωωωωω∞∞--=-∞=-∞-∞--=-∞=-===+=+=---∑∑∑∑A periodic sequence has Fourier Series:2()[]jk n Nk k N x n a eπ=<>=∑.N is the fundamental period of []x n .The output of LTI system with inputed []x n is 22()[]()jk jk n NNk k N y n a H eeππ=<>=∑.Its coefficients of Fourier Series: 2()jk Nk k b a H eπ=(a)[][4]k x n n k δ∞=-∞=-∑.N=4, 14k a =.So 2314()524cos()44j k Nk k b a H e k ππ==-3165cos()42k b k π=-3.40 Solution: According to the property of fourier series: (a). )2cos(2)cos(20000000t Tka t kw a e a ea a k k t jkw k t jkw k k π==+='- (b). Because 2)()()}({t x t x t x E v -+=}{2k v k k k a E a a a =+='-(c). Because 2)(*)()}({t x t x t x R e +=2*kk k a a a -+='(d). k k k a Tjka jkw a 220)2()(π=='(e). first, the period of )13(-t x is 3T T ='then 3)(1)13(131213120dme m x T dt e t x T a m T jk T t T jk T k +'--'-'-'⎰⎰'=-'='ππTjkk m T jk T T jk T jk m T jk T ea dm e m x T e dm e e m x T πππππ221122211)(1)(1---------=⎥⎦⎤⎢⎣⎡==⎰⎰3.43 (a) Proof:(i )Because ()x t is odd harmonic ,(2/)()jk T t k k x t a e π∞=-∞=∑,where 0k a = for everynon-zero even k.(2/)()2(2/)(2/)()2T jk T t k k jk jk T tk k jk T tk k T x t a ea e e a e ππππ∞+=-∞∞=-∞∞=-∞+===-∑∑∑It is noticed that k is odd integers or k=0.That means()()2Tx t x t =-+(ii )Because of ()()2Tx t x t =-+,we get the coefficients of Fourier Series222/200/222(/2)/2/20022/2/200111()()()11()(/2)11()()(1)jk t jk t jk t T T T T T T k T jk t jk t T T T T Tjk t jk t T T k TT a x t e dt x t e dt x t e dtT T T x t e dt x t T e dt T T x t e dt x t e dt T T πππππππ-----+--==+=++=--⎰⎰⎰⎰⎰⎰⎰ 2/21[1(1)]()jk t T kT x t e dt T π-=--⎰It is obvious that 0k a = for every non-zero even k. So ()x t is odd harmonic ,(b)Extra problems:∑∞-∞=-=k kT t t x )()(δ, π=T(1). Consider )(t y , when )(jw H ist(2). Consider )(t y , when )(jw H isSolution:∑∞-∞=-=k kT t t x )()(δ↔π11=T , 220==Tw π(1).kt j k k tjkw k k e k j H a ejkw H a t y 20)2(1)()(0∑∑∞-∞=∞-∞===ππ2=(for k can only has value 0)(2).kt j k k tjkw k k e k j H a e jkw H a t y 20)2(1)()(0∑∑∞-∞=∞-∞===πππte e t j t j 2cos 2)(122=+=- (for k can only has value –1 and 1)。