奥本海姆版信号与系统ppt
信号与系统(奥本海默)课件3

1通信科学与工程系四用微分和差分方程描述的因果LTI 系统1. 线性常系数微分方程()()()t bx t ay dt t dy =+给出了系统的隐含特性,要得到明确表达式,需求解方程,并且还需一个或多个附加条件。
对于因果线性时不变系统,附加条件的形式特殊简单。
2通信科学与工程系一般的N 阶线性常系数微分方程:()()∑∑===M k kk kNk k k k dt t x d b dt t y d a 00()()∑==M k kkk dtt x d b a t y 001当N=0时,输出是输入及其导数的明确函数:当N>0时,输出是输入的隐含形式,需要求解。
四用微分和差分方程描述的因果LTI 系统3通信科学与工程系求解该微分方程,通常是求出通解和一个特解,则。
()p y t ()h y t ()()()p h y t y t y t =+四用微分和差分方程描述的因果LTI 系统()p y t ()x t 特解是与输入同类型的函数.()h y t 0()0k Nk k k d y t a dt==∑通解是齐次方程的解,即的解。
0Nkk k a λ==∑欲求得齐次解,可根据齐次方程建立一个特征方程:求出其特征根。
4通信科学与工程系若t ≤ t 0时x (t )=0,则t ≤ t 0 时y (t )=0,初始松弛条件1(),k Nth k k y t C e λ==∑其中是待定的常数。
k C 当特征根均为单阶根时,可得出齐次解的形式为:四用微分和差分方程描述的因果LTI 系统()()()010100====--N N dt t y d dt t dy t y 可采用如下初始条件:5通信科学与工程系()()()t x t y dtt dy =+2()()t u Ke t x t 3=例2.14:考虑输入为时,系统的解。
()()()t y t y t y h p +=5KY =()3,05t p Ky t e t =>方程的解由特解和齐次解组成:()tp Ye t y 3=求解特解:令t > 0时,根据方程可得33332t t t Ye Ye Ke +=受迫响应自然响应四用微分和差分方程描述的因果LTI 系统6通信科学与工程系()()02=+t y dtt dy 求解齐次解:根据方程,得特征方程为()23,05t t Ky t Ce e t -=+>0/5C K =+5KC =-()[]()t u e e K t y t t 235--=20λ+=2λ=-()2th y t Ce -=齐次解四用微分和差分方程描述的因果LTI 系统根据初始条件确定C :考虑因果LTI 系统,如果t<0 时x (t )=0,则t<0 时y (t )=0. 将t = 0, y (0) = 0代入有7通信科学与工程系2. 线性常系数差分方程一般的线性常系数差分方程可表示为:与微分方程一样,它的解法也可以通过求出一个特解和齐次解来进行,其过程与解微分方程类似。
信号与系统 课件 奥本海姆 第一章

离散时间周期信号
这种信号也称为功率信号,通常用它的平均功
率来表征。
1 T 2 P x(t ) dt (以T为周期) 或 T 0
1 P 2T
T
T
x(t ) dt
2
1 N 1 2 P x(n) N n 0
(以N为周期)或
N 1 2 P x ( n) 2 N 1 n N
,再据值进行尺度变换,再做时间反转。
由 做法一:
x(t )
1 0 1
1 x(t ) x(3t ) 2
1 1 x(t ) x(t ) x(3t ) 2 2
1 x(t ) 2
1
1 tt 2
t
t 3t
t
0 1/2 3/2
1
1 x (3t ) 2
t
0 1/6 1/2
N
E lim x(n) x(n)
2 N
N
2
在无限区间内的平均功率可定义为:
1 T P lim T 2T T
x(t)
2
dt
N 1 2 P lim x ( n) N 2 N 1 N
三类重要信号(按照信号的可积性或可和性划分): 1. 能量信号——信号具有有限的总能量,
x(t) 1 0 1 1 2 3
t
(a)
解1:
x(t) 1 0 1 1 2 3 1 x(t-3)
t
3
2
1
0 1
12Biblioteka 3456
t
(a) x(2t-3) 1 0 1 1 2 3 1
(b) x(-2t-3)
t
第七章课件奥本海姆本信号与系统

NO!
In addition, we can get different sequences if a signal is sampled at different regular intervals .
T?
7.1.1 Impulse-train sampling (冲激串采样 冲激串采样) 冲激串采样 In time domain:
Solution:
f M = 100 Hz
f sMin = 2 f M = 200 Hz
TsMax =
N Min =
1 f sMin
1 s = 200
τ
TsMax
1 = (2 × 60) = 24000 200
7.2 Reconstruction of A Signal From Its Samples Using Interpolation (p.522)
x(t )
x p (t ) = x ( t ) ⋅ p ( t )
p( t )
= ∑ x ( nT )δ ( t − nT )
−∞
∞
p( t ) =
n =−∞
∑ δ (t − nT )
∞
T :Sampling period
Sampling function
x(t )
x p (t ) = x ( t ) ⋅ p ( t )
p( t )
2π P ( jω ) = T
n =−∞
∑ δ (ω − kω )
s
∞
1 X p ( jω ) = X ( jω ) ∗ P ( jω ) 2π
2π ωs = T
s
In frequency 1 2π X ( jω ) ∗ = domain: 2π T
信号与系统 双语 奥本海姆 第二章PPT课件

10
Chapter 2 §2.3 卷积的计算 1. 由定义计算卷积积分
例2.6 xte au tt,a0htut
2. 图解法 例2.7 求下列两信号的卷积
xt 1 , 0tT ht
0 , 其余t 3. 利用卷积积分的运算性质求解
LTI Systems
yt
t , 0t2T 0 , 其余t
11
Chapter 2
in Terms of impulses
Example 2
3 xn
2
1
1 01 2
n
xknk
x n x 1 n 1 x 0 n x 1 n 1
xnxknk k 4
Chapter 2
LTI Systems
§2.1.2 The Discrete-Time Unit Impulse Responses and the
LTI Systems
§2.3 Properties of LTI Systems
xt ht ytxtht
xn hn ynxnhn
LTI系统的特性可由单位冲激响应完全描述
Example 2.9 ① LTI system
h n
1
0
n0,1 otherwise
② Nonlinear System
③ Time-variant System
a y n x n x n 1 2 aytco s3 txt
b y n m x n ,x a n 1 x b ytetxt 12
Chapter 2
LTI Systems
§2.3.1 Properties of Convolution Integral and Convolution Sum 1. The Commutative Property (交换律)
奥本海姆信号与系统总结精品PPT课件

d
f1 (t) dt
d
yf 1 (t) dt
=
–3δ(t)
+
[4e-t
–πsin(πt)]ε(t)
根据LTI系统的时不变特性
f1(t–1) →y1f(t – 1) ={ –4e-(t-1) + cos[π(t–1)]}ε(t–1)
由线性性质,得:当输入f3(t) =
d
f1 (t dt
)
+2f1(t–1)时,
t
t
t
sin( x)[a
0
f1 ( x)
b
f2 (x)]d
x
a
0 sin(x) f1 (x) d x b
0 sin(x) f 2 (x) d x
= aT[{f1(t)}, {0}] +bT[{ f2(t) }, {0}],满足零状态线性;
T[{0},{ax1(0) + bx2(0)} ] = e-t[ax1(0) +bx2(0)] = ae-tx1(0)+ be-tx2(0) = aT[{0},{x1(0)}] +bT[{0},{x2(0)}], 满足零输入线性; 所以,该系统为线性系统。
Application Field
• 计算机、通信、语音与图像处理 • 电路设计、自动控制、雷达、电视 • 声学、地震学、化学过程控制、交通运输 • 经济预测、财务统计、市场信息、股市分析 • 宇宙探测、军事侦察、武器技术、安全报警 • 电子出版、新闻传媒、影视制作 • 远程教育、远程医疗、远程会议 • 虚拟仪器、虚拟手术 • 人体:
• 第6章 信号与系统的时域和频域特性 6 连续时间付里叶变换的极坐标表示;理想低通 滤波器;Bode图;一阶系统与二阶系统的分析 方法
信号与系统奥本海姆课件第3章.

2
3.0 引言 Introduction
• 时域分析方法的基础 : 1)信号在时域的分解。 2)LTI系统满足线性、时不变性。
• 从分解信号的角度出发,基本信号单元必须满 足两个要求:
1.本身简单,且LTI系统对它的响应能简便得到。 2.具有普遍性,能够用以构成相当广泛的信号。
,
x2
1 2
,
x3
1 3
x(t) xke jk 2t : x0
k
~ x3, xk
0 for
k
3, 0
2 , T
2 0
1
x(t) 1 1 (e j2t e j2t ) 1 (e j4t e j4t ) 1 (e j6t e j6t )
4
2
3
Euler’s Constant part
Signals and Systems
A.V. OPPENHEIM, et al.
Ch3 Fourier Series Representation of Periodic Signals
第3章 周期信号的 傅里叶级数表示
1
Contents:
• Representation of Periodic Signals(周期信号描述 • Fourier Series(傅里叶级数) • Response of LTI System to Periodic Signals
z
响应合成 3 composition
2 known Relations, Properties
Y (z)
ds s
Solution:
x(t) X (s) Y (s) y(t)
dz z
信号与系统奥本海姆第4章PPT课件

t
8
x
(
t
)
k
xke
jk 0t
0
2 T
x(t)
1
2
Txk e jk0t
k
0
T
xk
1 T
T
2 T
x(t)ejk0t
2
2 T
x
(t)
2
x(t)
Txk
x(t)ejk0tdt
Dx e(ftin)e X : (21 jk) X ( jx k(t0 ))eX ej(jk jt0d t)te 20jt|k0xXk(jT1)X面(k积j0) Xk(j0k30T1)XT(xjkk0)
2
4.0 引言 Introduction
在工程应用中有相当广泛的信号是非周期 信号,对非周期信号应该如何进行分解,什 么是非周期信号的频谱表示,就是这一章要 解决的问题。
3
在时域可以看到,如果一个周期信号的周期趋 于无穷大,则周期信号将演变成一个非周期信 号;反过来,任何非周期信号如果进行周期性 延拓,就一定能形成一个周期信号。我们把非 周期信号看成是周期信号在周期趋于无穷大时 的极限,从而考查连续时间傅立叶级数在 T趋 于无穷大时的变化,就应该能够得到对非周期 信号的频域表示方法。
2 0
0
4 0 a k
0
(a) T 4T1
4 0
(b) T 8T1
当 T 时,周期性矩形脉冲信号将演变成为非周 期的单个矩形脉冲信号。
7
Periodic signal
x (t)
(周期信号)
2T
T T 0 T T
2
2
x (t) Aperiodic signal
T (非周期信号)
课件信号与系统奥本海姆.ppt

4
Ch1. Signals and Systems
Signal:the carrier of information 信号:信息的载体
1
SIGNALS AND SYSTEMS
• 信号与系统
8
Main content : Ch1. Signals and Systems
• Continuous-Time and Discrete-Time Signals 〔连续时间与离散时间信号〕
• Transformations of the Independent Variable〔自变量的变换〕
信号是信息的具体物理表现形式,包含了信息的 具体内容。总是1个或多个独立变量的函数。
同一信息可以有不同的物理表现形式,因此对应 有不同的信号,但这些不同的信号都包含同一个信息。 这些不同的信号之间可以相互转换。
例如语音信息用声压表示,可用电压或电流信号 作为载体;也可以用一组数据(01)信号作载体。对应 模拟信号和数字信号,可以AD转换。
2
Ch1. Signals and Systems
控制论创始人维纳认为: 信息是人或物体与外部世界交换内容的名称。内 容是事物的原形,交换是信息载体[信号]将事物原形 [内容]映射到人或物体的感觉器官,人们把这种映射 的结果认为获得了信息。通俗地说,信息指人们得到 的消息。
信息多种多样、丰富多彩,具体的物理形态也千 差万别。
• Basic System Properties (根本系统性质) 9
Ch1. Signals and Systems
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
+
Energy : t1 t t2
2
1
shift
f (t )
2 1
1 t
2
2
0
Scaling
Scaling
2
reversal
t
f (t )
2 1
shift
2 1
f (1 t )
f (1 3t )
1
t
0 1
1 0
1
2
2
1
0 1
t
1
2
1 3
0 2
t
3
f (3t )
f (1 3t )
Scaling
1
1 3
2
shift
1.2 Transformation of the Independent Variable
1.2.1 Examples of Transformations 1. Time Shift x(t-t0), x[n-n0]
t0<0
Advance
Time Shift
n0>0
Delay
x(t) and x(t-t0), or x[n] and x[n-n0]:
2. Time Reversal x(-t), x[-n]
——Reflection of x(t) or x[n]
2. Time Reversal x(-t), x[-n]
——Reflection of x(t) or x[n]
a mirror
Time Reversal
x[n]
x[-n]
Looking for mistakes
when t n
Total Energy
E lim
T
T
T
N
x(t ) dt
2
2
x(t ) dt
2
2
E lim
N n N
x[n]
T T
n
x[n]
Average Power
P lim
x(t)
1
x(t-1/2)
t
1
x(3t-1/2)
t
1
t
0
1
0 1/2
3/2
0 1/6 1/2
Solution 2:
x(t)
1
x(3t) t
1
x(3t-1/2) t
1
t
0
1
0
1/3
0 1/6 1/2
Example
f (t 1)
2
f(t) f(1-3t)
reversal
t 1
1
0
f (1 t )
If a signal is not periodic, it is called
aperiodic signal.
Examples of periodic signals
CT: x(t)=x(t+T)
DT:
x[n]=x[n+N]
Periodic Signals
of x(t) (x[n]) is the smallest positive value
T 6 , T 8
1 2
x(t) is periodic. Its period is T 24 The smallest multiples of T1 and T2 in common
0
2. Discrete-Time signal
n: discrete time x[n]: a discrete set of values (sequence)
Example1: 1990-2002年的某村农民的年平均收入
Example2: x[n] is sampled from x(t)
3 1. x(t ) A sin t 8
It is periodic signal. Its period is T=16/3.
cos t , t 0 2. x(t ) It is not periodic. 0, t 0
1 1 3. x(t ) A cos t B sin t 3 4
x(t)
1s 8k
Sampling
x[n]
Why DT?
C. Representation
(1) Function Representation
Example: x(t) = cos0t x[n] = cos0n x(t) = ej0t x[n] = ej0n
(2) Graphical Representation
The fundamental period T0 (N0)
of T(or N) for which the equation holds.
Note: x(t)=C is a periodic signal, but its fundamental period is undefined.
Examples of periodic signals
E ,
(if
P 0, then
E lim P )
T T
T
c. infinite total energy, infinite average power
P
Read textbook P71: MATHEMATICAL REVIEW
Homework: P57--1.2
Example: ( See page before )
(3) Sequence-representation for discretetime signals:
x[n]={-2 1 3 2 1 –1} or x[n]=(-2 1 3 2 1 –1)
3
Note:
Since many of the concepts associated with continuous and discrete signals are similar (but not identical), we develop the concepts and techniques in parallel.
t2
t1
p(t )dt
t2
t1
v (t )dt
2
t2
t1
x 2 (t )dt
t2
1 Average Power: t 2 t1
t2
t1
1 p (t )dt t 2 t1
t1
x 2 (t )dt
Definition:
Total Energy Continuous-Time: (t1 t t2 ) Discrete-Time: (n1 n n2 ) Average Power
t
8
4 2
12
4
Time Scaling
x(at) ( a>0 )
Stretch if a<1
Compressed
if a>1
How about the discrete-time signal?
Generally,
time scaling only for continuous time signals
x(t)
0
t
Note: the difference between x(-t) and –x(t)
x(-t) ??? -x(t)
3. Time Scaling
x(at) (a>0)
8
4 2
4
x(t)
t
12
4
stretch
4
x(t/2)
t
8
4 2
12
4
compress]
x[n]
x[2n]
x[n]
x[2n]
2 2 2
x[n/2]
n 0 1 2 3 4 5 6 This is also called decimation of signals. (信号的抽取)
Example
x(t)
1 0 1
t
Solution 1: Solution 2:
Solution 1:
t
2
1
0
2 3
reversal
t
1 3
-2 0 3
1.2.2 Periodic Signals
A periodic signal x(t) (or x[n]) has
the property that there is a positive value of T (or integer N) for which : x(t)=x(t+T) , for all t x[n]=x[n+N], for all n
1.1 Continuous-Time and Discrete-Time Signals
1.1.1 Examples and Mathematical Representation
A. Examples (1) A simple RC circuit
Source voltage Vs and Capacitor voltage Vc
T
1 2T