信号与系统(第二章)
合集下载
信号与系统课后题解第二章

⑺
对⑺式求一阶导,有:
de(t ) d 2 i 2 (t ) di (t ) du (t ) =2 +2 2 + c 2 dt dt dt dt de(t ) d 2 i2 (t ) di (t ) =2 + 2 2 + 2i1 (t ) + 2i 2 (t ) 2 dt dt dt
⑻
将⑸式代入⑻式中,有:
λ 2 + 2λ + 1 = 0
可解得特征根为 微分方程齐次解为
λ1, 2 = −1
y h (t ) = C1e −t + C2 te− t
由初始状态为 y (0 ) = 1, y ' (0 ) = 0 ,则有:
C1 = 1 − C 1 + C 2 = 0
由联立方程可得 故系统的零输入响应为:
由联立方程可得 故系统的零输入响应为:
A1 = 2, A2 = −1
y zi (t ) = 2e − t − e −2 t
(2)由原微分方程可得其特征方程为
λ 2 + 2λ + 2 = 0
可解得特征根为 微分方程齐次解为
λ1, 2 = −1 ± i
y h (t ) = e −t (C1 cos t + C2 sin t )
(− 3C1 + 3C2 )δ (t ) + (C1 + C2 )δ ' (t ) − (− 2C1 + C 2 )δ (t ) = δ (t )
(
(
( + C e )δ (t ) + (C e
2 1
)
−2 t
+ C2 e t δ ' (t )
信号与系统第二章第一讲

i
则相应于1的k阶重根,有k项:
( A1t k 1 A2t k 2 Ak 1t Ak )e1t ( Ai t k i )e1t
i 1
k
例2-3
信 号 与 系 统
求如下所示的微分方程的齐次解。
Hale Waihona Puke d3 d2 d r (t ) 7 2 r (t ) 16 r (t ) 12r (t ) e(t ) 3 dt dt dt
等式两端各对应幂次的系数应相等,于是有:
信 号 与 系 统
特解为: 联立解得:
3B1 1 4 B1 3B2 2 2 B 2 B 3 B 0 2 3 1
统
线性时不变系统
线性的常系数微分方程
按照元件的约束特性及 系统结构的约束特性
也即:
具体系统物理模型
常系数微分方程建立
(1)元件端口的电压与电流约束关系
iR (t ) R
信 号 与 系 统
vR (t )
C
vR (t ) iR (t ) R
dvC (t ) iC (t ) C dt
vR (t ) Ri R (t )
与
时域经典法就是直接求解系统微分方程的方法。这种方 系 法的优点是直观,物理概念清楚,缺点是求解过程冗繁,应 用上也有局限性。所以在20世纪50年代以前,人们普遍喜欢 统 采用变换域分析方法(例如拉普拉斯变换法),而较少采用时 域经典法。20世纪50年代以后,由于δ(t)函数及计算机的普 遍应用,时域卷积法得到了迅速发展,且不断成熟和完善, 已成为系统分析的重要方法之一。时域分析法是各种变换域 分析法的基础。
信 号 与 系 统
is (t )
则相应于1的k阶重根,有k项:
( A1t k 1 A2t k 2 Ak 1t Ak )e1t ( Ai t k i )e1t
i 1
k
例2-3
信 号 与 系 统
求如下所示的微分方程的齐次解。
Hale Waihona Puke d3 d2 d r (t ) 7 2 r (t ) 16 r (t ) 12r (t ) e(t ) 3 dt dt dt
等式两端各对应幂次的系数应相等,于是有:
信 号 与 系 统
特解为: 联立解得:
3B1 1 4 B1 3B2 2 2 B 2 B 3 B 0 2 3 1
统
线性时不变系统
线性的常系数微分方程
按照元件的约束特性及 系统结构的约束特性
也即:
具体系统物理模型
常系数微分方程建立
(1)元件端口的电压与电流约束关系
iR (t ) R
信 号 与 系 统
vR (t )
C
vR (t ) iR (t ) R
dvC (t ) iC (t ) C dt
vR (t ) Ri R (t )
与
时域经典法就是直接求解系统微分方程的方法。这种方 系 法的优点是直观,物理概念清楚,缺点是求解过程冗繁,应 用上也有局限性。所以在20世纪50年代以前,人们普遍喜欢 统 采用变换域分析方法(例如拉普拉斯变换法),而较少采用时 域经典法。20世纪50年代以后,由于δ(t)函数及计算机的普 遍应用,时域卷积法得到了迅速发展,且不断成熟和完善, 已成为系统分析的重要方法之一。时域分析法是各种变换域 分析法的基础。
信 号 与 系 统
is (t )
信号与系统教案第2章

如何求解?
bm f
( m)
(t ) bm1 f
( m1)
ai 、 bj为常数。
2.1 LTI连续系统的响应
经典时域分析方法 y(t ) yh (t ) yp (t ) 卷积法
y(t) = yzi (t) + yzs (t)
一、经典时域分析方法(微分方程经典解)
微分方程的全解即系统的完全响应, 由齐次解 yh(t)和特解yp(t)组成
信号与系统 电子教案
2.2 冲激响应和阶跃响应
2.2
冲激响应和阶跃响应
一、冲激响应
由单位冲激函数δ(t)所引起的零状态响应称为 单位冲激响应,简称冲激响应,记为h(t)。 h(t)=T[{0},δ(t)]
t
h t T 0 , t
def
h t
t
信号与系统 电子教案
第二章 连续系统的时域分析
《信号与系统》
授课教师:吕晓丽
第2-1页
■
长春工程学院电子信息教研室
信号与系统 电子教案
第二节总结
总
结
1、LTI系统的判定方法 线性性质 时不变性质 2、 LTI系统的分类 因果系统 稳定系统 3、系统的描述 系统框图与系统方程
第2-2页
■
长春工程学院电子信息教研室
[例] 已知某二阶线性时不变连续时间系统的动态方程
y" (t ) 6 y' (t ) 8 y(t ) f (t ), t 0
初始条件y(0)=1, y '(0)=2, 输入信号f (t)=et ε(t),求 系统的完全响应y(t)。
解:
(3) 求方程的全解
y (t ) yh (t ) yp (t ) C1e
bm f
( m)
(t ) bm1 f
( m1)
ai 、 bj为常数。
2.1 LTI连续系统的响应
经典时域分析方法 y(t ) yh (t ) yp (t ) 卷积法
y(t) = yzi (t) + yzs (t)
一、经典时域分析方法(微分方程经典解)
微分方程的全解即系统的完全响应, 由齐次解 yh(t)和特解yp(t)组成
信号与系统 电子教案
2.2 冲激响应和阶跃响应
2.2
冲激响应和阶跃响应
一、冲激响应
由单位冲激函数δ(t)所引起的零状态响应称为 单位冲激响应,简称冲激响应,记为h(t)。 h(t)=T[{0},δ(t)]
t
h t T 0 , t
def
h t
t
信号与系统 电子教案
第二章 连续系统的时域分析
《信号与系统》
授课教师:吕晓丽
第2-1页
■
长春工程学院电子信息教研室
信号与系统 电子教案
第二节总结
总
结
1、LTI系统的判定方法 线性性质 时不变性质 2、 LTI系统的分类 因果系统 稳定系统 3、系统的描述 系统框图与系统方程
第2-2页
■
长春工程学院电子信息教研室
[例] 已知某二阶线性时不变连续时间系统的动态方程
y" (t ) 6 y' (t ) 8 y(t ) f (t ), t 0
初始条件y(0)=1, y '(0)=2, 输入信号f (t)=et ε(t),求 系统的完全响应y(t)。
解:
(3) 求方程的全解
y (t ) yh (t ) yp (t ) C1e
信号与系统第2章信号的复数表示

π
3
j
π
j
π
4
C1 + C 2 = (1 + 1) + j ( 3 + 1) = 2 + j ( 3 + 1)
2 C1 = 2 + j ( 2 3 ) = 2 2 e
j
= 4e
j
π
3
C1 C 2 = 1 + j 3 + j 3 3 = (1 3 ) + j ( 2 3 )
= 2 2e
j(
π
3
+
π
4
)
= 2 2e
j(
7π ) 12
2 复数中定义 j = 1 ,故 D = (a1a2 b1b2 ) + j(a1b2 + b1a2 )
换一种形式表示复数的乘法
D = C1 C2 = C1 e C2 e = C1 C2 e
j1 j2
= C1 C2 e j1 e j2
j (1 +2 )
复数的加法和乘法在复平面内的表示
复数加法
2、复平面形式
可以在复平面中表示复数
虚轴 b |C| a
复数C可表示成一个矢量
实轴
由图可以看出,矢量 的长度为复数的模,与 实轴的夹角为复数的辐 角
2.3 复数形式的运算
1、复数的数乘和共轭
数乘: k 为实数
虚轴 j
kC C
实轴
kC = ka + jkb
| kC | e j k ≥ 0 kC = | kC | e j ( +π ) k < 0
2、复数的加法和乘法
C1 、 C2 为复数, C1 = a1 + jb1 , C2 = a2 + jb2
3
j
π
j
π
4
C1 + C 2 = (1 + 1) + j ( 3 + 1) = 2 + j ( 3 + 1)
2 C1 = 2 + j ( 2 3 ) = 2 2 e
j
= 4e
j
π
3
C1 C 2 = 1 + j 3 + j 3 3 = (1 3 ) + j ( 2 3 )
= 2 2e
j(
π
3
+
π
4
)
= 2 2e
j(
7π ) 12
2 复数中定义 j = 1 ,故 D = (a1a2 b1b2 ) + j(a1b2 + b1a2 )
换一种形式表示复数的乘法
D = C1 C2 = C1 e C2 e = C1 C2 e
j1 j2
= C1 C2 e j1 e j2
j (1 +2 )
复数的加法和乘法在复平面内的表示
复数加法
2、复平面形式
可以在复平面中表示复数
虚轴 b |C| a
复数C可表示成一个矢量
实轴
由图可以看出,矢量 的长度为复数的模,与 实轴的夹角为复数的辐 角
2.3 复数形式的运算
1、复数的数乘和共轭
数乘: k 为实数
虚轴 j
kC C
实轴
kC = ka + jkb
| kC | e j k ≥ 0 kC = | kC | e j ( +π ) k < 0
2、复数的加法和乘法
C1 、 C2 为复数, C1 = a1 + jb1 , C2 = a2 + jb2
信号与系统-第2章

f (t)
K
两式相加:
cosωt =
1 2
(e
jωt
+
e
jωt )
(2-4)
0 K
t
两式相减:
sinωt =
1 2j
(e
jωt
-e
jωt )
(2-5)
(3) 复指数信号: f(t) = Ke st = Ke (σ+ jω)t
= Keσt (cosωt + j sinωt)
当 σ > 0 时为增幅振荡 ω = 0 时为实指数信号 σ < 0 时为衰减振荡
2
01
t
f(
1 2
t)
=
1 2
t
0
0<t <4 其它
f(12 t)
2 0
4t
注意: 平移、反折和展缩都是用新的时间变量去代换原来的
时间变量, 而信号幅度不变.
t +2 -2<t<0 例2-5:已知 f(t) = -2t + 2 0<t<1
f (t)
2
0
其它
-2 0 1
t
求 f(2t-1),
f(
1 2
(1) 相加和相乘
信号相加: f t f1t f2 t fn t 信号相乘: f t f1t f2 t fn t
0 t<0 例2-1:已知 f1(t) = sint t ≥ 0 , f2(t) =-sint, 求和积.
解: f1(t) + f2(t) =
-sint 0
t<0 t≥0
0
t<0
f1(t) f2(t) = -sin2t t ≥ 0 也可通过波形相加和相乘.
∞ t=0 作用: 方便信号运算.
信号与系统第二章课件.

先假定逆系统的冲击响应的结果为hi1(t),然后经逐步修 正找到最终的hi(t) 。
很遗憾以上关于hi1(t)的假定,虽然可以消除δ(t)项, 却引入了新的a2 δ(t-2T)项。不过回波信号的强度衰减了, 而且时间延迟了,使干扰效果明显减弱。可进一步设
可见若逆系统的冲激响应hi1(t)若采用此结果,回 波信号的强度可以衰减至无穷小,而且时间可以延迟 至无穷远。 实际问题中,我们只须将延时补偿采用几项,就 可达到理想效果。
其中N变量指所有的回波路径。Tm、源自m表示各条路径的延迟 时间和衰减系数。当T较小且a较小时,形成所谓的“混响”。
根据以上分析,可以很容易写出回波系统的冲击响应
这样一般信号的响应,可以很容易根据卷积关系写为
为了从含有干扰信号的回波信号中取出正常信号,我们需设 计一个“逆系统”,其方框图如下。
接下来的工作是从上式求出hi(t),这样的问题是卷 积的反问题,称为解卷积。 对已连续时间系统,解卷积一般难以给出普适的公式,而 对于离散时间问题,§7.7给出了一般的解法。采用变换域 解法(如付里叶变换、拉普拉斯变换),也可较方便给出此问 题冲激响应(或者系统函数)的解法。 下面我们给出此问题的尝试解法。
信号与系统
§2.10用算子符号表示微分方程
采用算子符号可以简化微分、积分方程的计算,本节给 出算子符号的一些基本运算规则,然后通过实例说明此方法 的方便之处。 (一)算子符号的基本规则
(一)用算子符号建立微分方程 用算子符号建立系统的微分方程不仅书写简单,而且非 常方便。电感、电容的等效算子符号为:
实例:用算子符号建立电路微分方程
R1=1
Lp=(1/4)p
1/CP=1/p C R2=3/2
线性电路微分方程求解借鉴课本,P81
信号与系统第2章信号描述及其分析1

图2.2.3 谐波逐次叠加后的图形 (a)1次 (b)1,3次 (c)1,3,5次
机电工程学院
黄石理工学院机电工程学院
Sun Chuan 68215
第2章 信号描述及其分析
(2) 从以上两例可看出,三角波信号的频谱比方波信号的频谱 衰减得快,这说明三角波的频率结构主要由低频成分组成,而 方波中所含高频成分比较多。这一特点反映到时域波形上,表 现为含高频成分多的时域波形(方波)的变化比含高频成分少的时 域波形(三角波)的变化要剧烈得多。因此,可根据时域波形变化 剧烈程度,大概判断它的频谱成分。
本节小结 本节主要介绍了信号的分类。由于不同类型的信号其处 理方法不同,所以必须善于区分不同类型的信号。
机电工程学院
黄石理工学院机电工程学院
Sun Chuan 68215
第2章 信号描述及其分析
§2 周期信号与离散频谱
信号的时域描述与时域分析 本课程所研究的信号 一般是随时间变化的物理量,抽象为以时间为自变量表达 的函数,称为信号的时域描述。求取信号幅值的特征参数 以及信号波形在不同时刻的相似性和关联性,称为信号的 时域分析。时域描述是信号最直接的描述方法,它只能反 映信号的幅值随时间变化的特征,而不能明显表示出信号 的频率构成。因此必须研究信号中蕴涵的频率结构和各频 率成分的幅值、相位关系。
本章重点及难点 本章重点为信号的分析,其中信号频
谱的求取为主要内容。难点为傅里叶变换。
机电工程学院
黄石理工学院机电工程学院
Sun Chuan 68215
第2章 信号描述及其分析
首先应清楚如下三个方面:
信号与信息 信号与信息并非同一概念。 信号分析和信号处理 信号分析和信号处理并没有明确的界 限,通常把研究信号的构成和特征称为信号分析,把信号经过 必要的变换以获得所需信息的过程称为信号处理。 对信号进行分析与处理的原因 在一般情况下,仅通过对信 号波形的直接观察,很难获取所需要的信息,需要对信号进行 必要的分析和处理。
信号与系统 第二章 第3讲

第二节 起始点的跳变
电容电压的跳变 电感电流的跳变 冲激函数匹配法确定初始条件
信号与系统 第2章
一.起始条件与初始条件
一般将激励信号加入的时刻定义为t=0 ,响应r(t)为 t 0 时方程的解,对于n阶系统,起始状态( 0- 状态)指:
d r ( 0 - ) d 2 r (0 - ) d n1 r (0 - ) r (0 ) , , , , 2 dt dt d t n1
0
0
vL ( ) d 0 , 此时iL (0 ) iL (0 )
冲激电压或阶跃电流作 用于电感时:
如果vL (t )为 t
1 0 1 v L ( ) d , L 0 L 此时 i L 0 i L 0
信号与系统 第2章
iL (0 ) iL (0 )
信号与系统 第2章
例2-2-2
d i L (t ) v L (t ) L dt
i L (t )
I s u(t )
L
d[ I s v(t )] L LI s (t ) dt
1 0 i L (0 ) i L (0 ) LI s (t ) d t L 0
v L (t )
i L (0 ) I s
当系统用微分方程表示时,系统从 0 到0 状态有没 有跳变取决于微分方程右端自由项是否包含 (t ) 及其各 阶导数项。
信号与系统 第2章
1. 电容电压的跳变
t c i c (t ) 由伏安关系 vC (t ) 1 iC ( ) d C v (t ) 1 0 1 0 1 t c iC ( ) d iC ( ) d iC ( ) d C C 0 C 0 1 0 1 t vC (0 ) iC ( ) d iC ( ) d C 0 C 0
电容电压的跳变 电感电流的跳变 冲激函数匹配法确定初始条件
信号与系统 第2章
一.起始条件与初始条件
一般将激励信号加入的时刻定义为t=0 ,响应r(t)为 t 0 时方程的解,对于n阶系统,起始状态( 0- 状态)指:
d r ( 0 - ) d 2 r (0 - ) d n1 r (0 - ) r (0 ) , , , , 2 dt dt d t n1
0
0
vL ( ) d 0 , 此时iL (0 ) iL (0 )
冲激电压或阶跃电流作 用于电感时:
如果vL (t )为 t
1 0 1 v L ( ) d , L 0 L 此时 i L 0 i L 0
信号与系统 第2章
iL (0 ) iL (0 )
信号与系统 第2章
例2-2-2
d i L (t ) v L (t ) L dt
i L (t )
I s u(t )
L
d[ I s v(t )] L LI s (t ) dt
1 0 i L (0 ) i L (0 ) LI s (t ) d t L 0
v L (t )
i L (0 ) I s
当系统用微分方程表示时,系统从 0 到0 状态有没 有跳变取决于微分方程右端自由项是否包含 (t ) 及其各 阶导数项。
信号与系统 第2章
1. 电容电压的跳变
t c i c (t ) 由伏安关系 vC (t ) 1 iC ( ) d C v (t ) 1 0 1 0 1 t c iC ( ) d iC ( ) d iC ( ) d C C 0 C 0 1 0 1 t vC (0 ) iC ( ) d iC ( ) d C 0 C 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
于是有:
上式把任意一个序列 表示成一串移位的单位
脉冲序列
的线性组合,其中 是权因子
二. 卷积和(Convolution sum)
定义: 离散时间LTI系统的单位脉冲响应( impulse
response )
[n]
LTI
h[n]
时不变性
[n]
[n k]
齐次性
x[k][n k]
u(k) *u(k) u(i) *u(k i) i k u(k)1 (k 1)u(k) i0
例:4) aiu(k) u(k 4 i) i
k 4
u(k 4) ai (1 a a2 ... ak4)u(k 4) i0
如果解决了信号分解的问题,即:若有
x(t) ai xi (t)
i
则 y(t) ai yi (t)
i
分析方法:
xi (t) yi (t)
将信号分解可以在时域进行,也可以在频域或变换 域进行,相应地就产生了对LTI系统的时域分析法、 频域分析法和变换域分析法
2.1 离散时间LTI系统:卷积和
注意:n 为参变量
例2:
解:
(1)换元:k换为i→ 得f1(i),f2(i) (2)反转平移:由f2(i) 反转→f2(–i),再右移k →f2(k –i)
(3)乘积:f1(i) f2(k –i) (4)求和:i 从–∞到∞ 对乘积项求和
1
k
0
① n 0 时,
②
时,
所以
例3:
① n 0 时,
② 0 n 4 时,
③ 4 n 6 时,
④ 6 n 10 时, ⑤ n 10 时,
列表法
分析卷积和的过程,可以发现有如下特点:
① x(n) 与 h(n) 的所有各点都要遍乘一次
② 在遍乘后,各点相加时,根据 x(k)h(n k), k
参与相加的各点都具有 x(k)与 h(n k)的宗量之
k
k
n k 1 n1 u(n)
k 0
1
图解法 将一个信号 x(k)不动,另一个信号经反转后为 h(k) ,
再随参变量 n移位。在每个n 值的情况下,将 x(k) 与
h(n k)对应点相乘,再把乘积的各点值累加,即得到
n 时刻的 y(n)
可分解为四步,对f (n) =x(n) *h(n) (1)换元:n换为k→得x(k),h(k) (2)反转平移:由h(k)反转→h(–k)右移n位 →h(n –k) (3)乘积:x(k) h(n –k) (4)求和:k 从–∞到∞对乘积项求和
单位脉冲响应完全表征LTI系统的特性
三. 卷积和的计算
计算方法:
有图解法、列表法、解析法(包括数值解法)
解析法
例: f (k) aku(k) h(k) bku(k) 求 y f (k)
y f (k) f (k) * h(k) f (i)h(k i) i aiu(i)bkiu(k i) i
ak4 1u(k 4) a 1
例: x(n) nu(n) 0 1 h(n) u(n)
x(k) ku(k)
1
0
k ...
h(n k) u(n k)
1
k
0
n
y(n) x(n) h(n)
x(k)h(n k) ku(k)u(n k)
问题的实质:
1. 研究信号的分解:即以什么样的信号作为构成任 意信号的基本信号单元,如何用基本信号单元的线 性组合来构成任意信号 2. 如何得到LTI系统对基本单元信号的响应
作为基本单元的信号应满足以下要求: 1. 本身尽可能简单,并且用它的线性组合能够表示 (构成)尽可能广泛的其它信号 2. LTI系统对这种信号的响应易于求得
通过图形帮助确定反转移位信号的区间表示,对 于确定卷积和计算的区段及各区段求和的上下限是 很有用的。
四. 卷积和运算的性质 1. 交换律:
结论: 一个单位冲激响应是h[n]的LTI系统对输入信
号x[n]所产生的响应,与一个单位冲激响应是x[n] 的LTI系统对输入信号h[n]所产生的响应相同。
当i 0,u(i) 0;当i k,u(k i) 0
y
f
(k
)
[
i
k 0
aibk
i
]u
(k
)
bk
[
k i0
(
a b
)i
]u
(k
)
bk
1 ( 1
a )k1 b (a) b
u(k
),
a
b
bk (k 1)u(k),a b
例:求 u(k) *u(k)
(Discrete-Time LTI Systems:The Convolution Sum)
一. 用单位脉冲表示离散时间信号
离散时间信号中,最简单的是 ,可以由它的线性组
合构成
,即:
对任何离散时间信号 ,如果每次从其中取出一个 点,就可以将信号拆开来,每次取出的一个点都可 以表示为不同加权、不同位置的单位脉冲
可加性
x[k][n k]
k
h[n]
LTI
h[n k]
LTI
x[k]h[n k]
LTI
x[k]h[n k]
k
LTI系统对任何输入信号 的响应:
上面这种求得系统响应的运算关系称为卷积和(The convolution sum) 这表明:一个LTI系统对任意输入的响应都可以由它 的单位脉冲响应来表示 卷积的意义:
和为 n 的特点。
x(0) x(1) x(2) x(3)
h(n) x(n) 1 0 2 1
h(1) 1 h(0) 2 h(1) 0 h(2) 3 h(3) 1
1021 y(1)
2042 y(0) 0 0 0 0 y(1) 3 0 6 3
y(2) 1 0 2 1 y(3) y(4) y(5) y(6)
信号与系统(第二章)
引言 ( Introduction )
LTI系统特点: 齐次性和可加性,具有时不变性 信号与系统分析理论与方法的基础
基本思想:如果能把任意输入信号分解成基本信号 的线性组合,那么只要得到了LTI系统对基本信号 的响应,就可以利用系统的线性特性,将系统对任 意输入信号产生的响应表示成系统对基本信号的响 应的线性组合