信号与系统奥本海姆答案
资料-奥本海姆信号与系统上册2版课后答案

1答案习题1.1用笛卡儿坐标形式(x+yj)表示下列复数。
解:利用欧拉公式:和复平面性质,有:,,1.2用极坐标形式(re jθ,-π<θ≤π)表示下列复数。
解:根据,有:1.3对下列每一个信号求P∞和E∞。
解:(a)(b)(c)(d)(e)(f)1.1设n<-2和n>4时x[n]=0,对以下每个信号确定其值保证为零的n值。
解:(a)x[n-3]=0,n-3<-2或n-3>4,即x[n-3]=0,n<1或n>7(b)x[n+4]=0,n+4<-2或n+4>4,即x[n+4]=0,n<-6或,n>0(c)x[-n]=0,-n<-2或-n>4,即x[-n]=0,n<-4或n>2(d)x[-n+2]=0,-n+2<-2或-n+2>4,即x[-n+2]=0,n<-2或n>4(e)x[-n-2]=0,-n-2<-2或-n-2>4,即x[-n-2]=0,,n<-6或n>01.2设t<3时x(t)=0,确定以下每个信号的值保证为零的t值。
解:(a)x(1-t)=0,1-t<3,即x(1-t)=0,t>-2(b)x(1-t)+x(2-t)=0,1-t<3且2-t<3,即x(1-t)+z(2-t)=0,t>-1(c)x(1-t)x(2-t)=0,1-t<3或2-t<3,即x(1-t)x(2-t)=0,t>-2(d)x(3t)=0,3t<3,即x(3t)=0,t<1(e)x(t/3)=0,t/3<3,即x(t/3)=0,t<91.3判断下列信号的周期性。
解:(a)由于对于-∞<t<∞,x1(t)的值不具备重复性,所以x1(t)不是周期信号。
(b)由于所以x2[n]也不具备周期性。
(c)由于所以x3[n]是基波周期为4的周期序列。
1.4对以下每个信号求信号的偶部保证为零的所有自变量值。
解:(a)只有当|n|>3时,(b)即对一切t,(c)所以当|n|<3及|n|→∞时,(d),由于所以只有当|t|→∞时,1.5将下列信号的实部表示成的形式,其中A,a,ω和都是实数,A>0且-π<≤π。
奥本海姆版信号与系统课后答案

第七章7.6 解:见 8.17.8 解: (a) )]()([)21()(50πωδπωδπωk k j j X n k +--=∑= 信号截止频率 πω5=m采样频率 m s T ωπππω2102.022====对于正弦信号,会发生混叠 (b) ππω5==T c所以输出信号 )sin()21()(40t k t y k k π∑== 所以j e e t g tjk t jk k k 2)21()(40ππ-=-=∑ ∑-==44k t jk k e a π其中,⎪⎪⎩⎪⎪⎨⎧≤≤-=≤≤-=+-+14)21(0041)21(11k j k k j a k k k 7.10 解:(a) 错 信号时域为矩形波,频域为sinc 函数,无论怎么样都会混叠 (b) 符合采样定理,对(c) 符合采样定理,对7.15 解:要求 76N 2,76273ππππω>=⨯>即s 237max =<∴N N 取 7.16 解: 易见ππn n 2sin2满足性质1, 3对性质2,考虑时域乘积得频域卷积,易见2))2/sin((4][n n n x ππ=7.19 解:设x[n]经零值插入后得输出为z[n] (a) 531πω≤时, ⎪⎩⎪⎨⎧><=1101)(ωωωωωj e X ⎪⎪⎩⎪⎪⎨⎧>≤<=30531)(11ωωπωωωj e Z所以 ⎪⎪⎩⎪⎪⎨⎧><=3031)(11ωωωωωj e W因此可得,n n n w πω/)3(sin ][1=又由 ]5[][n w n y =可得 )5/()35(sin][1n n n y πω= (b) 531πω>时 ⎪⎪⎩⎪⎪⎨⎧>><=53031)(11πωωωωωj e Z)/()5(sin ][n nn w ππ=∴][51)5/()(sin ][n n n n y δππ== 7.21 解: 采样频率m s Tωππω2200002>== 即πω10000<m 时,可以恢复 (a) 可以(b) 不可以(c) 不能确定(d) 可以 (e) 不可以 (f) 可以 (g) 可以7.22 解:)(*)()(21t x t x t y = 则有πωωωω10000)()()(21>==j X j X j Y πω1000=∴m 因而 πωω20002=>m s故 s T s 3102-=<ωπ 7.23 解:见 8.27.24 解:见 8.37.29 解:见 8.107.31 解:见 8.157.35 解:见 8.247.38 解:见 8.97.41 解:见 8.197.45 解: 见 8.17。
奥本海姆 信号与系统 习题参考答案

.第三章作业解答3.1解:420ππω==T , j a a 4*33-==- 则:t j t j t j t j k tjk ke a e a e a e a ea t x 00000333311)(ωωωωω----∞-∞=+++==∑-)243cos(84cos 443sin 84cos 4)](21[8)(2144422434344434344πππππππππππππ++=-=--⨯++⨯=-++=------t t tt e e je e jejeeet j t j t j t j t jt jt j t j3.3解:)35sin(4)32cos(2)(t t t x ππ++= 则3)32cos(1=→T t π 56)35s i n (2=→T t π故:6],[21==T T lcm T 320ππω==T )(214)(21235353232t j t j t j t j e e je e ππππ---⨯+++=则:20=a 2122==-a a 25j a -= 25j a =- 3.9x[n]波形如下图所示:0 1 4 5 n…- 4 -3则:N=4,220ππω==N ]84[41]}1[8][4{41][41][122302300πππωδδjk n jk n n jk n n jk N n k e e n n e n x e n x N a --=-=->=<+=-+===∑∑∑即:2112133210j a a j a a +=-=-==3.15解:6π=T ,1220==Tπω )(ωj H 如下图所示:则:⎩⎨⎧>≤=9||08||1)(0k k jk H ωtjk k kea t x 0)(ω∑∞-∞==tjk k ktjk k k ea ea jk H t y 00880)()(ωωω∑∑-=∞-∞===而:)()(t y t x =,即:t jk k k tjk k k e a t y ea t x 0088)()(ωω∑∑-=∞-∞====故:当9||≥k 时,0=k a3.22解:(a )2=T ,ππω==T20 ]|[12121)(11111110dt e te jk dt te dt e t x T a tjk t jk t jk T t jk k ⎰⎰⎰---------===πππωπkjk t jk t jk k j k j k k je k j e jk te k j )1(k ]02[21]|1|[211111-=⎪⎪⎩⎪⎪⎨⎧-=--=---=-----πππππππππ为奇数为偶数021110==⎰-dt t a(注意:与性质验证,由于x(t)是实奇函数,则a k 为纯虚的奇函数,满足: *k k k a a a -=-=- 且:00=a ) (d) 2=T ,ππω==T20 ])1(21[21]21[21)]1(2)([21)(1200k jk t jk T tjk k e dt e t t dt e t x T a --=-=--==---⎰⎰--ππωδδ21)]1(2)([21200-=--=⎰--dt t t a δδ3.28(b )解:)(21)(21)2cos()32sin(][223232nj n j n jnje e eejn n n x ππππππ--++== )(416/76/6/6/7n j n j n j n j e e e e j ππππ----+=12/2.712/2.12/2.12/2..7(41ππππn j jn jn n j e e e e j----+=⎪⎪⎪⎩⎪⎪⎪⎨⎧++=-++==othersrN rN k j rN rN k j a k 05,11417,141 则:⎪⎩⎪⎨⎧++++==othersrN rN rN rN k a k 05,11,7,141||⎪⎪⎪⎩⎪⎪⎪⎨⎧++=++=-=∠othersrN rN k rN rN k a k 05,1127,12ππ 3.34解:(b)∑∞-∞=--=n nn t t x )()1()(δ其波形如下图所示:其周期T=2,基波频率为:ππω==T20 ⎩⎨⎧=--=-=--==---⎰⎰--是偶数是奇数k 01])1(1[21]1[21)]1()([21)(1200k e dt e t t dt e t x T a k jk t jk T tjk k ππωδδ而:⎪⎩⎪⎨⎧<>==--00)(44||4t et e et h t tt则:240401684141)()(s s s dte e dt e e dt e t h s H st t st t st -=++-=+==--∞-∞--∞∞-⎰⎰⎰故:2)(168)(ππjk jk H -=故:⎪⎩⎪⎨⎧-==∑∞-∞=为偶数为奇数(k k e jk ea jk H t y tjk tjk k k 0)168)()(200πωπω3.357π=T ,1420==Tπω 解:)(ωj H 如下图所示:则:⎩⎨⎧<>=17||017||1)(0k k jk H ωtjk k kea t x 0)(ω∑∞-∞==tjk k k tjk k k ea ea jk H t y 0018||0)()(ωωω∑∑∞=∞-∞===而:)()(t y t x =,即:tjk k ktjk k kea t y ea t x 0018||)()(ωω∑∑∞=∞-∞====故:当18||<k 时,0=k a3.44解:(1)*k k a a =- (2)6=T ,320ππω==T (3)⎩⎨⎧===其他,不为02||1||0k k a k(4)k jk k k a e b t x a t x π--=→--→)3()(k jk k a ea π--= 则:当为偶数k a k 0=结合(3)则:⎩⎨⎧==其他不为01||0k a k(5)帕斯瓦尔关系式:21||21||||12121=⇒=+-a a a (6)211=a 211=-a 则t e e ea e a t x t j t j t j tj 3cos )(21)(333131πππππ=+=+=--- 故:03,1===C B A π。
奥本海姆信号与系统(第二版)复习题参考答案

第一章作业解答1.9解:(b )jt t t j e e e t x --+-==)1(2)(由于)()(2)1()1())(1(2t x e e e T t x T j t j T t j ≠==++-+-++-,故不是周期信号;(或者:由于该函数的包络随t 增长衰减的指数信号,故其不是周期信号;) (c )n j e n x π73][= 则πω70= 7220=ωπ是有理数,故其周期为N=2; 1.12解:]4[1][1)1(]1[1][43--=--==+---=∑∑∞=∞=n u m n mk k n n x m k δδ-3 –2 –1 0 1 2 3 4 5 6 n1…减去:-3 –2 –1 0 1 2 3 4 5 6 nu[n-4]等于:-3 –2 –1 0 1 23 4 5 6 n…故:]3[+-n u 即:M=-1,n 0=-3。
1.14解:x(t)的一个周期如图(a)所示,x(t)如图(b)所示:而:g(t)如图(c)所示……dtt dx )(如图(d )所示:……故:)1(3)(3)(--=t g t g dtt dx 则:1t ,0t 3,32121==-==;A A 1.15解:该系统如下图所示: 2[n](1)]4[2]3[5]2[2]}4[4]3[2{21]}3[4]2[2{]3[21]2[][][1111111222-+-+-=-+-+-+-=-+-==n x n x n x n x n x n x n x n x n x n y n y即:]4[2]3[5]2[2][-+-+-=n x n x n x n y(2)若系统级联顺序改变,该系统不会改变,因为该系统是线性时不变系统。
(也可以通过改变顺序求取输入、输出关系,与前面做对比)。
1.17解:(a )因果性:)(sin )(t x t y =举一反例:当)0()y(,0int s x t =-=-=ππ则时输出与以后的输入有关,不是因果的;(b )线性:按照线性的证明过程(这里略),该系统是线性的。
奥本海姆信号与系统第一章部分习题答案

(e)
x[n], n 1
y[n] 0,
n0
x[n 1], n 1
(e)
Байду номын сангаас[n], n 1
y[n] 0,
n0
x[n 1], n 1
(g )
y[n] x[4n 1]
+++
1.31 在本题中将要说明线性时不变性质的重要结果之一,即一旦知道了一个线性
∴ 1 = 3,1 = 0,2 = −3,2 =1(或-1)
1.19判定下列输入-输出关系的系统是否具有线性性质、时不变性质,或两者俱有。
线
性: 3 = 1 + 2
时不变性: 2 = 1 ( − 0 )
(a) = 2 ( − 1)
∴ 是线性的
∴ 不是时不变的
基波周期0 : 使[] = + 成立的最小正整数。
离散时间复指数信号的周期: 0 , 0 = 是有理数,则是周期的,
2
2 0
且和无公因子时,基波周期为,角频率为 =
常数通常不讨论它的周期性,但可以认为周期为1。
1
4
2
=
= ,1 = 7
2 7 × 2 7
1
3
1
[] = [cos + cos( )]
2
4
4
N1
2
* m 8, m 3
3 / 4
N1
∴ 是周期的,基波周期为 =8
2
* m 8, m 1
/4
+ + + 1.27 这一章介绍了系统的几个一般性质,这就是一个系统可能是或不是:
信号与系统_奥本海姆_中文答案_chapter

第九章 9.6 解:(a) 若是有限持续期信号Roc 为整个s 平面,故存在极点不可能,故不可能为有限持续期。
(b) 可能是左边的。
(c) 不可能是右边的,若是右边信号,它并不是绝对可积的。
(d) x(t)可能为双边的。
9.8 解:因为te t x t g 2)()(=的傅氏变换,)(ωj G 收敛 所以)(t x 绝对可积若)(t x 为左边或者右边信号,则)(t x 不绝对可积 故)(t x 为双边信号 9.10 解:(a) 低通 (b) 带通 (c) 高通 9.14 解:dt e t x s X st⎰∞∞--=)()(, 由)(t x 是偶函数可得)()()(t d e t x s X st--=⎰-∞∞dt et x ts ⎰∞∞----=)()(dt e t x t s ⎰∞∞---=)()( )(s X -=421πj e s =为极点,故421πj e s -=也为极点,由)(t x 是实信号可知其极点成对出现,故421πj e s -=与421πje s --=也为极点。
)21)(21)(21)(21()(4444ππππjjjjes es es es Ms X --++--=由⎰∞∞-=4)(dt t x 得 4)0(=x所以,M =1/4 即,42}Re{42<<-s 9.21 解:(a) 3121)(+++=s s s X 2}Re{->s(b) 25)5(541)(2++++=s s s X 4}R e {->s (c) 3121)(----=s s s X 2}R e {<s (d) 22)2(1)2(1)(--+=s s s X2}R e {2<<-s (e) 22)2(1)2(1)(-++-=s s s X 2}R e {2<<-s (f) 2)2(1)(-=s s X 2}R e {<s (g) )1(1)(s e ss X --=0}R e {>s (h) 22)1()(s e s X s -=-0}R e {>s如对您有帮助,欢迎下载支持,谢谢!(i) ss X 11)(+= 0}R e {>s (j) ss X 131)(+=0}R e {>s9.23 解:1. Roc 包括 Re{s}=3 2. Roc 包括 Re{s}=03. Roc 在最左边极点的左边 4. Roc 在最右边极点的右边图1:1,2}Re{>s2,2}Re{2<<-s 3,2}Re{-<s 4,2}Re{>s图2: 1,2}Re{->s 2,2}Re{->s 3,2}Re{-<s 4,2}Re{->s 图3: 1,2}Re{>s 2,2}Re{<s 3,2}Re{<s 4,2}Re{>s 图4: 1,S 为整个平面 2,S 为整个平面 3,S 为整个平面 4,S 为整个平面 9.25 解:图略 9.27 解:)(t x 为实信号,)(s X 有一个极点为j s +-=1 )(s X ∴另一个极点为j s --=1 )1)(1()(j s j s Ms X ++-+=∴又 8)0(=X16=∴M则,)1(8)1(8)(j s jj s j s X -+-++=1}Re{->s 或者1}Re{-<s 之一使其成立又 )(2t x e t不是绝对可积的∴对任一个s ,右移2,不一定在Roc 中因此,1}Re{-<s 9.35 解:(a) )(1)(*)(s X st u t x L−→− 那么方框图表示的方程为)(*)(*)(6)(*)()()(*)(*)()(*)(2)(t u t u t y t u t y t y t u t u t x t u t x t x --=++即 ⎰⎰⎰⎰⎰⎰∞-∞-∞-∞-∞-∞---=++t ttt ttdt d y d y t y dt d x d x t x ττττττττ)(6)()()()(2)(对两边求导可得)(6)()()()()(2222t x dt t dx dt t x d t y dt t dy dt t y d --=++ (b) 126)(22++--=s s s s s H121-==s s 是)(s H 的二重极点,由于系统是因果的所以 1}Re{->sRoc 包含虚轴,所以系统是稳定的。
奥本海姆 信号与系统 习题参考答案

第四章作业解答4.1解:ωωωj e dt eet u eF j tj t t +==--∞------⎰2)}1({1)1(2)1(2 4.2解:ωωδδj j e e F -+=-++)}1t )1t {((4.3)}(21{}42{sin )42()42(ππππππ+-+-=+t j t j e e jF t F)2()2()2(221)2(221)}(21{444424)24πωδππωδππωπδπωπδππππππππ++--=+⨯--⨯=-=----jjj j t j j t j jej e j e j e j e e e e jF 4.4(b )解:⎩⎨⎧>≤=1||01||2)(ωωωj G 定义 则ttt g πsin 2)(=而:))1(())1(()(2--+=ωωωj G j G j X故由频移特性:tt j t t t j e e tt e e t g t x jt jtjt jt πππ22sin 4sin sin 4)(sin 2))(()(-=-=-=-=-- (也可以直接用反变换公式求解)解:由公式{ωωa 00)(||1)}(tj e aj X a t at x F -=-直接得到结果(见书后答案)4.21(a)解:)}()(21{)}(cos {000t u e e eF t tu e F t j tj atat ωωω---+= 而:ωj a t u e F at+=-1)}({则根据频移特性:)()(1)(121)}()(21{0000ωωωωωω+++-+=+--j a j a t u e e eF t j t j at4.22解:(a )因为⎩⎨⎧>≤=-3||03||1}3sin 2{1t t F ωω根据频移特性:⎩⎨⎧>≤=3||03||)(2t t e t x t j π (b))4(21)4(21}2121{)}4{cos(4411-++=+=---t t e e F F j j δδωωω则根据频移特性:t j e t t t x 3)]4()4([21)(πδδ--++=(d))(23)(1)]}2()2([3)]1()1([2{221tj t j jt jt e e e e F πππππωδπωδωδωδ----+-=+--++--解:(a )设)1()(1+=t x t x ,如下图所示,则)1()(1-=t x t x故:ωωωj e j X j X -=)()(1又因为:)(1t x 是实偶信号,则)(1ωj X 也为实偶,故:⎩⎨⎧<-≥-=-∠=∠0)(0)()()(111ωωπωωωωωj X j X j X j X(b) 因为:dt e t x j X t j ⎰∞∞--=ωω)()(则:dt t x j X ⎰∞∞-=)()0(即为x(t)的面积,故:7)()0(==⎰∞∞-dt t x j X(c) 因为:ωωπωd e j X t x t j ⎰∞∞-=)(21)(则:ωωπd j X x ⎰∞∞-=)(21)0( ππωω4)0(2)(==⇒⎰∞∞-x d j X(d) 令:ωωωsin 2)(=j G 则:)()()(ωωωj G j X j Y =则:)(*)()(t g t x t y = 其中g(t)如下图所示:则:)2(2)(sin 2)(22y d e j Y d e j X j j πωωωωωωωω==⎰⎰∞∞-∞∞-而:τττd t g x t g t x t y )()()(*)()(⎰∞∞--==τττππd g x y )2()(2)2(2⎰∞∞--=1 2 3 τ则:ππτττππ3232)2()(2)2(2=⨯=-=⎰∞∞-d g x y(e )根据帕斯瓦尔关系式:πππωω26132|)(|2|)(|22=⨯==⎰⎰∞∞-∞∞-dt t x d j X(f )2)()()()}({1t x t x t x j X F e -+==-ω(图略)4.28解:(a )以为p(t)是周期信号,其傅里叶级数为:tjn n n o e a t p ω∑∞-∞==)(则其傅里叶变换为:)(2)(on nn a j P ωωδπω-=∑∞-∞=由于:)()()(t p t x t y =则:])(2*)([21)(*)(21)(0∑∞-∞=-==n n n a j X j P j X j Y ωωδπωπωωπω ))((0∑∞-∞=-=n nn j X aωω(b)(1)22cos )(22t jtjeet t p -+== 则:πω4210==T⎪⎩⎪⎨⎧=±==00121n n a n则:))21((21))21((21))(()(0++-=-=∑∞-∞=ωωωωωj X j X n j X a j Y n n(6) 解:∑∞-∞=-=n n t t p )()(πδ周期π=T20=ω π11==T a n故:))2((1))(()(0∑∑∞-∞=∞-∞=-=-=n n nn j X n j X aj Y ωπωωω4.32解:⎩⎨⎧<=otherst tF 04||1}4sin {ωπ则根据时移特性:⎩⎨⎧<=--=otherse t t F j H j 04||})1()1(4sin {)(ωπωω(a) 因为][21)26cos()()26()26(1πππ+-++=+=t j t j e et t x 则:60=ω 根据特征函数特征值的概念:0])6([)6([21)()26()26(1=-+=+-+ππt j t j e H eH t y。
信号与系统 奥本海姆1-4答案.doc

Signals and SystemChap11.6 Determine whether or not each of the following signals is periodic:(a): (/4)1()2()j t x t e u t π+= (b): 2[][][]x n u n u n =+-(c): 3[]{[4][14]}k x n n k n k δδ∞=-∞=----∑Solution:(a).No 【周期信号无始无终,单边肯定不周期】Because 12cos()2sin(),0()440,0t j t t x t t ππ⎧+++>⎪=⎨⎪<⎩ when t<0, )(1t x =0. (b).No 【注意n =0】 Because 21,0[]2,01,0n n n n x >⎧⎪==⎨⎪<⎩(c).Y es 【画图、归纳】 Because∑∞-∞=--+--+=+k k m n k m n m n x ]}414[]44[{]4[3δδ∑∞-∞=------=k m k n m k n )]}(41[)](4[{δδ{[4][14]}k n k n k δδ∞=-∞=----∑N=4.1.9 Determine whether or not each of the following signals is periodic, if a signal is periodic, specify its fundamental period:(a): 101()j tx t je =(b): (1)2()j t x t e -+=(c): 73[]j n x n e π=(d): 3(1/2)/54[]3j n x n e π+= (e): 3/5(1/2)5[]3j n x n e += Solution: (a). T=π/5Because 0w =10, T=2π/10=π/5. (b). Aperiodic.Because jt t e e t x --=)(2, while t e -is not periodic, )(2t x is not periodic. (c). N=2Because 0w =7π, N=(2π/0w )*m, and m=7. (d). N=10Because n j j e e n x )5/3(10/343)(ππ=, that is 0w =3π/5,N=(2π/0w )*m, and m=3. (e). Aperiodic.Because 0w =3/5, N=(2π/0w )*m=10πm/3 , it ’s not a rational number.1.14 consider a periodic signal 1,01()2,12t x t t ≤≤⎧=⎨-<<⎩with periodT=2. The derivative of this signal is related to the “impulsetrain ”()(2)k g t t k δ∞=-∞=-∑, with period T=2. It can be shownthat1122()()()dx t A g t t A g t t dt=-+-. Determine the values of1A , 1t , 2A , 2t .Solution:A 1=3, t 1=0, A 2=-3, t 2=1 or -1 Because∑∞-∞=-=k k t t g )2()(δ,)1(3)(3)(--=t g t g dtt dx1.15. Consider a system S with input x[n] and output y[n].This system is obtained through a series interconnection of a system S 1 followed by a system S2. The input-output relationships for S 1 and S 2 areS 1: ],1[4][2][111-+=n x n x n y S 2: ]3[21]2[][222-+-=n x n x n yWhere ][1n x and ][2n x denote input signals.(a) Determine the input-output relationship for system S.(b)Does the input-output relationship of system S change if the order in which S 1 and S 2 are connected in series is reversed(ie., if S2 follows S 1)? Solution: (a)]3[21]2[][222-+-=n x n x n y]3[21]2[11-+-=n y n y]}4[4]3[2{21]}3[4]2[2{1111-+-+-+-=n x n x n x n x]4[2]3[5]2[2111-+-+-=n x n x n xThen, ]4[2]3[5]2[2][-+-+-=n x n x n x n y【可以考虑先求取单位脉冲响应,再做卷积】(b).No. because it ’s linear, S 1 and S 2 do not diverge.1.16. Consider a discrete-time system with input x[n] and output y[n].The input-output relationship for this system is]2[][][-=n x n x n y(a) Is the system memory less?(b) Determine the system output when the input is ][n A δ, where A is any real or complex number . (c) Is the system invertible? Solution: (a). No.For example, when n=0, y[0]=x[0]x[-2]. So the system is memory. (b). y[n]=0.When the input is ][n A δ,]2[][][2-=n n A n y δδ, so y[n]=0.(c). No.For example, when x[n]=0, y[n]=0; when x[n]=][n A δ, y[n]=0. So the system is not invertible.1.17.Consider a continuous-time system with input x(t) and output y(t) related by ))(sin()(t x t y =, (a) Is this system causal? (b) Is this system linear? Solution: (A). No.For example,)0()(x y =-π. So it ’s not causal.【得到什么启示?】 (b). Y es.Because : ))(sin()(11t x t y = , (sin()(22tx t y =)()())(sin())(sin()(21213t by t ay t bx t ax t y +=+=1.21. A continuous-time signal ()x t is shown in Figure P1.21. Sketch and label carefully each of the following signals:(a): (1)x t - (b): (2)x t - (c): (21)x t + (d): (4/2)x t - (e): [()()]()x t x t u t +-(f): ()[(3/2)(3/2)]x t t t δδ+--Solution: (a).(b).(c). (d).1.22. A discrete-time signal ][n x is shown in as the following. Sketch and label carefully each of the following signals: (a): [4]x n - (b): [3]x n - (c): [3]x n(d): [31]x n + (e): [][3]x n u n -(f): [2][2]x n n δ--(g): 11[](1)[]22nx n x n +-(h): 2[(1)]x n -Solution:(a).(b).(e).(f) ]2[-n δ(g)1.25. Determine whether or not each of the following continuous-time signals is periodic. If the signal is periodic, determine its fundamental period.(a): ()3cos(4)3x t t π=+ (b): (1)()j t x t e π-=(c): 2()[cos(2)]3x t t π=-(d): (){cos(4)()}x t t u t ενπ=(e): (){sin(4)()}x t t u t ενπ= (f): (2)()t n n x t e∞--=-∞=∑Solution:(a).Periodic. T=π/2. Solution: T=2π/4=π/2. (b). Periodic. T=2.Solution: T=2π/π=2.(c). Periodic. T=π/2.【括号内周期,平方后仍然周期,或者做三角变换】 (d). Periodic. T=0.5. Solution: )}()4{cos()(t u t E t x v π= )}())(4cos()()4{cos(21t u t t u t --+=ππ )}()(){4cos(21t u t u t -+=π)4cos(21t π=So, T=2π/4π=0.5【值得商榷】 (e)、(f)非周期信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
系统(第二版)-学习说明(练习答案)系计算机工程系2005.12目录17第35章第62章第83章第109章第119章第132章第140章160章答案1.1从极坐标转换:1.2从笛卡尔极坐标转换:limlim dtdtdt=cos(t)。
因此,信号翻转限制信号对,所以因此,我们知道(2)线性压缩,因为线性压缩。
因此,基态周期奇信号,所有值为零时为零只有当周期复指数时。
10 10复数指数乘以衰减指数。
因此,周期信号。
复指数基本周期信号。
fundamentalperiod我们得到fundamentalperiod complexexponential=3/5。
找不到任何整数整数。
因此,定期1.10。
x(t)=2cos(10t+1)-sin(4t-1)周期第一项第一项,整个信号周期至少有多个第二项。
-3-1-1-2-3-3-3第一项第二项第二项整个信号周期,至少在35.1.12中有多个共同的三项。
图1.12。
翻转信号对,所以,no=-3.1.13其导数图1.14。
因此[n-3]=2x[n-2]+4x[n-3]+4x[n-4])=2x[n-2]+5x输入输出关系y[n]=2x[n-2]+5x[n-3]2x[n-4]输入输出关系的连接序列是反向的。
我们可以很容易地证明[n-3])+4(x输入-输出关系在y[n]=2x[n-2]+5x[n-3]2x[n-4]1.16无记忆性,因为过去值我们可能总是得出系统输出,因为有时可能取决于考虑两个任意输入(sin(t))的未来值,
让线性组合任意标量给系统相应的输出线性。
1.18.(a)考虑两个任意输入线性组合任意标量。
给定系统,相应的输出随机输入相应的输出。
考虑第二个输入输出对应的Alsonote+1)B。
因此+1)B.1.19考虑两个任意输入(t-1)让线性组合任意标量。
给定系统,相应的输出为线性。
(ii)考虑相应输出的任意输入。
考虑第二输入输出相应的输出。
考虑两个任意输入[n-2]。
让线性组合任意标量。
考虑任意输入对应的二次输入。
给定系统,相应的输出为线性。
(ii)考虑任意输入对应的输出。
考虑第二输入输出相应的输出也不考虑两个任意输入线性组合的任意标量。
给定系统,相应的输出是线性的。
(ii)考虑相应输出的任意输入。
考虑第二输入输出相应的系统线性,因此我们知道x2(t)=cos (2(t-1/2))=线性性质,我们可以再次写出x1 cos(3t-1),因此,x1(t)=cos(2(t-1/2))=cos(3t-1)1.21。
信号图1.21。
图1.21 21 1.22图1.22 1.22图1.22 1.23奇数图1.23 1/2-1/2-1 0.50.5 3/2-2-3/2 x(2t+1)x(4-t/2)1012 1/2-2-1/1/2-1/2-1/2-1/2-1/2-1/2 1/2-1/2 1/2 1/2-1-2图1.22-4-1-2-4-1-2-7 xo[n]xo[n]3t/2/2-3t/2-1/2-2-1/2-7图1.24-2-2图1.24-2图1.23 1.23 1.23 1/2 1/2 1/2 1 1/2-1 3/2-3/2-1/2 101.24零件图1.24。