《信号与系统》奥本海姆
奥本海姆目录

《信号与系统》第1章信号与系统1.0 引言1.1 连续时间和离散时间信号1.1.1 举例与数学表示1.1.2 信号能量与功率1.2 自变数的变换1.2.1 自变数变换举例1.2.2 周期信号1.2.3 偶信号与奇信号1.3 指数信号与正弦信号1.3.1 连续时间复指数信号与正弦信号1.3.2 离散时间复指数信号与正弦信号1.3.3 离散时间复指数序列的周期性质1.4 单位冲激与单位阶跃函数1.4.1 离散时间单位脉冲和单位阶跃序列1.4.2 连续时间单位阶跃和单位冲激函数1.5 连续时间和离散时间系统1.5.1 简单系统举例1.5.2 系统的互联1.6 基本系统性质1.6.1 记忆系统与无记忆系统1.6.2 可逆性与可逆系统1.6.3 因果性1.6.4 稳定性1.6.5 时不变性1.6.6 线性1.7 小结习题第2章线性时不变系统2.0 引言2.1 离散时间LTI系统:卷积和2.1.1 用脉冲表示离散时间信号2.1.2 离散时间LTI系统的单位脉冲响应及卷积和表示2.2 连续时间LTI系统:卷积积分2.2.1 用冲激表示连续时间信号2.2.2 连续时间LTI系统的单位冲激响应及卷积积分表示2.3 线性时不变系统的性质2.3.1 交换律性质2.3.2 分配律性质2.3.3 结合律性质2.3.4 有记忆和无记忆LTI系统2.3.5 LTL系统的可逆性2.3.6 LTI系统的因果性2.3.7 LTI系统的稳定性2.3.8 LTI系统的单位阶跃响应2.4 用微分和差分方程描述的因果LTI系统2.4.1 线性常系数微分方程2.4.2 线性常系数差分方程2.4.3 用微分和差分方程描述的一阶系统的方框图表示2.5 奇异函数2.5.1 作为理想化短脉冲的单位冲激2.5.2 通过卷积定义单位冲激2.5.3 单位冲激偶和其它的奇异函数2.6 小结习题第3章周期信号的傅里叶级数表示3.0 引言3.1 历史回顾3.2 LTI系统对复指数信号的响应3.3 连续时间周期信号的傅里叶级数表示3.3.1 成谐波关系的复指数信号的线性组合3.3.2 连续时间周期信号傅里叶级数表示的确定3.4 傅里叶级数的收敛3.5 连续时间傅里叶级数性质3.5.1 线性3.5.2 时移性质3.5.3 时间反转3.5.4 时域尺度变换3.5.5 相乘3.5.6 共轭及共轭对称性3.5.7 连续时间周期信号的帕斯瓦尔定理3.5.8 连续时间傅里叶级数性质列表3.5.9 举例3.6 离散时间周期信号的傅里叶级数表示3.6.1 成谐波关系的复指数信号的线性组合3.6.2 周期信号傅里叶级数表示的确定3.7 离散时间傅里叶级数性质3.7.1 相乘3.7.2 一阶差分3.7.3 离散时间周期信号的帕斯瓦尔定理3.7.4 举例3.8 傅里叶级数与LTI系统3.9 滤波3.9.1 频率成形滤波器3.9.2 频率选择性滤波器3.10 用微分方程描述的连续时间滤波器举例3.10.1 简单RC低通滤波器3.10.2 简单RC高通滤波器3.11 用差分方程描述的离散时间滤波器举例3.11.1 一阶递归离散时间滤波器3.11.2 非递归离散时间滤波器3.12 小结习题第4章连续时间傅里叶变换4.0 引言4.1 非周期信号的表示:连续时间傅里叶变换4.1.1 非周期信号傅里叶变换表示的导出4.1.2 傅里叶变换的收敛4.1.3 连续时间傅里叶变换举例4.2 周期信号的傅里叶变换4.3 连续时间傅里叶变换性质4.3.1 线性4.3.2 时移性质4.3.3 共轭及共轭对称性4.3.4 微分与积分4.3.5 时间与频率的尺度变换4.3.6 对偶性4.3.7 帕斯瓦尔定理4.4 卷积性质4.4.1 举例4.5 相乘性质4.5.1 具有可变中心频率的频率选择性滤波4.6 傅里叶变换性质和基本傅里叶变换对列表4.7 由线性常系数微分方程表征的系统4.8 小结习题第5章离散时间傅里叶变换5.0 引言5.1 非周期信号的表示:离散时间傅里叶变换5.1.1 离散时间傅里叶变换的导出5.1.2 离散时间傅里叶变换举例5.1.3 关于离散时间傅里叶变换的收敛问题5.2 周期信号的傅里叶变换5.3 离散时间傅里叶变换性质5.3.1 离散时间傅里叶变换的周期性5.3.2 线性5.3.3 时移与频移性质5.3.4 共轭与共轭对称性5.3.5 差分与累加5.3.6 时间反转5.3.7 时域扩展5.3.8 频域微分5.3.9 帕斯瓦尔定理5.4 卷积性质5.4.1 举例5.5 相乘性质5.6 傅里叶变换性质和基本傅里叶变换对列表5.7 对偶性5.7.1 离散时间傅里叶级数的对偶性5.7.2 离散时间傅里叶变换和连续时间傅里叶级数之间的对偶性5.8 由线性常系数差分方程表征的系统5.9 小结习题第6章信号与系统的时域和频域特性6.0 引言6.1 傅里叶变换的模和相位表示6.2 LTI系统频率响应的模和相位表示6.2.1 线性与非线性相位6.2.2 群时延6.2.3 对数模和波特图6.3 理想频率选择性滤波器的时域特性6.4 非理想滤波器的时域和频域特性讨论6.5 一阶与二阶连续时间系统6.5.1 一阶连续时间系统6.5.2 二阶连续时间系统6.5.3 有理型频率响应的波特图6.6 一阶与二阶离散时间系统6.6.1 一阶离散时间系统6.6.2 二阶离散时间系统6.7 系统的时域分析与频域分析举例6.7.1 汽车减震系统的分析6.7.2 离散时间非递归滤波器举例6.8 小结习题第7章采样7.0 引言7.1 用信号样本表示连续时间信号:采样定理7.1.1 冲激串采样7.1.2 零阶保持采样7.2 利用内插由样本重建信号7.3 欠采样的效果:混迭现象7.4 连续时间信号的离散时间处理7.4.1 数字微分器7.4.2 半采样间隔延时7.5 离散时间信号采样7.5.1 脉冲串采样7.5.2 离散时间抽取与内插7.6 小结习题第8章通信系统8.0 引言8.1 复指数与正弦幅度调制8.1.1 复指数载波的幅度调制8.1.2 正弦载波的幅度调制8.2 正弦AM的解调8.2.1 同步解调8.2.2 异步解调8.3 频分多路复用8.4 单边带正弦幅度调制8.5 用脉冲串作载波的幅度调制8.5.1 脉冲串载波调制8.5.2 时分多路复用8.6 脉冲幅度调制8.6.1 脉冲幅度已调信号8.6.2 在PAM系统中的码间干扰8.6.3 数字脉冲幅度和脉冲编码调制8.7 正弦频率调制8.7.1 窄带频率调制8.7.2 宽带频率调制8.7.3 周期方波调制信号8.8 离散时间调制8.8.1 离散时间正弦幅度调制8.8.2 离散时间调制转换8.9 小结习题第9章拉普拉斯变换9.0 引言9.1 拉普拉斯变换9.3 拉普拉斯反变换9.4 由零极点图对傅里叶变换进行几何求值9.4.1 一阶系统9.4.2 二阶系统9.4.3 全通系统9.5 拉普拉斯变换的性质9.5.1 线性9.5.2 时移性质9.5.3 S域平移9.5.4 时域尺度变换9.5.5 共轭9.5.6 卷积性质9.5.7 时域微分9.5.8 S域微分9.5.9 时域积分9.5.10 初值与终值定理9.5.11 性质列表9.6 常用拉普拉斯变换对9.7 用拉普拉斯变换分析和表征LTI系统9.7.1 因果性9.7.2 稳定性9.7.3 由线性常系数微分方程表征的LTI系统9.7.4 系统特性与系统函数的关系举例9.7.5 巴特沃兹滤波器9.8 系统函数的代数属性与方框图表示9.8.1 LTI系统互联的系统函数9.8.2 由微分方程和有理系统函数描述的因果LTI系统的方框图表示9.9单边拉普拉斯变换9.9.1 单边拉普拉斯变换举例9.9.3 利用单边拉普拉斯变换求解微分方程9.10 小结习题第10章Z变换10.0 引言10.1 Z变换10.2 Z变换的收敛域10.3 Z反变换10.4 由零极点图对傅里叶变换进行几何求值10.4.1 一阶系统10.4.2 二阶系统10.5 Z变换的性质10.5.1 线性10.5.2 时移性质10.5.3 Z域尺度变换10.5.4 时间反转10.5.5 时间扩展10.5.6 共轭10.5.7 卷积性质10.5.8 Z域微分10.5.9 初值定理10.5.10 性质小结10.6 几个常用Z变换对10.7 利用Z变换分析与表征LTI系统10.7.1 因果性10.7.2 稳定性10.7.3 由线性常系数差分方程表征的LTI系统10.7.4 系统特性与系统函数的关系举例10.8 系统函数的代数属性与方框图表示10.8.1 LTI系统互联的系统函数10.8.2 由差分方程和有理系统函数描述的因果LTI系统的方框图表示10.9 单边Z变换10.9.1 单边Z变换和单边Z反变换举例10.9.2 单边Z变换性质10.9.3 利用单边Z变换求解差分方程10.10 小结习题第11章线性反馈系统11.0 引言11.1 线性反馈系统11.2 反馈的某些应用及结果11.2.1 逆系统设计11.2.2 非理想组件的补偿11.2.3 不稳定系统的稳定11.2.4 采样数据反馈系统11.2.5 跟踪系统11.2.6 反馈引起的不稳定11.3 线性反馈系统的根轨迹分析法11.3.1 一个例子11.3.2 死循环极点方程11.3.3 根轨迹的端点:K=0和|K|=+∞时的死循环极点11.3.4 角判据11.3.5 根轨迹的性质11.4 奈奎斯特稳定性判据11.4.1 围线性质11.4.2 连续时间LTI反馈系统的奈奎斯特判据11.4.3 离散时间LTI反馈系统的奈奎斯特判据11.5 增益和相位裕度11.6 小结。
《信号与系统》考研奥本海姆版考研复习笔记和典型题

《信号与系统》考研奥本海姆版考研复习笔记和典型题一、采样复习笔记本章重点介绍了采样和采样定理,采样定理在连续时间信号和离散时间信号之间起着桥梁作用,采样在利用离散时间系统技术来实现连续时间系统并处理连续时间信号方面有着至关重要的作用。
学完本章读者应该掌握以下内容:(1)重点掌握采样的过程和采样定理,牢记奈奎斯特采样频率。
(2)掌握内插的定义及如何利用内插由样本重建信号。
(3)重点掌握连续时间信号的离散时间化处理过程。
(4)了解数字微分器及其频率特性。
(5)掌握离散时间信号采样的原理及恢复原离散时间信号的方法。
一、用信号样本表示连续时间信号:采样定理1冲激串采样(1)冲激串采样的定义冲激串采样是指用一个周期冲激串p(t)去乘待采样的连续时间信号x(t)。
该周期冲激串p(t)称为采样函数,周期T称为采样周期,而p(t)的基波频率ω=2π/T称为采样频率。
(2)冲激串采样过程(见图7-1-1)在时域中有x p(t)=x(t)p(t)在频域中有即X p(jω)是频率ω的周期函数,它由一组移位的X(jω)的叠加组成,但在幅度上标以1/T的变化。
图7-1-1 冲激串采样过程(3)采样定理频带宽度有限信号x(t),在|ω|>ωM时,X(jω)=0。
如果ωs>2ωM,其中ωs =2π/T,那么x(t)唯一地由其样本x(nT),n=0,±1,±2,…,所确定。
其中频率2ωM称为奈奎斯特率。
已知这些样本值,重建x(t)的办法:①产生一个冲激幅度就是这些依次而来的样本值的周期冲激串。
②将该冲激串通过一个增益为T,截止频率大于ωM而小于ωs-ωM的理想低通滤波器,该滤波器的输出就是x(t)。
2零阶保持采样(1)零阶保持的含义在一个给定的瞬时对x(t)采样并保持这一样本值,直到下一个样本被采到为止,利用零阶保持采样的原理图如图7-1-2所示。
图7-1-2 利用零阶保持采样(2)零阶保持采样的过程零阶保持的输出x0(t)在原理上可以用冲激串采样,再紧跟着一个线性时不变系统(该系统具有矩形的单位冲激响应)来得到,如图7-1-3所示。
信号与系统奥本海姆版复习要点

第一章:Singnals and System(信号与系统)1-1:continuous-time and discrete-time signals(连续时间与离散时间信号)信号:信息的载体。
在信号与系统分析中,信号的表达式为函数(functions)P3:Signals are represented mathematically as functions of one or more independent variables(独立自变量)。
例如:关于某导线电流强度对应不同时间的函数I(t);等比数列的某一个数对应其序号的函数a[n]=b^n。
自变量的定义域为连续的时间段(有限或无限)的信号(函数)称为连续时间信号x(t)自变量的定义域为间断的时间点(一般地,归一为整数点…-1,0,1,2…)的信号称为离散时间信号x[n],又叫序列(sequences)。
两者有相似处,离散时间函数(又称为离散时间序列)可以看作连续时间函数对整数点时间进行抽样得到,但两者计算上有很大区别。
信号(函数)对应某一自变量值的信号函数值大小称为信号的幅度(phenomenon)。
例如x(t)=2t,在t=3时x(t)=x(3)=6就是此刻的幅度。
Signal energy and power(信号的能量与功率)把信号看作电流,该电流在某一段时间内流过1欧姆的电阻产生的能量和平均功率(average power)便是信号在该段时间的能量与功率。
因此可得在t1~~t2内信号x(t)的能量为:E=∫(t1~t2)(|x(t)|^2)dt,而相应这段时间的功率则为P=E/(t2-t1)信号在整个定义域的能量E∞=(limT→∞)∫(-T~T)(|x(t)|^2)dt信号在整个定义域的平均功率P∞=(limT→∞)(1/2T)∫(-T~T)(|x(t)|^2)dt相应的,对于离散时间信号则有P6-7(1,7)(1,9)(这个东西要输入太困难了,呵呵)显然,对于一个信号在无穷区间的能量与平均功率有三种可能:(1)平均功率无穷大,总能量无穷大(2)平均功率有限,总能量无穷大(3)总能量有限,平均功率无穷小(也是有限)1-2:Transformations of the independent variable(自变量的变换)自变量的变换就是对信号x(t)或x[n]的自变量t或n进行相应变换,由此会影响信号。
《信号与系统》考研奥本海姆版考研复习笔记资料

《信号与系统》考研奥本海姆版考研复习笔记资料第1章信号与系统1.1 复习笔记本章内容是信号与系统分析的基础。
主要介绍了信号的分类和基本运算,学完本章读者要重点掌握的内容有:(1)掌握信号的分类方法及其特点:连续/离散、周期/非周期、奇/偶、能量/功率。
(2)掌握冲激信号和阶跃信号的物理意义及性质。
(3)掌握常见连续/离散信号的波形及其表达式。
(4)掌握信号的时域运算和波形变换方法。
(5)掌握系统互连方法及其特点。
一、连续时间和离散时间信号1连续时间信号和离散时间信号(见表1-1-1)表1-1-1 信号的定义和表示方法图1-1-1 信号的图形表示(a)连续时间信号;(b)离散时间信号2信号能量与功率(见表1-1-2)表1-1-2 能量和功率的计算公式3能量信号和功率信号的特点(见表1-1-3)表1-1-3 能量信号和功率信号的特点二、自变量的变换1基本变换(见表1-1-4)表1-1-4 自变量的基本变换2周期信号与非周期信号(见表1-1-5)表1-1-5 周期信号与非周期信号的定义及特点3偶信号与奇信号(见表1-1-6)表1-1-6 偶信号与奇信号的定义及特点【注】任何信号=偶信号+奇信号,即x(t)=E v{x(t)}+O d{x(t)},其中E v{x (t)}=(1/2)[x(t)+x(-t)],O d{x(t)}=(1/2)[x(t)-x(-t)],E v{x (t)}为x(t)的偶部,O d{x(t)}为x(t)的奇部。
三、指数信号与正弦信号1连续时间复指数信号与正弦信号(见表1-1-7)表1-1-7 连续时间复指数信号与正弦信号的表达式与特点2离散时间复指数信号与正弦信号(见表1-1-8)表1-1-8 离散时间复指数信号与正弦信号3离散时间复指数序列的周期性质(1)离散时间指数信号的周期性的要求为了使信号是周期的,周期为N>0,就必须有,也就是要求ω0N必须是2π的整数倍,即必须有一个整数m,满足:ω0N=m2π或ω0/(2π)=m/N。
课件信号与系统奥本海姆.ppt

4
Ch1. Signals and Systems
Signal:the carrier of information 信号:信息的载体
1
SIGNALS AND SYSTEMS
• 信号与系统
8
Main content : Ch1. Signals and Systems
• Continuous-Time and Discrete-Time Signals 〔连续时间与离散时间信号〕
• Transformations of the Independent Variable〔自变量的变换〕
信号是信息的具体物理表现形式,包含了信息的 具体内容。总是1个或多个独立变量的函数。
同一信息可以有不同的物理表现形式,因此对应 有不同的信号,但这些不同的信号都包含同一个信息。 这些不同的信号之间可以相互转换。
例如语音信息用声压表示,可用电压或电流信号 作为载体;也可以用一组数据(01)信号作载体。对应 模拟信号和数字信号,可以AD转换。
2
Ch1. Signals and Systems
控制论创始人维纳认为: 信息是人或物体与外部世界交换内容的名称。内 容是事物的原形,交换是信息载体[信号]将事物原形 [内容]映射到人或物体的感觉器官,人们把这种映射 的结果认为获得了信息。通俗地说,信息指人们得到 的消息。
信息多种多样、丰富多彩,具体的物理形态也千 差万别。
• Basic System Properties (根本系统性质) 9
Ch1. Signals and Systems
《信号与系统》考研奥本海姆版2021考研名校考研真题

《信号与系统》考研奥本海姆版2021考研名校考研真题第一部分考研真题精选一、选择题1已知信号f(t)的频带宽度为Δω,则信号y(t)=f2(t)的不失真采样间隔(奈奎斯特间隔)T等于()。
[西南交通大学研]A.π/(Δω)B.π/(2Δω)C.2π/(Δω)D.4π/(Δω)【答案】B查看答案【解析】根据卷积定理可知,y(t)=f2(t)→[1/(2π)]F(jω)*F(j ω)。
若信号f(t)的频带宽度为Δω,则y(t)的频带宽度为2Δω。
则奈奎斯特采样频率为4Δω,所以不失真采样间隔(奈奎斯特间隔)T等于2π/(4Δω)=π/(2Δω)。
2已知f(t)↔F(jω),f(t)的频带宽度为ωm,则信号y(t)=f(t/2-7)的奈奎斯特采样间隔等于()。
[西南交通大学研]A.2π/ωmB.2π/(2ωm-7)C.4π/ωmD.π/ωm【答案】A查看答案【解析】根据时域和频域之间关系,可知若时域扩展,则频域压缩。
所以若f(t)的频带宽度为ωm,则信号y(t)=f(t/2-7)的频带宽度为ωm/2。
所以,其奈奎斯特采样频率为(ωm/2)×2=ωm,即奈奎斯特采样间隔等于2π/ωm。
3有限长序列x(n)的长度为4,欲使x(n)与x(n)的圆卷积和线卷积相同,则长度L的最小值为()。
[中国科学院研究生院2012研]A.5B.6C.7D.8【答案】C查看答案【解析】x(n)的长度为4,则其线卷积的长度为4+4-1=7。
当x(n)与x(n)的圆卷积L≥7时,x(n)与x(n)的圆卷积和线卷积相同,可知L的最小值为7。
4下面给出了几个FIR滤波器的单位函数响应。
其中满足线性相位特性的FIR滤波器是()。
[东南大学研]A.h(n)={1,2,3,4,5,6,7,8}B.h(n)={1,2,3,4,1,2,3,4}C.h(n)={1,2,3,4,4,3,2,1}D.h(n)={1,2,3,4,-1,-2,-3,-4}【答案】C查看答案【解析】线性相位FIR滤波器必满足某种对称性,即h(n)=h(N-1-n)或者h(n)=-h(N-1-n)。
信号与系统奥本海姆答案

系统(第二版)-学习说明(练习答案)系计算机工程系2005.12目录17第35章第62章第83章第109章第119章第132章第140章160章答案1.1从极坐标转换:1.2从笛卡尔极坐标转换:limlim dtdtdt=cos(t)。
因此,信号翻转限制信号对,所以因此,我们知道(2)线性压缩,因为线性压缩。
因此,基态周期奇信号,所有值为零时为零只有当周期复指数时。
10 10复数指数乘以衰减指数。
因此,周期信号。
复指数基本周期信号。
fundamentalperiod我们得到fundamentalperiod complexexponential=3/5。
找不到任何整数整数。
因此,定期1.10。
x(t)=2cos(10t+1)-sin(4t-1)周期第一项第一项,整个信号周期至少有多个第二项。
-3-1-1-2-3-3-3第一项第二项第二项整个信号周期,至少在35.1.12中有多个共同的三项。
图1.12。
翻转信号对,所以,no=-3.1.13其导数图1.14。
因此[n-3]=2x[n-2]+4x[n-3]+4x[n-4])=2x[n-2]+5x输入输出关系y[n]=2x[n-2]+5x[n-3]2x[n-4]输入输出关系的连接序列是反向的。
我们可以很容易地证明[n-3])+4(x输入-输出关系在y[n]=2x[n-2]+5x[n-3]2x[n-4]1.16无记忆性,因为过去值我们可能总是得出系统输出,因为有时可能取决于考虑两个任意输入(sin(t))的未来值,让线性组合任意标量给系统相应的输出线性。
1.18.(a)考虑两个任意输入线性组合任意标量。
给定系统,相应的输出随机输入相应的输出。
考虑第二个输入输出对应的Alsonote+1)B。
因此+1)B.1.19考虑两个任意输入(t-1)让线性组合任意标量。
给定系统,相应的输出为线性。
(ii)考虑相应输出的任意输入。
考虑第二输入输出相应的输出。
考虑两个任意输入[n-2]。
信号与系统 奥本海姆1-4答案.doc

Signals and SystemChap11.6 Determine whether or not each of the following signals is periodic:(a): (/4)1()2()j t x t e u t π+= (b): 2[][][]x n u n u n =+-(c): 3[]{[4][14]}k x n n k n k δδ∞=-∞=----∑Solution:(a).No 【周期信号无始无终,单边肯定不周期】Because 12cos()2sin(),0()440,0t j t t x t t ππ⎧+++>⎪=⎨⎪<⎩ when t<0, )(1t x =0. (b).No 【注意n =0】 Because 21,0[]2,01,0n n n n x >⎧⎪==⎨⎪<⎩(c).Y es 【画图、归纳】 Because∑∞-∞=--+--+=+k k m n k m n m n x ]}414[]44[{]4[3δδ∑∞-∞=------=k m k n m k n )]}(41[)](4[{δδ{[4][14]}k n k n k δδ∞=-∞=----∑N=4.1.9 Determine whether or not each of the following signals is periodic, if a signal is periodic, specify its fundamental period:(a): 101()j tx t je =(b): (1)2()j t x t e -+=(c): 73[]j n x n e π=(d): 3(1/2)/54[]3j n x n e π+= (e): 3/5(1/2)5[]3j n x n e += Solution: (a). T=π/5Because 0w =10, T=2π/10=π/5. (b). Aperiodic.Because jt t e e t x --=)(2, while t e -is not periodic, )(2t x is not periodic. (c). N=2Because 0w =7π, N=(2π/0w )*m, and m=7. (d). N=10Because n j j e e n x )5/3(10/343)(ππ=, that is 0w =3π/5,N=(2π/0w )*m, and m=3. (e). Aperiodic.Because 0w =3/5, N=(2π/0w )*m=10πm/3 , it ’s not a rational number.1.14 consider a periodic signal 1,01()2,12t x t t ≤≤⎧=⎨-<<⎩with periodT=2. The derivative of this signal is related to the “impulsetrain ”()(2)k g t t k δ∞=-∞=-∑, with period T=2. It can be shownthat1122()()()dx t A g t t A g t t dt=-+-. Determine the values of1A , 1t , 2A , 2t .Solution:A 1=3, t 1=0, A 2=-3, t 2=1 or -1 Because∑∞-∞=-=k k t t g )2()(δ,)1(3)(3)(--=t g t g dtt dx1.15. Consider a system S with input x[n] and output y[n].This system is obtained through a series interconnection of a system S 1 followed by a system S2. The input-output relationships for S 1 and S 2 areS 1: ],1[4][2][111-+=n x n x n y S 2: ]3[21]2[][222-+-=n x n x n yWhere ][1n x and ][2n x denote input signals.(a) Determine the input-output relationship for system S.(b)Does the input-output relationship of system S change if the order in which S 1 and S 2 are connected in series is reversed(ie., if S2 follows S 1)? Solution: (a)]3[21]2[][222-+-=n x n x n y]3[21]2[11-+-=n y n y]}4[4]3[2{21]}3[4]2[2{1111-+-+-+-=n x n x n x n x]4[2]3[5]2[2111-+-+-=n x n x n xThen, ]4[2]3[5]2[2][-+-+-=n x n x n x n y【可以考虑先求取单位脉冲响应,再做卷积】(b).No. because it ’s linear, S 1 and S 2 do not diverge.1.16. Consider a discrete-time system with input x[n] and output y[n].The input-output relationship for this system is]2[][][-=n x n x n y(a) Is the system memory less?(b) Determine the system output when the input is ][n A δ, where A is any real or complex number . (c) Is the system invertible? Solution: (a). No.For example, when n=0, y[0]=x[0]x[-2]. So the system is memory. (b). y[n]=0.When the input is ][n A δ,]2[][][2-=n n A n y δδ, so y[n]=0.(c). No.For example, when x[n]=0, y[n]=0; when x[n]=][n A δ, y[n]=0. So the system is not invertible.1.17.Consider a continuous-time system with input x(t) and output y(t) related by ))(sin()(t x t y =, (a) Is this system causal? (b) Is this system linear? Solution: (A). No.For example,)0()(x y =-π. So it ’s not causal.【得到什么启示?】 (b). Y es.Because : ))(sin()(11t x t y = , (sin()(22tx t y =)()())(sin())(sin()(21213t by t ay t bx t ax t y +=+=1.21. A continuous-time signal ()x t is shown in Figure P1.21. Sketch and label carefully each of the following signals:(a): (1)x t - (b): (2)x t - (c): (21)x t + (d): (4/2)x t - (e): [()()]()x t x t u t +-(f): ()[(3/2)(3/2)]x t t t δδ+--Solution: (a).(b).(c). (d).1.22. A discrete-time signal ][n x is shown in as the following. Sketch and label carefully each of the following signals: (a): [4]x n - (b): [3]x n - (c): [3]x n(d): [31]x n + (e): [][3]x n u n -(f): [2][2]x n n δ--(g): 11[](1)[]22nx n x n +-(h): 2[(1)]x n -Solution:(a).(b).(e).(f) ]2[-n δ(g)1.25. Determine whether or not each of the following continuous-time signals is periodic. If the signal is periodic, determine its fundamental period.(a): ()3cos(4)3x t t π=+ (b): (1)()j t x t e π-=(c): 2()[cos(2)]3x t t π=-(d): (){cos(4)()}x t t u t ενπ=(e): (){sin(4)()}x t t u t ενπ= (f): (2)()t n n x t e∞--=-∞=∑Solution:(a).Periodic. T=π/2. Solution: T=2π/4=π/2. (b). Periodic. T=2.Solution: T=2π/π=2.(c). Periodic. T=π/2.【括号内周期,平方后仍然周期,或者做三角变换】 (d). Periodic. T=0.5. Solution: )}()4{cos()(t u t E t x v π= )}())(4cos()()4{cos(21t u t t u t --+=ππ )}()(){4cos(21t u t u t -+=π)4cos(21t π=So, T=2π/4π=0.5【值得商榷】 (e)、(f)非周期信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X( j)
2 T1 1 T 2
2 T
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
4.3 傅里叶变换的性质 Properties of the Fourier Transform
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
Eg1:
x(t) e u(t 3) X(jω ) ?
at
at
解 :e
1 u (t ) j a
例3: x(t )
1 ak T
T
(t nT )
n
均匀冲激串
1 dt T
2 T 2
(t ) e
j
2 kt T
2 T 2
T
1 ( t ) dt T
2 X ( j ) T
x (t )
1
2 ( k ) 0 ( k0 ) T k k
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
实信号的正负 • 若 x(t ) 是实信号,则 x(t ) x (t ) 频率成份互为 于是有: X ( j ) X * ( j ) 共轭对称。
Wang Zhengyong
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
讨论傅里叶变换的性质,旨在通过这些性 质揭示信号时域特性与频域特性之间的关系, 同时掌握和运用这些性质可以简化傅里叶变 换对的求取。
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
4.2 周期信号的傅里叶变换
The Fourier Transformation of Periodic Signals
X ( jω ) e j , | | 5
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
Eg2:
≮X1( j) ≮X( j) a
2. 时移: Time Shifting
连续时间信号: 若 x(t ) X ( j ) 则 x(t t0 ) X ( j )e jt0 离散时间信号: 若 x ( n ) X ( e j ), 则
x ( n n 0 ) X ( e j ) e j n 0
这表明信号的时移只影响它的相频特性,其相频 特性会增加一个线性相移。
X( j) X( j)
≮ X ( j )
≮ X ( j )
即:模是偶函数,相位是奇函数
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
离散时间信号:
ax1 (n) bx2 (n) aX1 (e j ) bX 2 (e j )
FT
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
Wang Zhengyong
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
考查
x (t ) e
j 0 t
FT
2 ( 0 )
表明: 周期性复指数信号的频谱是一个冲激。 若 x(t ) e jk0t 则 X ( j ) 2 ( k0 ) 当把周期信号表示为傅里叶级数时:
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
3. 共轭及共轭对称性质: Conjugate and Symmetry 连续时间信号:
若 则 证明:
FT
x ( t ) e at u ( t 3) e 3 a e a ( t 3 ) u ( t 3)
Time shifting property
X ( j ) e
3a
1 j 3 e j a
X ( jω ) ?
?
sin 5( t 1) x (t ) ( t 1)
x (t ) X ( j )
x* (t ) X * ( j )
由 X ( j ) x (t )e j t dt
可得
X ( j )
所以 即
*
*
x * ( t ) e j t dt
X ( j ) x* (t )e jt dt
x*(t) X*( j)
a
a
/ 2
/ 4
a
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
• 如果 x(t ) x( t ) ,信号是实偶函数。则
X ( j ) x (t )e jt dt
4. 微分与积分: Differentiation and Integration 时域微分性质: 若 x(t ) X ( j)
dx(t ) 则 j X ( j ) dt
j j [ ( 0 ) ( 0 )] 0
j
X ( j)
j
0
0
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
*
若 X ( j) Re[ X ( j)] j Im[ X ( j)] 则可得
Re[ X ( j )] Re[ X ( j )]
Im[ X ( j )] Im[ X ( j )]
• 若 X ( j)
即实部是偶函数 虚部是奇函数
X ( j) e
j≮X ( j ) 则可得出
x(t ) e u(t ), a 0
1 X ( j ) | X ( j ) | e j ≮X ( j ) a j
X ( j ) 1 a
X ( j )
1/ a
1 2a
0
2 2
at
,
≮
X ( j ) tg
a
/4
周期信号的FT: X ( j )
2 a ( k )
k 0 k
表明:周期信号的傅里叶变换由一系列冲激组成,每 一个冲激分别位于信号的各次谐波频率处,其冲激强 度正比于对应的傅里叶级数系数 。
ak
1 j 0 t j 0 t x ( t ) sin t [ e e ] 例1: 0 2j X ( j ) [ ( 0 ) ( 0 )]
X ( j ) 是虚奇函数。
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
连续时间信号: 若 x(t) X ( j)
则
x* (t) X * ( j)
X ( j )
2 T
t
2T T 0
2 2 X ( j) ( k ) T k T
2 0 2 T T
T
2T
x(t )
n
(t nT )
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
j [≮X ( j ) a ] j≮X ( j ) ja X ( j ) | X ( j ) | e | X ( j ) | e e 1 x(t )和X ( j); 已知 ja ( ) X j e 设x1 (t )的FT为X1 ( j)且满足 | X1 ( j) | X ( j) ,相位如图, x(.t a) x1x((tt) 表示 试将x1 ( t )用
例4. 周期性矩形脉冲
T T1
(t ) x
1
t
0
T1 T
sin( k0T1 ) 2T1 2T1 ak Sa( k0T1 ) sin c( k0T1 / ) T k T
X ( j )
k
2 sin( k 0 T1 ) ( k 0 ) k
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
1. 线性: Linearity 连续时间信号:
FT FT
若 x(t) X ( j), y(t) Y ( j) 则 ax(t ) by(t ) aX ( j ) bY ( j ) FT
?
设实信号x(t ) xe (t ) xo (t )且 X(j )=Re[X(j )]+jIm[X(j )] 则xe (t ) ?; xo (t ) ?
FT FT
正确答案:
xe (t ) Re[X(j )] xo (t ) jIm[X(j )]
FT
FT
Generated by Foxit PDF Creator © Foxit Software For evaluation only.