最小二乘法名词解释

合集下载

最小二乘法

最小二乘法

4.最小二乘法线性拟合我们知道,用作图法求出直线的斜率a 和截据b ,可以确定这条直线所对应的经验公式,但用作图法拟合直线时,由于作图连线有较大的随意性,尤其在测量数据比较分散时,对同一组测量数据,不同的人去处理,所得结果有差异,因此是一种粗略的数据处理方法,求出的a 和b 误差较大。

用最小二乘法拟合直线处理数据时,任何人去处理同一组数据,只要处理过程没有错误,得到的斜率a 和截据b 是唯一的。

最小二乘法就是将一组符合Y=a+bX 关系的测量数据,用计算的方法求出最佳的a 和b 。

显然,关键是如何求出最佳的a 和b 。

(1) 求回归直线设直线方程的表达式为:bx a y += (2-6-1)要根据测量数据求出最佳的a 和b 。

对满足线性关系的一组等精度测量数据(x i ,y i ),假定自变量x i 的误差可以忽略,则在同一x i 下,测量点y i 和直线上的点a+bx i 的偏差d i 如下:111bx a y d --=222bx a y d --=n n n bx a y d --=显然最好测量点都在直线上(即d 1=d 2=……=d n =0),求出的a 和b 是最理想的,但测量点不可能都在直线上,这样只有考虑d 1、d 2、……、d n 为最小,也就是考虑d 1+d 2+……+d n 为最小,但因d 1、d 2、……、d n 有正有负,加起来可能相互抵消,因此不可取;而|d 1|+|d 2|+……+ |d n |又不好解方程,因而不可行。

现在采取一种等效方法:当d 12+d 22+……+d n2对a 和b 为最小时,d 1、d 2、……、d n 也为最小。

取(d 12+d 22+……+d n 2)为最小值,求a 和b 的方法叫最小二乘法。

令 ∑==ni idD 12=2112][i i ni ni ib a y dD --==∑∑== (2-6-2)D 对a 和b 分别求一阶偏导数为:][211∑∑==---=∂∂ni i n i i x b na y a D][21211∑∑∑===---=∂∂ni i n i i n i i i x b x a y x b D 再求二阶偏导数为:n a D 222=∂∂; ∑==∂∂n i i x b D 12222 显然: 0222≥=∂∂n a D ; 021222≥=∂∂∑=n i i x b D 满足最小值条件,令一阶偏导数为零:011=--∑∑==ni i ni ix b na y(2-6-3)01211=--∑∑∑===ni i ni i ni ii x b x a yx (2-6-4)引入平均值: ∑==ni i x n x 11; ∑==n i i y n y 11;∑==n i i x n x 1221; ∑==ni i i y x n xy 11则: 0=--x b a y02=--x b x a xy (2-6-5) 解得: x b y a -= (2-6-6)22xx y x xy b --=(2-6-7)将a 、b 值带入线性方程bx a y +=,即得到回归直线方程。

最小二乘法知识

最小二乘法知识

最小二乘法知识最小二乘法是一种最优化方法,经常用于拟合数据和解决回归问题。

它的目标是通过调整模型参数,使得模型的预测值与观测值之间的差异最小。

最小二乘法的核心思想是最小化误差的平方和。

对于给定的数据集,假设有一个线性模型y = β₀ + β₁x₁ + β₂x₂ + ... +βₙxₙ,其中β₀, β₁, β₂, ... , βₙ 是需要求解的未知参数,x₁, x₂, ... , xₙ 是自变量,y 是因变量。

那么对于每个样本点 (xᵢ, yᵢ),可以计算其预测值ŷᵢ = β₀ + β₁x₁ + β₂x₂ + ... + βₙxₙ,然后计算预测值与实际值之间的差异 eᵢ = yᵢ - ŷᵢ。

最小二乘法的目标是使得误差的平方和最小化,即最小化目标函数 E = ∑(yᵢ - ŷᵢ)²。

对于简单的线性回归问题,即只有一个自变量的情况下,最小二乘法可以通过解析方法求解参数的闭合解。

我们可以通过求偏导数,令目标函数对参数的偏导数等于零,求解出参数的最优解。

然而,对于复杂的非线性回归问题,解析方法通常不可行。

在实际应用中,最小二乘法通常使用迭代方法进行求解。

一种常用的迭代方法是梯度下降法。

梯度下降法通过反复进行参数更新的方式逐步降低目标函数的值,直到收敛到最优解。

具体而言,梯度下降法首先随机初始化参数的值,然后计算目标函数对于每个参数的偏导数,根据偏导数的方向更新参数的值。

迭代更新的过程可以通过下式表示:βₙ = βₙ - α(∂E/∂βₙ)其中,α 是学习率参数,控制每次更新参数的步长。

学习率需要适当选择,过小会导致收敛过慢,过大会导致震荡甚至不收敛。

最小二乘法除了可以用于线性回归问题,还可以用于其他类型的回归问题,比如多项式回归。

在多项式回归中,我们可以通过增加高次项来拟合非线性关系。

同样地,最小二乘法可以通过调整多项式的系数来使得拟合曲线与实际数据更加接近。

除了回归问题,最小二乘法还可以应用于其他领域,比如数据压缩、信号处理和统计建模等。

最小二乘法概述

最小二乘法概述

最小二乘法一、简介最小二乘法,又称最小平方法,是一种数学技术。

它通过最小误差的平方和寻找数据函数的最佳匹配。

最小二乘法是提供“观测组合”的主要工具之一,它依据对某事件的大量观测而获得“最佳”结果或“最可能”表现形式。

如已知两变量为线性关系bx a y +=,对其进行)2(>n n 次观测而获得n 对数据。

若将这n 对数据代入方程求解a ,b 之值则无确定解。

最小二乘法提供了一个求解方法,其基本思想就是寻找“最接近”这n 个观测点的直线。

最小二乘法不仅是19世纪最重要的统计方法,而且还可以称为数理统计学之灵魂。

相关回归分析、方差分析和线性模型理论等数理统计学的几大分支都以最小二乘法为理论基础。

作为其进一步发展或纠正其不足而采取的对策,不少近现代的数理统计学分支也是在最小二乘法基础上衍生出来的。

最小二乘法之于数理统计学,有如微积分之于数学,这并非夸张之辞。

统计学应用的几个分支如相关分析、回归分析、方差分析和线性模型理论等,其关键都在于最小二乘法的应用不少现代的统计学研究是在此法的基础上衍生出来,作为其进一步发展或纠正其不足之处而采取的对策,如回归分析中一系列修正最小二乘法而产生的估计方法等就是最好的例子。

二、创立思想勒让德在先驱者解线性方程组的基础上,以整体的思想方法创立了最小二乘法;高斯由寻找随机误差函数为突破,以独特的概率思想导出了正态分布,详尽地阐述了最小二乘法的理论依据。

最小二乘法(OLSE)的思想就是要使得观测点和估计点的距离平方和达到最小,在各方程的误差之间建立一种平衡,从而防止某一极端误差,对决定参数的估计值取得支配地位,有助于揭示系统的更接近真实的状态。

这里的“二乘”指的是用平方来度量观测点与估计点的远近,“最小”指的是参数的估计值要保证各个观测点与估计点的距离的平方和达到最小。

三、原理设一组数据(,)i i x y (1,2,,)i n = ,现用近似曲线)(x y ϕ=拟合这组数据,“拟合得最好”的标准是所选择的()x ϕ在i x 处的函数值()i x ϕ(1,2,,)i n = 与i y (1,2,,)i n = 相差很小,即偏差(也称残差)()i i x y ϕ-(1,2,,)i n = 都很小.一种方法是使偏差之和()1ni i i x y ϕ=⎡⎤⎣⎦∑-很小来保证每个偏差都很小.但偏差有正有负,在求和的时候可能相互抵消.为了避免这种情况,还可使偏差的绝对值之和()1||ni i i x y ϕ=-∑为最小.但这个式子中有绝对值符号,不便于分析讨论.由于任何实数的平方都是正数或零,因而我们可选择使“偏差平方和21ni i i x y ϕ=-∑[()]最小”的原则来保证每个偏差的绝对值都很小,从而得到最佳拟合曲线y =()x ϕ.这种“偏差平方和最小”的原则称为最小二乘原则,而按最小二乘法原则拟合曲线的方法称为最小二乘法或称最小二乘曲线拟合法.一般而言,所求得的拟合函数可以使不同的函数类,拟合曲线()x ϕ都是由m 个线性无关函数()1x ϕ,()2x ϕ ,…, ()m x ϕ的线性组合而成,即()()()()1122m m x a x a x a x ϕϕϕϕ=+++…)1(-<n m ,其中1a ,2a ,…,m a 为待定系数.线性无关函数()1x ϕ,()2x ϕ ,…()m x ϕ,称为基函数,常用的基函数有: 多项式:1,x , 2x ,…,m x ;三角函数: sin x ,sin 2x ,…,sin mx ;指数函数:x x x m e e e λλλ,,,21 ,x λ2e,…,x λme.最小二乘法又称曲线拟合,所谓“ 拟合” ,即不要求所作的曲线完全通过所有的数据点,只要求所得的近似曲线能反映数据的基本趋势,它的实质是离散情况下的最小平方逼近.四、运用曲线拟合做最小二乘法 1 一元线性拟合已知实测到的一组数据(,)i i x y (1,2,,)i n = ,求作这组数据所成的一元线性关系式.设线性关系式为y a bx =+,求出a 和b 即可.法一:即要满足则)(令,0,0,,12=∂∂=∂∂--=∑=bsa sb a bx a y s ni i i ,则,a b 要满足s a ∂∂=0,sb∂∂=0.即 11()()ni i i n i i ii sy a bx a s y a bx x b==∂⎧--⎪⎪∂⎨∂⎪--⎪∂⎩∑∑=-2=0=-2=0化简得112111n n i i i i nn ni i i i i i i b a x y n n a x b x x y =====⎧⎪⎪⎨⎪⎪⎩∑∑∑∑∑1+=+= 从中解出1112211111n n n i i i ii i i n n i i i i n n i ii i n x y x yb n x x b a y x n n =======⎧⎪⎪⎪⎛⎫ ⎪⎨⎝⎭⎪⎪⎪⎩∑∑∑∑∑∑∑-=-=- (1) 法二:将i x ,i y 代入y a bx =+得矛盾方程组1122n y a bx y a bx y a bx n=+⎧⎪=+⎪⎨⎪⎪=+⎩ (2) 令A =12111n x x x ⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭ ,B =12n y y y ⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭,则(2)式可写成b B A a ⎛=⎫⎪⎝⎭,则对应的正规方程组为TTa b A B A A ⎛=⎫ ⎪⎝⎭,所以a b ⎛⎫ ⎪⎝⎭=1()T TA A AB -,其中A 称为结构矩阵,B 称为数据矩阵,T A A 称为信息矩阵,TA B 称为常数矩阵.2 多元线性拟合设变量y 与n 个变量1x ,2x ,…,n x (1n ≥)内在联系是线性的,即有如下关系式∑=+=nj j j x a a y 10,设j x 的第i 次测量值为ij x ,对应的函数值为i y (1,2,,)i m = ,则偏差平方和为s ='220111()()mm ni i i i ij i i j y y y a a x ===-=--∑∑∑,为了使s 取最小值得正规方程组011001111011202020m n i j ij i j m n i j ij i i j m n i j ij in i j ns y a a x a s y a a x x a s y a a x x a ======⎧∂⎛⎫=---=⎪ ⎪∂⎝⎭⎪⎪∂⎛⎫=---=⎪⎪∂⎨⎝⎭⎪⎪⎪∂⎛⎫=---=⎪ ⎪∂⎝⎭⎩∑∑∑∑∑∑ (3) 即011101111n m mij j i j i i mn m mik ij ik jik i i j i i ma x a y x a x x a x y =======⎧⎛⎫+= ⎪⎪⎝⎭⎪⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩∑∑∑∑∑∑∑1,2,,k n = . (4) 将实验数据(,)i i x y 代入(4)式,即得m a a a ,,,10 .3 指数函数拟合科学实验得到一组数据(,)i i x y (1,2,,)i n = 时,还可以考虑用指数函数为基函数来拟合,此时设拟合函数具有形式bxy ae =(,a b 为待定系数).对上式两端取自然对数可得:ln ln y a bx =+ (9)令Y =ln y ,0ln b a =,则(9)式可转化为一元线性函数形式0Y b bx =+,此时将指数函数拟合转化成了一元线性拟合,利用一元线性拟合中的两种方法均可求出0b 和b ,继而根据0b a e =可求出a ,从而得出因变量y 与自变量x 之间的函数关系式0b bx bx y ae e +==4 对数函数拟合科学实验得到一组数据(,)i i x y (1,2,,)i n = 时,还可以考虑用对数函数为基函数来拟合,此时设拟合函数具有形式ln y a b x =+(0)x >(,a b 为待定系数).0b >时,y 随x 增大而增大,先快后慢;0b <时,y 随x 增大而减小,先快后慢.当以y 和ln x 绘制的散点图呈直线趋势时,可考虑采用对数函数描述y 与x 之间的非线性关系,式中的b 和a 分别为斜率和截距.这时令X =ln x ,就可以利用一元线性拟合的方法来求解.更一般的对数函数还可设为y =()ln a b x k ++,式中k 为一常量.五 举例例1 使电流通过2Ω的电阻,用伏特表测量电阻两端的电压V .测得数据如下表:t I /A1 2 4 6 8 10 t V /V1.83.78.212.015.820.2试用最小二乘法建立I 与V 之间的一元经验公式(有效数字保留到小数点后第3位). 解:可取一次线性关系式V a bI =+作为I 与V 之间的一元经验公式. 将数据代入得矛盾方程组1.82 3.748.2612.0815.81020.2a b a b a b a b a b a b +=⎧⎪+=⎪⎪+=⎨+=⎪⎪+=⎪+=⎩ 令1112141618110A ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭, 1.83.78.212.015.820.2B ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭,则上述矛盾方程组可写成矩阵形式0a A B b ⎛⎫-= ⎪⎝⎭由此得出其正规方程组0T T a A A A B b ⎛⎫-= ⎪⎝⎭,将数据代入即得63161.7031221442.4a b ⎛⎫⎛⎫⎛⎫-= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,解之得0.212.032a b =-⎧⎨=⎩,故所求经验公式为0.2152.V I =-+. 例 2 在在开发一种抗过敏性的新药时,要对不同剂量的药效进行实验.10名患者各服用了该新药的一个特定的剂量.药物消失时立即纪录.观测值列于下表中.x 是剂量,y 是症状消除持续的日数.用7个不同的剂量, 其中3个剂量重复给两名患者.试给出y 与x 之间的一元经验公式(保留3位有效数字).1 2 3 4 5 6 7 8 9 10 ∑ /i x mg334566788959/i y d9 5 12 9 14 16 22 18 24 22 1512i x 9 9 16 25 36 36 49 64 64 81 389i i x y271548458496154144192198 1003解:可设y 与x 之间的经验公式为y a bx =+. 由上表可知,101i i x =∑59=,101i i y =∑151=,101i i i x y =∑1003=,1021i i x =∑389=,2101i i x =⎛⎫ ⎪⎝⎭∑3481= 再由(1)式可求得,1010101112101021110101003591512.7410389348110i i i ii i i i i i i x y x y b x x =====-⨯-⨯===⨯-⎛⎫- ⎪⎝⎭∑∑∑∑∑10101111 2.7415159 1.0710101010i i i i b a y x ===-=⨯-⨯=-∑∑所以y 与x 之间的经验公式为 1.07 2.74y x =-+.最小二乘法能将从实验中得出的一大堆看上去杂乱无章的数据中找出一定的规律,拟合成一条曲线来反映所给数据特点。

最小二乘法圆拟合

最小二乘法圆拟合

1.最小二乘法圆拟合原理理论最小二乘法(Least Square Method )是一种数学优化技术。

它通过最小化误差的平方和找到一组数据的最佳函数匹配。

利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。

最小二乘圆拟合模型公式推导在二维平面坐标系中,圆方程一般可表示为:(A-A0)2+(y-y0)2=r2对于最小二乘法的圆拟合,其误差平方的优化目标函数为:式中:(兀切)心1,2,..丿为圆弧上特征点坐标M为参与拟合的特征点数。

在保持这优化目标函数特征的前提上,我们需要对其用一种稍微不同的改进方法来定义误差平方,且其避免了平方根,同时可得到一个最小化问题的直接解,定义如下:E= £[(兀一勺),+(>; -y0)2 -厂则(2)式可改写为:令,B = -2y0, A = -2x0C = x(; + y(;-r2即(3)式可表示为:H =2Sn =2s r ; + yf +:+y : + A2 + y ; +;=0 (=0J=o 1=0 ;=0 /=(> ;=0 丿 \/=()X =0(=0 1=01=0 (=0E =工(才 + V ; + A A ; + By t +C )/=()由最小二乘法原理,参数A, B, C 应使E 取得极小值。

根据极小 值的求法,A, 3和C 应满足求解方程组,先消去参数C,则式⑷“一⑹水工易得(=0•:-乞兀乞兀人+处〉必-亍兀文刃〃 +吃斤+,送席一乞(才(7)式(5)*n-(6)*^y.得1=0(8)M M =吃才-为册工"(9)\ /=() i=0 r=0 丿%=呱=卜£X 必-£者£订(10)\ H0 /=0 /=0 丿y : - dx/=0 /=0(13)r-0 f-0 H\=+ 辻灯-乞(X : + y ;应兀(12 ) rU) /-() ZU) /-0 H i=n X y :+n E vx- - Z (x ;+>?)E x将(7), (8)式写成矩阵形式根据式(14)和式(6)可得:人_円叽-側22^11^22 —^12^21—HB H -H 阀 u\2^ 21 一 M |22乞(才+貝+心+叭)c = _ ------------------------ n从而求得最佳拟合圆心坐标(心为),半径r 的拟合值:勺=_£,儿=_£,r = g J A +B? -4C2.仿真数据分析首先设置仿真圆心(xO, yO ),半径R0,在根据实际数据任意选取一 段圆弧,产生N 组随机数据。

运筹学名词解释(全)

运筹学名词解释(全)

《运筹学基础》名词解释运筹学:缩写OR,是利用计划方法和有关多学科的要求。

把复杂功能关系。

表示成数学模型,其目的是通过定量分析为决策和揭露新问题提供数量根据。

定性决策:基本上根据决策人员的主观经验或感受到的感觉或只是而制定的决策。

定量决策:借助于某些正规的计量方法而作出的决策。

混合性决策:必须运用定性和定量两种方法才能制定的决策。

预测:是对未来的不确定的事物进行估计或判断。

专家小组法:是在介绍咨询的专家之间组成一个小组,面对面的进行讨论与磋商,最后对需要预测的课题得出比较一致的意见指数平滑预测法:是定量与定性方法相结合的一种预测方法决策:从狭义方面来说,决策可以解释为对一些可供选择的方案作出抉择。

广义的决策过程包括4个程序:明确决策项目的目的,寻求可行的方案,在诸可行方案中进行抉择,对选定的决策方案经过实施后的结果进行总结评价常规性决策:它是例行的,重复性的决策。

做这类决策的个人或组织.又要需要他们决策的问题不是新问题,一般来说已经有管理和经验作参考。

因而进行决策是就比较容易。

特殊性决策:是对特殊的,先例可循的新问题的决策。

做这类决策的个人或组织只有认真履行决策过程的四个阶段,才能作出满意的决策。

计划性决策:有些类似法治系统中的立法工作。

国家或组织的方针政策以及较长期的计划等都可视为计划性较长的对象.最大最大决策标准:可称为乐观主义者的决策标准,采用这种决策标准,决策者比较谨慎小心。

总是从未来的销售情况可能较差的状态考虑.然后在选择最优的可行方案、最小最小遗憾值决策标准:也叫最小最大后悔值决策标准。

它运用计算遗憾值的逻辑原则,求得在不同的销售状态下选用不同的方案所能造成的遗憾值,然后在根据最小最大以后标准进行决策.选取最优方案。

现实主义决策标准:也称折衷主义决策标准。

所谓现实主义或折衷主义,就是说既不是从最乐观的角度。

也不说从最保守的角度来估计未来可能出现才自然状态存货台套:它的英文原名为stockkeepinggunit,在某些企业中可以译成存货储备单元,简称存货单元ABC分析法是按各种存货台套或存货单元的年度需用价值,将它们分成A,B,C三类。

普通最小二乘法名词解释

普通最小二乘法名词解释

普通最小二乘法名词解释
普通最小二乘法 (Ordinary Least Squares, OLS) 是一种用于
数据拟合的统计方法。

它的思想是找到一组参数,使得拟合曲线与每个观测点的距离最小。

普通最小二乘法的假设是,拟合曲线是一个正态分布,其中观测点误差都服从正态分布的假设。

在应用普通最小二乘法之前,需要检验数据是否符合正态分布的假设。

普通最小二乘法假设每个观测点的误差是独立的,拟合曲线的误差是准确的。

普通最小二乘法的优点是它可以得到最佳的拟合结果,它的结果准确而可靠。

普通最小二乘法的缺点是它不能应付非正态分布的情况,也不能处理多重共线性的情况,这些都会降低拟合曲线的精确度。

最小二乘法

最小二乘法

数值分析作业最小二乘法最小二乘法是提供“观测组合”的主要工具之一,它依据对某事件的大量观测而获得最佳”结果或最可能”表现形式。

如已知两变量为线性关系y= a+ bx,对其进行n(n> 2)次观测而获得n对数据。

若将这n对数据代入方程求解a,b之值则无确定解。

最小二乘法提供了一个求解方法,其基本思想就是寻找最接近”这n 个观测点的直线。

最小二乘法不仅是19世纪最重要的统计方法,而且还可以称为数理统计学之灵魂。

相关回归分析、方差分析和线性模型理论等数理统计学的几大分支都以最小二乘法为理论基础。

作为其进一步发展或纠正其不足而采取的对策,不少近现代的数理统计学分支也是在最小二乘法基础上衍生出来的。

正如美国统计学家斯蒂格勒(S.M. Stigler)所说,最小二乘法之于数理统计学犹如微积分之于数学”最小二乘法创立的历史过程充满着丰富的科学思想,这些对今日的数学创造仍有着重要的启示意义。

本文旨在全面认识最小二乘法的历史系统发育过程以及创立者的思路。

一先驱者的相关研究天文学和测地学的发展促进了数理统计学及其他相关科学的发展。

丹麦统计史家哈尔德曾指出天文学在数理统计学发展中所起的作用。

“天文学自古代至18 世纪是应用数学中最发达的领域。

观测和数学天文学给出了建立数学模型及数据拟合的最初例子,在此种意义下,天文学家就是最初的数理统计学家。

天文学的问题逐渐引导到算术平均,以及参数模型中的种种估计方法,以最小二乘法为顶峰。

” 这也说明了最小二乘法的显著地位。

有关统计计算思想记载的著作要首推天文学家罗杰柯茨的遗作,即1715年其所发论文中所蕴含的统计方法,亦即对各种观测值赋予加权后求其加权平均。

尽管当时得到认可,然而事实证明如此计算的结果不太精确。

1749年,欧拉(L. Euler,1707—1783)在研究木星和土星之间相互吸引力作用对各自轨道影响时,最后得到一个含8个未知量75个方程的线性方程组。

欧拉的求解方法繁杂而奇特,只能看作是一次尝试。

最小二乘法知识

最小二乘法知识

最小二乘法知识最小二乘法学问在估量方法中,最大似然和最小二乘是常常被使用到的,其中的最小二乘更是回归的基础。

这就让我带你回归小二乘法。

最小二乘法学问篇1最小二乘法(又称最小平方法)是一种数学优化技术。

它通过最小化误差的平方和查找数据的最佳函数匹配。

利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。

最小二乘法还可用于曲线拟合。

其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。

1801年,意大利天文学家朱赛普·皮亚齐发觉了第一颗小行星谷神星。

经过40天的跟踪观测后,由于谷神星运行至太阳背后,使得皮亚齐失去了谷神星的位置。

随后全世界的科学家利用皮亚齐的观测数据开头查找谷神星,但是依据大多数人计算的结果来查找谷神星都没有结果。

时年24岁的高斯也计算了谷神星的轨道。

奥地利天文学家海因里希·奥尔伯斯依据高斯计算出来的轨道重新发觉了谷神星。

高斯使用的最小二乘法的方法发表于1809年他的著作《天体运动论》中。

法国科学家勒让德于1806年独立创造“最小二乘法”,但因不为世人所知而悄悄无闻。

二乘法(2张) 勒让德曾与高斯为谁最早创立最小二乘法原理发第1页/共4页生争吵。

1829年,高斯供应了最小二乘法的优化效果强于其他方法的证明,因此被称为高斯-马尔可夫定理。

以最简洁的一元线性模型来解释最小二乘法。

什么是一元线性模型呢?监督学习中,假如猜测的变量是离散的,我们称其为分类(如决策树,支持向量机等),假如猜测的变量是连续的,我们称其为回归。

回归分析中,假如只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。

假如回归分析中包括两个或两个以上的.自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。

对于二维空间线性是一条直线;对于三维空间线性是一个平面,对于多维空间线性是一个超平面。

对于一元线性回归模型, 假设从总体中猎取了n组观看值(X1,Y1),(X2,Y2),…,(Xn,Yn)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最小二乘法名词解释
最小二乘法:最小二乘法(Least Squares Method)是一种数学优化方法,它可以解决线性回归和最优化问题。

它的主要思想是针对模型参数和模型函数值之间的误差平方和最小化。

也就是说,最小二乘法的目标是找到使得模型参数和模型函数值之间误差的平方和最小的一组参数,从而使得模型更加合理和有效。

最小二乘法一般用于估计因变量与自变量之间的线性关系,最小二乘法也可以用于非线性拟合,在此情况下,非线性拟合可以被转换成线性问题。

- 1 -。

相关文档
最新文档