最小二乘法的推导

合集下载

递推最小二乘法推导(RLS)——全网最简单易懂的推导过程

递推最小二乘法推导(RLS)——全网最简单易懂的推导过程

递推最小二乘法推导(RLS)——全网最简单易懂的推导过程作者:阿Q在江湖先从一般最小二乘法开始说起已知x和y的一系列数据,求解参数theta的估计。

用矩阵的形式来表达更方便一些:其中k代表有k组观测到的数据,表示第i组数据的输入观测量,yi表示第i组数据的输出观测量。

令:,则最小二乘的解很简单,等价于即参数解为:如果数据是在线的不断的过来,不停的采用最小二乘的解法来解是相当消耗资源与内存的,所以要有一种递推的形式来保证对的在线更新。

进一步推导出递推最小二乘法(RLS)我们的目的是从一般最小二乘法的解推导出的递推形式。

一定要理解这里的下标k代表的意思,是说在有k组数据情况下的预测,所以k比k-1多了一组数据,所以可以用这多来的一组数据来对原本的估计进行修正,这是一个很直观的理解。

下面是推导过程:先看一般最小二乘法的解下面分别对和这两部分进行推导变换,令得到下面公式(1)下面来变换得到公式(2)下面再来,根据一般最小二乘法的解,我们知道下式成立,得到公式(3)(注:后续公式推导用到)好了,有了上面最主要的三步推导,下面就简单了,将上面推导的结果依次代入公式即可:至此,终于变成的形式了。

通过以上推导,我们来总结一下上面RLS方程:注:以上公式7中,左边其实是根据公式1,右边I为单位矩阵公式(5)和(7)中,有些文献资料是用右边的方程描述,实际上是等效的,只需稍微变换即可。

例如(5)式右边表达式是将公式(1)代入计算的。

为简化描述,我们下面还是只讨论左边表达式为例。

上面第7个公式要计算矩阵的逆,求逆过程还是比较复杂,需要用矩阵引逆定理进一步简化。

矩阵引逆定理:最终RLS的方程解为:好了,至此完毕!以上应该算是最简单的推导过程了,相信都能看得懂了。

后续有时间将增加带遗忘因子的RLS推导步骤,毕竟工程上的实际用途很多用此方法,比如在线辨识电池系统等效电路模型的参数,用于卡尔曼滤波算法估算SOC……。

推导最小二乘法的两种方法

推导最小二乘法的两种方法

推导最小二乘法的两种方法最小二乘法是一种常见的数据拟合方法,用于找到一条直线,使得该直线与一组数据之间的最小距离等于零。

下面将介绍两种推导最小二乘法的方法。

方法一:基于样本点的距离我们可以从样本点出发,构造一条直线,使得该直线与样本点的距离等于零。

具体来说,设样本点为 (x_i, y_i),我们希望构造的直线为:y = ax + b其中 a 和 b 是待求的直线的参数。

为了找到 a 和 b,我们可以对样本点进行距离计算,得到:d = |y_i - ax_i + b|我们希望 d 等于零,即 y_i - ax_i + b = 0。

解这个方程,可以得到 a = (y_i - b) / x_i,b = y_i。

因此,我们得到一条直线的参数为:a = (y_i - b) / x_i,b = y_i该直线与样本点的距离就是:d = |y_i - ax_i + b| = |y_i - (y_i - b) / x_i + b| = (y_i - b) / x_i + b方法二:基于最小二乘法的公式另一种推导最小二乘法的方法是利用最小二乘法的公式。

最小二乘法的公式是:最小二乘法 = 1 / (n - 1) * Σ (y - y_i)^2 / (x - x_i)^2其中 n 是样本数,y_i 和 x_i 是样本点的坐标。

我们希望找到一条直线,使得该直线的斜率 k 满足:k * (x - x_i) = (y - y_i)即 k * (x - x_i) = y - y_i我们要求 k * (x - x_i) 最小,即要求 y - y_i 最小。

因此,我们可以构造一组数据,使得 y - y_i 最小。

具体来说,设 y_j = y_i + c,其中 c 是常数。

我们可以构造一条直线:k * (x - x_i) = y - y_i = y_j - c其中 k * (x - x_i) 就是直线的斜率。

该直线与样本点的距离就是:d = |y_i - ax_i + b| = |y_j - c - (ax_i + b)| = |ax_i - y_j - c|我们希望 d 最小,即要求 ax_i - y_j - c 最小。

最小二乘法的推导过程

最小二乘法的推导过程

最小二乘法的推导过程
最小二乘法是一种线性回归分析方法,用于解决当回归方程中的自变量与因变量之间存在一定误差时,如何求出最优解的问题。

其推
导过程如下:
1. 假设回归方程为y = β0 + β1x1 + β2x2 + ... + βkxk + ε,其中y为因变量,x1,x2,...,xk为自变量,β0,β1,...,βk为
回归系数,ε为误差项。

2. 根据最小二乘法的原理,我们需要求出使误差之和最小的回
归系数,即最小化残差平方和:Σ(yi - ŷi)^2,其中yi为实际值,ŷi为预测值。

3. 将回归方程中的自变量和误差项写成矩阵的形式,得到一个
线性模型:Y = Xβ + e,其中Y为n行1列的因变量向量,X为n行
k+1列的自变量矩阵,β为(k+1)行1列的回归系数向量,e为n行1
列的误差向量。

4. 利用最小二乘法的原理,将残差平方和对回归系数向量β求偏导数,并令其等于0,得到一个求解回归系数的正规方程组:X'Xβ = X'Y,其中X'为X矩阵的转置。

5. 解正规方程组,得到回归系数向量β的估计值:β =
(X'X)^-1X'Y。

6. 将得到的回归系数代入原始的回归方程中,即可得到最终的
线性回归方程。

通过以上推导过程,我们可以利用最小二乘法求解线性回归方程中的回归系数,从而预测因变量的值。

这种方法常用于统计学、金融学、经济学等领域,可以帮助我们更好地理解和分析数据。

最小二乘法-公式推导

最小二乘法-公式推导

最⼩⼆乘法-公式推导基本思想求出这样⼀些未知参数使得样本点和拟合线的总误差(距离)最⼩最直观的感受如下图(图引⽤⾃知乎某作者)⽽这个误差(距离)可以直接相减,但是直接相减会有正有负,相互抵消了,所以就⽤差的平⽅推导过程1 写出拟合⽅程y =a +bx2 现有样本(x 1,y 1),(x 2,y 2)...(x n ,y n )3 设d i 为样本点到拟合线的距离,即误差d i =y i −(a +bx i )4 设D 为差⽅和(为什么要取平⽅前⾯已说,防⽌正负相互抵消)D =n ∑i =1d 2i =n ∑i =1(y i −a −bx i )25 根据⼀阶导数等于0,⼆阶⼤于等于0(证明略)求出未知参数对a 求⼀阶偏导∂D ∂a =n∑i =12(y i −a −bx i )(−1)=−2n∑i =1(y i −a −bx i )=−2(n ∑i =1y i −n ∑i =1a −b n∑i =1x i )=−2(n ¯y−na −nb ¯x )对b 求⼀阶偏导∂D ∂b=n∑i=12(y i−a−bx i)(−x i)=−2n∑i=1(x i y i−ax i−bx2i)=−2(n ∑i=1x i y i−an∑i=1x i−bn∑i=1x2i)=−2(n ∑i=1x i y i−na¯x−bn ∑i=1x2i)令偏导等于0得−2(n¯y−na−nb¯x)=0 =>a=¯y−b¯x−2(n ∑i=1x i y i−na¯x−b n∑i=1x2i)=0并将a=¯y−b¯x带⼊化简得=>n∑i=1x i y i−n¯x¯y+nb¯x2−bn∑i=1x2i=0=>n∑i=1x i y i−n¯x¯y=b(n∑i=1x2i−n¯x2)=>b=n∑i=1x i y i−n¯x¯yn∑i=1x2i−n¯x2因为\require{cancel}\sum\limits_{i=1}^{n}(x_i-\bar{x})(y_i-\bar{y})=\sum\limits_{i-1}^{n}(x_iy_i-\bar{x}y_i-x_i\bar{y}+\bar{x}\bar{y})=\sum\limits_{i=1}^{n}x_iy_i-n\bar{x}\bar{y}-\cancel{n\bar{x}\bar{y}}+\cancel{n\bar{x}\bar{y}}\sum\limits_{i=1}^{n}(x_i-\bar{x})^2=\sum\limits_{i-1}^{n}(x_i^2-2\bar{x}x_i+\bar{x}^2)=\sum\limits_{i=1}^{n}x_i^2-2n\bar{x}^2+n\bar{x}^2=\sum\limits_{i=1}^{n}x_i^2-n\bar{x}^2所以将其带⼊上式得\color{red}{b=\frac{\sum\limits_{i=1}^{n}(x_i-\bar{x})(y_i-\bar{y})}{\sum\limits_{i=1}^{n}(x_i-\bar{x})^2}} Loading [MathJax]/extensions/TeX/cancel.js。

最小二乘法的推导

最小二乘法的推导

最小二乘法的推导最小二乘法是统计学中一种常用的数据拟合方法,它是将待拟合函数的拟合优度衡量为误差平方和最小化的问题,属于最优化策略。

它可以用来拟合非线性模型,使得得到的模型拟合更加精确。

一、最小二乘法概念最小二乘法是一种数据拟合方法,它是将待拟合函数的拟合优度衡量为误差平方和最小化的问题,属于最优化策略。

最小二乘法的主要思想是,对给定的一组观测值,在满足某种条件下,这组观测值可以用一个或几个理论模型来描述,从而使拟合模型尽可能逼近实际观测值,达到拟合精度最高的目的。

二、最小二乘法推导考虑一个最小二乘问题,我们希望拟合一组数据,它们的点坐标可以用一个关于d个未知参数(p1,p2,p3,…,pd)的多项式表示,即:F(x,p1,p2,p3,…,pd)将多项式中的参数(p1,p2,p3,…,pd)的值求出,就可以对已知数据进行拟合。

最小二乘法表示形式:要使拟合模型参数值与所拟合数据做到最拟合,就要将拟合模型和实际数据的差值最小化,也就是求出多项式中的参数的值,使得误差平方和最小根据最小二乘法的优化性质,我们可以写出最小二乘优化问题的形式将误差平方和最小化的条件写出来就为:S=(f(x1,p1,…,pd)-y1)^2+(f(x2,p1,…,pd)-y2)^2+…+(f(xn,p1,…,pd)-yn)^2最小二乘问题表示为:min{S(p1,p2,…,pd)}其中p1,p2,…,pd是未知参数,我们要求这些参数值使得S 最小。

为了求得最小二乘拟合参数和进行形式转换,我们对S求偏导:S/pi=2*(f(xi,p1,…,pd)-yi)*f(xi,p1,…,pd)/pi 当S/pi=0时,即有(f(xi,p1,…,pd)-yi)*f(xi,p1,…,pd)/pi=0 于是,我们将最小二乘拟合参数pi的表达式改写为:pi=(A-1)*B其中A=∑(f(xi,p1,…,pd)/pi)^2,B=∑(f(xi,p1,…,pd)-yi)*f(xi,p1,…,pd)/pi根据最小二乘法,我们就可以求得最小二乘拟合参数pi的值了。

最小二乘法参数估计量推导

最小二乘法参数估计量推导

最小二乘法参数估计量推导最小二乘法,这个名字听上去挺高深的,其实就是一种简单而强大的数学工具,广泛应用于数据分析中。

今天,我们就来聊聊这玩意儿到底是怎么一回事。

1. 什么是最小二乘法最小二乘法其实就是在做“找差距”的工作。

假设你有一堆数据点,比如说你测量了一系列的温度和对应的电力消耗,你的目标是找到一条最能贴合这些数据点的直线。

这条直线就像是你为数据“量体裁衣”的结果。

1.1. 基本思想最小二乘法的核心思想就是:找到一条直线,使得每一个数据点到这条直线的距离(叫做“残差”)的平方和最小。

这个“平方和”就像是把所有的偏差加起来,让它们不再那么“任性”。

1.2. 为什么用“平方”?那为什么要把这些偏差平方呢?因为平方能有效地放大大的误差,这样我们就不容易忽视它们。

就像打麻将,偏差大的牌更容易被看见,才能让我们在游戏中更精准地调整策略。

2. 数学推导好啦,接下来我们就来捋一捋这个过程。

咱们还是从简单的说起:假设你有一组数据点(x₁, y₁)、(x₂, y₂)、……、(xₙ, yₙ),而你要找的是一条直线y = β₀ + β₁x。

这条直线就是我们的“理想之线”。

2.1. 定义目标函数我们的目标就是最小化所有这些点到直线的距离平方和。

用数学的语言来描述,就是要最小化目标函数:[ S(beta_0, beta_1) = sum_{i=1}^n (y_i beta_0 beta_1 x_i)^2 ]。

这里面,(y_i beta_0 beta_1 x_i)就是每一个点到直线的距离,平方了之后就能让误差更加明显。

2.2. 求导数为了找到最小值,我们需要对目标函数进行求导数,然后让导数等于零。

这个过程就像是找到山顶的最低点一样。

我们分别对β₀和β₁求偏导数,然后设定这些偏导数为零,得到两个方程:[ frac{partial S}{partial beta_0} = 0 ]。

[ frac{partial S}{partial beta_1} = 0 ]。

最小二乘法公式的多种推导方法

最小二乘法公式的多种推导方法

最小二乘法公式的多种推导方法最小二乘法是统计学中用来求两个线性相关变量的回归直线方程的一种方法,因其推导方法比较复杂,高中数学《必修3》简单介绍了最小二乘法的思想,直接给出了回归直线斜率a和截距b的计算公式,省略了公式的推导过程。

中学数学教师没有引起足够的重视。

在文[1]中作者的困惑之一就是“公式推导,教不教?”,为了加强学生学习能力的培养和数学思想方法的渗透,让师生更好的了解数学发展的价值,公式推导,不仅要教,而且要好好的教。

下面给出几种公式推导的方法,供教学参考。

给出一组具有线性相关关系的数据(x1,y1),(x2,y2),…,(xn,yn),且实数xi不全相等,求回归直线y=ax+b的斜率a和截距b,使得所有点相对于该直线的偏差平方和达到最小。

设实数xi不全相等,所求直线方程为y=ax+b要确定a,b,使函数f(a,b)=∑ni=1(axi+b-yi)2最小。

方法1[2]由于f(a,b)=∑ni=1[yi-axi-(-a)+(-a)-b]2=∑ni=1{[yi-axi-(-a)]2+2[yi-axi-(-a)]×[(-a)-b]+[(-a)-b]2}=∑ni=1[yi-axi-(-a)]2+2∑ni=1[yi-axi-(-a)]×[(-a)-b]+n[(-a)-b]2,注意到∑ni=1[yi-axi-(-a)][(-a)-b]=(-a-b)∑ni=1[yi-axi-(-a)]=(-a-b)[∑ni=1yi-a∑ni=1xi-n(-a)]=(-a-b)[n-na-n(-a)]=0,因此f(a,b)=∑ni=1[yi-axi-(-a)]2+n[(-a)-b]2=a2∑ni=1(xi-)2-2a∑ni=1(xi-)(yi-)+∑ni=1(yi-)2+n(-a-b)2=n(-a-b)2+∑ni=1(xi-)2[a-∑ni=1(xi-)(yi-)∑ni=1(xi-)2]2-[∑ni=1(xi-)(yi-)]2∑ni=1(xi-)2+∑ni=1(yi-)2在上式中,后两项和a,b无关,而前两项为非负数,因此要使f取得最小值,当且仅当前两项的值均为0,即a=∑ni=1(xi-)(yi-)∑ni=1(xi-)2,b=-a(其中x=1n∑ni=1xi,y=1n∑ni=1yi,(x,y)称为样本点的中心。

最小二乘法公式推导

最小二乘法公式推导

最小二乘法公式推导
最小二乘法是一种用于拟合数据的统计方法,通过最小化残差平方和来确定一组最佳的拟合系数。

以下是最小二乘法的公式推导:
假设有n个数据点(x1,y1),(x2,y2),...,(xn,yn),
要用一条直线y=a+bx来拟合这些数据,其中a和b是未知
参数。

首先定义残差ei为第i个数据点的y值减去拟合直线在该
点的预测值:
ei=yi-(a+bxi)
然后,我们将残差平方和S定义为所有n个数据点的残差平
方的和:
S=Σ(ei^2)=Σ(yi-a-bxi)^2
要找到最佳的拟合系数a和b,我们需要将S最小化。

为了
实现这一点,我们可以将S分别对a和b求偏导,并令偏导数等
于0,得到以下两个方程:
∂S/∂a=-2Σ(yi-a-bxi)=0
∂S/∂b=-2Σ(xi)(yi-a-bxi)=0
将上述两个方程展开并整理,得到:
na+bΣ(xi)=Σ(yi)
bΣ(xi^2)+aΣ(xi)=Σ(xi)(yi)
这是一个包含两个未知数a和b的线性方程组,可以通过解方程组来求出最佳的拟合系数。

具体来说,我们可以使用矩阵求解法,将上述方程组转化为矩阵形式:
|nΣ(xi)||a||Σ(yi)|
|Σ(xi)Σ(xi^2)||b|=|Σ(xi)(yi)|
然后,可以使用矩阵的逆来求解a和b的值:
|a||nΣ(xi)|^-1|Σ(yi)|
|b|=|Σ(xi)Σ(xi^2)||Σ(xi)(yi)|
最终,得到的a和b就是最小二乘法所求的拟合系数,可以将其代入y=a+bx中,得到拟合直线的方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档