6最小二乘法推导公式

合集下载

最小二乘法原理

最小二乘法原理

最小二乘法原理1. 概念 最小二乘法多项式曲线拟合,根据给定的m 个点,并不要求这条曲线精确地经过这些点,而是曲线y=f(x)的近似曲线y= φ(x)。

2. 原理给定数据点pi(xi,yi),其中i=1,2,…,m 。

求近似曲线y= φ(x)。

并且使得近似曲线与y=f(x)的偏差最小。

近似曲线在点pi 处的偏差δi= φ(xi)-yi ,i=1,2,...,m 。

常见的曲线拟合方法:1. 是偏差绝对值最小11min (x )y m mi i i i i φδφ===-∑∑ 2. 是最大的偏差绝对值最小min max (x )y i i i iφδϕ=- 3. 是偏差平方和最小2211min ((x )y )m mii i i i φδϕ===-∑∑ 按偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法。

推导过程:1. 设拟合多项式为:01...k k y a a x a x =+++2. 各点到这条曲线的距离之和,即偏差平方和如下:22011(...)m k i i k i i R y a a x a x =⎡⎤=-+++⎣⎦∑ 3. 为了求得符合条件的a 值,对等式右边求ak 偏导数,因而我们得到了:0112(...)0m k i k i i y a a x a x =⎡⎤--+++=⎣⎦∑0112(...)0m k ik i i y a a x a x x =⎡⎤--+++=⎣⎦∑……..0112( 0k k i k i i y a a x a x x =⎡⎤--+++=⎣⎦∑4. 将等式简化一下,得到下面的式子01111...n n nki k ii i i i a n a x a x y ===+++=∑∑∑ 21011111...n n n nk i ik i i i i i i i a x a x a x y x +====+++=∑∑∑∑ ……12011111...n n n nkk k k ii k i i i i i i i a x a x a x y x +====+++=∑∑∑∑ 5. 把这些等式表示成矩阵形式,就可以得到下面的矩阵:11102111111121111.........n n n k i i i i i i n n n n k i i i i i i i i i n n n n k k k k k i i i i i i i i i n x x y a a x x x x y a x x x x y ===+====+====⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦∑∑∑∑∑∑∑∑∑∑∑ 6. 将这个范德蒙矩阵化简后得到:011112221...1...1...k k k k n n n a y x x a y x x a y x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦。

最小二乘法LSQ(least square)_计算公式

最小二乘法LSQ(least square)_计算公式

的一个二元函数, 把 M 看成自变量 a 和 b 的一个二元函数, 那么问题就可归结为求函数 M = M ( a , b ) 在那 些点处取得最小值. 些点处取得最小值
7 ∂M ∂a = −2∑ [ yi − (at i + b )]t i = 0, i =0 令 7 ∂M = −2∑ [ yi − (at i + b )] = 0; ∂b i =0
7 7 7
(1)
计算得
∑t
i =0 7 i =0
7
i
= 28, = 208.5,
∑t
i =0 7 i =0
7
2 i
= 140, = 717.0
∑y
i
∑yt
i i
代入方程组( ) 代入方程组(1)得
140a + 28b = 717, 28a + 8b = 208.5.
解此方程组, 解此方程组,得到 a = −0.3036, b = 27.125. 这样便得到所求经验公式(回归方程 为 这样便得到所求经验公式 回归方程 )为
在研究单分子化学反应速度时,得到下列数据: 例2 在研究单分子化学反应速度时,得到下列数据:
i
1 3
2 6
3 9
4 12
5 15
6 18
7 21 8.9
8 24 6.5
τi
yi
57.6 41.9 31.0 22.7 16.6 12.2
y 表示从实验开始算起的时间, 其中 τ 表示从实验开始算起的时间, 表示时刻τ 反应物的量. 反应物的量.试定出经验公式 y = f (τ ).
试根据上面的试验数据建立 y 和 t 之间的经验公 式 y = f (t ).

递推阻尼最小二乘法辨识算法公式的详细推导与说明

递推阻尼最小二乘法辨识算法公式的详细推导与说明

控制理论与控制工程学位课程《系统辨识》考试报告递推阻尼最小二乘法公式详细推导专业:控制理论与控制工程班级:2011双控(研)学生姓名:江南学号:20110201016任课教师:蔡启仲老师2012年06月29 日摘要在参数辨识中,递推最小二乘法是用得最多的一种算法。

但是,最小二乘法存在一些缺点,如随着协方差矩阵的减小,易产生参数爆发现象;参数向量和协方差矩阵的处置选择不当会使得辨识过程在参数收敛之前结束;在存在随机噪声的情况下,参数易产生漂移,出现不稳定等。

为了防止参数爆发现象,Levenberg 提出在参数优化算法中增加一个阻尼项,以增加算法的稳定性。

本文在一般的最小二乘法中增加了阻尼因子,构成了阻尼最小二乘法。

又根据实时控制的要求,详细推到了递推阻尼最小二乘公式,实现在线辨识。

关键字:系统辨识,最小二乘法,递推算法正文1.题目的基本要求已知单入单出系统的差分方程以及噪声,在应用最小二乘法进行辨识的时候,在性能指标中加入阻尼因子,详细推导阻尼最小二乘法的递推公式。

2.输入辨识信号和系统噪声的产生方法和理论依据 2.1系统辩识信号输入选择准则(1)输入信号的功率或副度不宜过大,以免使系统工作在非线性区,但也不应过小,以致信噪比太小,直接影响辩识精度;(2)输入信号对系统的“净扰动”要小,即应使正负向扰动机会几乎均等; (3)工程上要便于实现,成本低。

2.2白噪声及其产生方法 (1) 白噪声过程(2)白噪声是一种均值为0、谱密度为非0常数的平稳随机过程。

(3)白噪声过程定义:如果随机过程()t ω的均值为0,自相关函数为()()2R t t ωσδ= (2.2.1)式中()t δ 为狄拉克(Dirac) 分布函数,即(){(),00,01t t t dt δδ∞∞=≠∞==⎰-且t (2.2.2)则称该随机过程为白燥声过程。

2.3白噪声序列 (1) 定义 如果随机序列{()}w t 均值为0,并且是两两不相关的,对应的自相关函数为()2,0,1,2w l R l l σδ==±± 式中{1,00,0l l l δ=≠=则称这种随机序列{()}w t 为白噪声序列。

参数的最小二乘法估计

参数的最小二乘法估计

第四章最小二乘法与组合测量§1概述最小二乘法是用于数据处理和误差估计中的一个很得力的数学工具。

对于从事精密科学实验的人们来说,应用最小乘法来解决一些实际问题,仍是目前必不可少的手段。

例如,取重复测量数据的算术平均值作为测量的结果,就是依据了使残差的平方和为最小的原则,又如,在本章将要用最小二乘法来解决一类组合测量的问题。

另外,常遇到用实验方法来拟合经验公式,这是后面一章回归分析方法的内容,它也是以最小二乘法原理为基础。

最小二乘法的发展已经经历了200多年的历史,它最先起源于天文和大地测量的需要,其后在许多科学领域里获得了广泛应用,特别是近代矩阵理论与电子计算机相结合,使最小二乘法不断地发展而久盛不衰。

本章只介绍经典的最小二乘法及其在组合测量中的一些简单的应用,一些深入的内容可参阅专门的书籍和文献。

§2最小二乘法原理最小二乘法的产生是为了解决从一组测量值中寻求最可信赖值的问题。

对某量x 测量一组数据n x x x ,,,21 ,假设数据中不存在系统误差和粗大误差,相互独立,服从正态分布,它们的标准偏差依次为:n σσσ ,,21记最可信赖值为x ,相应的残差x x v i i -=。

测值落入),(dx x x i i +的概率。

根据概率乘法定理,测量n x x x ,,,21 同时出现的概率为显然,最可信赖值应使出现的概率P 为最大,即使上式中页指数中的因子达最小,即权因子:22oi iw σσ=即权因子i w ∝21i σ,则再用微分法,得最可信赖值x11ni ii nii w xx w===∑∑即加权算术平均值这里为了与概率符号区别,以i ω表示权因子。

特别是等权测量条件下,有:以上最可信赖值是在残差平方和或加权残差平方和为最小的意义下求得的,称之为最小二乘法原理。

它是以最小二乘方而得名。

为从一组测量数据中求得最佳结果,还可使用其它原理。

例如(1)最小绝对残差和法:Min v i =∑ (2)最小最大残差法:Min v i =max (3)最小广义权差法:Min v v i i =-m in m ax以上方法随着电子计算机的应用才逐渐引起注意,但最小二乘法便于解析,至今仍用得最广泛。

最小二乘法方差推导

最小二乘法方差推导

最小二乘法方差推导导言最小二乘法是一种常用的回归分析方法,用于建立变量之间的关系模型。

在使用最小二乘法进行回归分析时,我们通常会考虑误差的大小和分布情况。

方差是一种常用的衡量误差大小的指标,通过推导最小二乘法的方差,可以更好地理解最小二乘法的原理和应用。

一、线性回归模型线性回归模型是最简单也是最常用的回归模型之一。

假设我们有一组观测数据(x1,y1),(x2,y2),...,(x n,y n),其中x i表示自变量,y i表示因变量。

线性回归模型的基本形式可以表示为:y=β0+β1x+ϵ其中y表示因变量,β0和β1分别表示截距和斜率,ϵ表示误差。

二、最小二乘法原理最小二乘法的目标是找到一条直线,使得观测数据到这条直线的距离最短。

假设观测数据的真实值为y i,模型预测值为y î,则观测数据的误差可以表示为e i=y i−y î。

最小二乘法的原理是通过最小化误差的平方和来估计回归模型的参数。

具体来说,我们希望找到一组参数β0̂和β1̂,使得观测数据的误差平方和最小。

误差平方和可以表示为:nSSE=∑(y i−y î)2i=1三、最小二乘法方差的推导最小二乘法方差是衡量观测数据与回归模型之间的离散程度的指标。

我们通过推导最小二乘法的方差,可以更好地理解模型的可靠性和拟合程度。

3.1 残差在推导最小二乘法方差之前,我们首先定义残差e i。

残差表示观测数据的真实值与模型预测值之间的差异。

对于线性回归模型,残差可以表示为e i=y i−y î。

3.2 方差推导方差是衡量观测数据与回归模型之间的离散程度的指标。

我们通过推导最小二乘法的方差,可以衡量回归模型的可靠性和拟合程度。

方差可以表示为残差平方和除以观测数据的数量。

具体来说,方差可以表示为:Var=SSE n其中,n表示观测数据的数量,SSE表示观测数据的误差平方和。

四、小结最小二乘法是一种常用的回归分析方法,可以用于建立变量之间的关系模型。

通过最小化观测数据与模型预测值之间的误差平方和,可以得到回归模型的参数估计值。

最小二乘法线性详细说明

最小二乘法线性详细说明
最小二乘法线性详细说明
1
在处理数据时,常要把实验获得的一系 列数据点描成曲线表反映物理量间的关系。 为了使曲线能代替数据点的分布规律,则 要求所描曲线是平滑的,既要尽可能使各 数据点对称且均匀分布在曲线两侧。由于 目测有误差,所以,同一组数据点不同的 实验者可能描成几条不同的曲线(或直线), 而且似乎都满足上述平滑的条件。那么, 究竟哪一条是最曲线呢?这一问题就是 “曲线拟合”问题。一般来说,“曲线拟 合”的任务有两个:
2.Y与X之间是否是直线关系(协方差或相关系 数)?若是,将用一条直线描述它们之间的关系。
3.什么是最好?—找出判断“最好”的原则。 最好指的是找一条直线使得这些点到该直线的纵 向距离的和(平方和)最小。
9
第一节 一元线性拟合
1. 函数形式已知
数学推证过程
1.已知函数为线性关系,其形式为:
大。
22
23
这时“最佳”二字只能说明数据点距这直线的总偏差 较小,但不能反映出数据点的分布规律。或者说,我 们事先的初步判断是错误的。数据点的分布规律不是 线形的,根本就不能用一条直线表示。
为了帮助我们理解这一点,我们再讨论极限情况。
当 R=0时(s 最大)sxy 0 , syy 0,sxx 0,所以
b=0,a= y , 从而得到y= y 的错误结论。这说明数据点
的分布不是线性,不能拟合为线性关系曲线。
24
起码相关系数 -- R0
R0 的值与数据点的个数n有关。书中P40表5-3 中给出了起码相关系数 R0的值。
如果有一组数据点初步观测为线性分布。那么, 为多大R 时,就可以用一条最佳直线来表示其分 布呢?
只有相关系数 R≥ R时0 ,才能用线性回归方程
y=a+bx来描述数据的的分布规律。否则毫无 意义。

最小二乘法

最小二乘法

第3章 线性动态模型参数辨识-最小二乘法3.1 辨识方法分类根据不同的辨识原理,参数模型辨识方法可归纳成三类: ① 最小二乘类参数辨识方法,其基本思想是通过极小化如下准则函数来估计模型参数:min )()ˆ(ˆ==∑=θθLk k J 12ε 其中)(k ε代表模型输出与系统输出的偏差。

典型的方法有最小二乘法、增广最小二乘法、辅助变量法、广义最小二乘法等。

② 梯度校正参数辨识方法,其基本思想是沿着准则函数负梯度方向逐步修正模型参数,使准则函数达到最小,如随机逼近法。

③ 概率密度逼近参数辨识方法,其基本思想是使输出z 的条件概率密度)|(θz p 最大限度地逼近条件0θ下的概率密度)|(0θz p ,即)|()ˆ|(0m a x θθz p z p −−→−。

典型的方法是极大似然法。

3.2 最小二乘法的基本概念● 两种算法形式 ① 批处理算法:利用一批观测数据,一次计算或经反复迭代,以获得模型参数的估计值。

② 递推算法:在上次模型参数估计值)(ˆ1-k θ的基础上,根据当前获得的数据提出修正,进而获得本次模型参数估计值)(ˆk θ,广泛采用的递推算法形式为() ()()()~()θθk k k k d z k =-+-1K h其中)(ˆk θ表示k 时刻的模型参数估计值,K (k )为算法的增益,h (k -d ) 是由观测数据组成的输入数据向量,d 为整数,)(~k z 表示新息。

● 最小二乘原理定义:设一个随机序列)},,,(),({L k k z 21∈的均值是参数θ 的线性函数E{()}()T z k k θ=h其中h (k )是可测的数据向量,那么利用随机序列的一个实现,使准则函数21()[()()]LT k J z k k θθ==-∑h达到极小的参数估计值θˆ称作θ的最小二乘估计。

● 最小二乘原理表明,未知参数估计问题,就是求参数估计值θˆ,使序列的估计值尽可能地接近实际序列,两者的接近程度用实际序列与序列估计值之差的平方和来度量。

最小二乘法的基本公式

最小二乘法的基本公式

最小二乘法的基本公式最小二乘法,这玩意儿听起来是不是有点高大上?但别怕,其实它并没有那么复杂,就像咱们学骑自行车,一开始觉得难,掌握窍门后就变得轻松自如啦!先来说说最小二乘法到底是啥。

简单来讲,它就是一种找数据最佳拟合直线或者曲线的方法。

比如说,你记录了一堆气温和日期的数据,想找出它们之间的规律,这时候最小二乘法就派上用场了。

那它的基本公式是啥呢?咱们来瞧瞧。

假设咱们有一堆数据点(x₁, y₁), (x₂, y₂),..., (xₙ, yₙ),然后要找一条直线 y = ax + b 来拟合这些点。

那最小二乘法就是要让每个点到这条直线的垂直距离的平方和最小。

这个垂直距离,咱们叫它残差。

具体的公式就是:Q = Σ(yi - (axi + b))²,这里的Σ是求和符号,就是把所有的残差平方加起来。

然后通过求 Q 对 a 和 b 的偏导数,令它们等于 0 ,就能解出 a 和 b 的值,从而得到最佳拟合直线的方程。

我给您讲个我亲身经历的事儿吧。

有一次我带着学生们去做一个关于植物生长和光照时间关系的实验。

我们每天记录植物的高度和对应的光照时长,最后想用最小二乘法来找出它们之间的关系。

一开始,学生们都被这些数据弄得晕头转向的。

有的说:“老师,这也太乱了,怎么找规律啊?”我就告诉他们,别着急,咱们有最小二乘法这个法宝呢!然后我一步一步地给他们讲解公式的原理和计算方法。

有个叫小明的同学特别认真,眼睛紧紧盯着黑板,手里的笔不停地记着。

可算到中间的时候,他突然举手说:“老师,我这一步算错了,得重新来。

”我鼓励他说:“没关系,重新算,多算几遍就熟练啦。

”最后,经过大家的努力,我们终于算出了最佳拟合直线的方程。

当我们把这个方程画在图上,看到那些数据点都很接近这条直线的时候,孩子们都兴奋得欢呼起来。

从那以后,学生们对最小二乘法的理解可深刻多了。

他们知道了,数学不仅仅是书本上的公式,还能真真切切地帮助我们解决生活中的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档