空气的自然对流换热系数
自然对流换热系数计算方法研究_陈孟

堆焊层
管嘴
封头
图 3 堆芯补水箱进口接管接管示意图及有限元模型
4.1 强迫对流
强迫对流换热系数按照迪图斯-贝尔特(Dittus-Boelter)实验关联式[1]进行计算, k p (4) h = 0.023 ⋅ ⋅ Re 0.8 ⋅ Pr 0.3 f ID 4⋅ ρ ⋅Q p 其中:ID 为内径; Re = 为雷诺数,表征惯性力和粘性力之比的一种量度; Q 为体积 π ⋅ µ p ⋅ ID 流量。 通过计算,得到不同硼水温度下接管内壁的强迫对流换热系数,如表 1 所示。由于强迫对流
2 自然对流
根据传热学相关理论,原则上自然对流换热准则方程式应为:
2
Nu = f (Gr , Pr )
(1)
其中: Nu =
hn ⋅ L g ⋅ α ⋅ L ⋅ ∆T 为努塞尔数,表征壁面上流体的无量纲温度梯度; Gr = 为格拉晓 kp ν2
cp ⋅ µ p kp
夫数,表征浮升力和粘滞力的比值; Pr =
The Computational Method for Heat Transfer Film Coefficient of Nature Convection
Chen M eng Huang Q ing Weng Yu Jiang X ing Shen R ui
(Shanghai Nuclear Engineering Research & Design Institute, Shanghai, 200233) Abstract This paper presents a method for computing the heat transfer film coefficient of nature convection. The equation obtained from a mass of tests is used as well as ANSYS code, and an iteration is performanced by using APDL language. An example is given to indicate that the computed film coefficients are reasonable by comparing with experimental data. This method can be used in stress analysis of equipments. Key words Film Coefficient of Nature Convection, iteration, ADPL
横管表面空气自然对流换热

湖南大学实验报告一、实验目的1. 测定单根横管对周围空气自然对流时的表面传热系数;2. 用多个工况的实验数据整理成大空间自然对流的实验关联式;3. 加深对自然对流换热规律的理解。
二、实验原理被加热的水平横管,其表面壁温为w t ,周围环境空气温度为f t 。
当w t >f t 时,横管附近空气由于受到横管的直接加热,导致温度升高,密度变小,又因为密度的不均匀而引起浮升力,使得横管周围的空气开始沿横管表面向上运动,而周围的空气又补充到横管周围,如此循环,形成自然对流换热。
动力设备、蒸汽管道等周围都存在类似的对流换热。
根据牛顿公式,在稳定状态下,加热横管表面由于对流换热而散失的热量CQ 可由下式计算:)(f w C t t hA Q -= W (1) 式中:h ——壁面平均换热系数,W/(m 2·K ); A ——横管有效换热面积,m 2; w t ——横管壁面平均温度,℃;f t ——空气主流温度,℃。
如果考虑横管表面对空间辐射的影响,还有一部分热量由管壁以辐射方式向外散热,散热量可由下式计算:])100()100[(44f w R T TA Q -⋅⋅=δε W (2)式中:ε——管子表面黑度,ε=0.1(根据横管表面黑度确定,软件可自己设定);δ——黑体辐射常数,δ=5.67 W/(m 2·K 4);A ——管子表面积,m 2; w T ——管子壁面平均温度,K ;f T ——空气温度,K 。
根据式(1)和式(2),当达到稳定状态时,横管传给空气总的热量,在忽略管子端部散热的前提下,应等于管子内部电加热器所产生的热量Q ,而R C Q Q Q +=,因此若测得壁温w t 和空气温度ft ,那么对流换热系数h ,可由下式求得:)( —f w Rt t A Q Q h -=W/(m 2.K) (3)根据相似理论,自然对流的准则方程可整理成:n r r u P G C N )(⋅= (4)式中:Nu ——努塞尔数,Nu=h·D / λ;Gr ——葛拉晓夫数,Gr=g βD 3 (t w -t f ) /υ2; Pr ——普朗特数,对于空气,见附录空气参数表;λ——流体导热系数,W/(m·K);D ——横管直径,m ;β——流体的体积膨胀系数,理想气体β=1 / t m -1K ; υ——流体运动粘度,m 2/s ; △t ——壁面与空气的温差,℃。
求空气和管壁面间对流换热系数

求空气和管壁面间对流换热系数对流换热是热工学中一个重要的研究对象,对流换热系数是描述流体和固体壁面之间换热效果的一个重要参数。
而在许多工程领域中,空气和管壁面间的对流换热系数更是备受关注。
本文将围绕这一主题展开讨论,探讨空气和管壁面间对流换热系数的相关影响因素和计算方法。
一、对流换热系数的定义对流换热系数是指单位面积上的传热功率与温差之比,通常用符号"h"表示。
在对流换热过程中,对流换热系数的大小直接影响着传热效果,因此对其的研究和计算具有重要意义。
二、空气和管壁面间对流换热系数的影响因素1. 管道材质管道的材质直接影响着管壁面的导热性能和表面粗糙度,从而影响对流换热系数的大小。
一般来说,导热性能好、表面粗糙度小的管道对流换热系数会较高。
2. 流体性质空气的流体性质,如密度、粘度和导热系数等,也会对空气和管壁面间对流换热系数产生影响。
这些性质与空气的温度、压力等因素密切相关,在对流换热系数的计算中需要综合考虑。
3. 流体流动状态流体的流动状态对对流换热系数有明显影响。
层流和湍流的流动状态下,对流换热系数的大小会有所不同。
在实际工程中需根据流体流动状态的不同进行对流换热系数的计算和分析。
4. 管道几何形状管道的几何形状也会对对流换热系数产生影响。
不同形状的管道在对流换热过程中,由于流体流动状态的差异,其对流换热系数也会有所不同。
在计算对流换热系数时需要考虑管道的几何形状。
5. 表面温度差表面温度差是影响空气和管壁面间对流换热系数的重要因素。
一般来说,温度差越大,对流换热系数也会相应增大。
在工程实践中需要合理控制表面温度差,以提高对流换热系数。
三、空气和管壁面间对流换热系数的计算方法对于空气和管壁面间对流换热系数的计算,通常采用经验公式或数值模拟的方法。
常用的经验公式包括Dittus-Boelter公式、Sieder-Tate 公式等,这些公式都是根据大量实验数据拟合得到的经验公式,适用范围较广。
2016-2017年实验二,空气沿水平圆管外表面的自然对流换热系数(总结)

实验二、 空气沿水平圆管外表面的自然对流换热系数一、实验目的1.测定空气沿水平圆管外表面的自然对流换热系数。
并将数据整理成准则方程式。
2.了解对流换热系数的实验研究方法,学会用相似准则综合实验数据的方法,认识相似理论在对流换热实验研究中的指导意义。
二、实验原理实验研究的是受热体(圆管)在大空间中的自然对流换热现象。
根据传热学和相似原理理论,当一个受热表面在流体中发生自然对流换热时,包含自然对流换热系数的准数关系式可整理为:()nb b Grc Nu Pr ⋅= (2-1) 式中: λalNu =——努谢尔特准数;t vgl Gr ∆⋅=β23——葛拉晓夫准数; l —物体的特性尺寸,实验中为管径d ;α —对流换热系数(W/m 2·℃);λ —— 流体(空气)的导热系数(W/m 2·℃);v —— 流体(空气)的运动粘度(m 2/s );m T /1=β——流体的体积膨胀系数(1/K)。
T m ——定性温度,实验中取()2732/0++=t t T w m ,t w 和t 0分别为圆管壁面温度和室内温度;0t t t w -=∆是过余温度(℃);c 、n ——待定实验常数,需根据实验数据用最小二乘法进行确定。
角标“b ”表示以边界层平均温度作为定性温度。
由于在一般情况下,实验管表面散失热量Q 以对流和辐射两种方式散发的。
r c Q Q Q += (2-2)式中,Q — 表面散失热量 (W),;Q =IV ;Q c — 自然对流散失热流量 (W)Q r — 辐射散失热流量 (W)。
实验管可以被看做为被其他物体(房屋、地面)包围的面积很小的凸物体,它的辐射热量为⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=44100100O W O s T T F C Q ε(W ) (2-3)C 0为绝对黑体辐射系数,C 0=5.67(W/m 2·K 4);T w 、T o 分别为壁温和周围物体的平均温度 (K)(近似取室温);F 为实验管辐射散热有效面积即为其圆周面积(m 2)。
换热系数大自然对流课件

换热系数的计算方法
经验公式法
根据实验数据和经验,总结出换热系 数的计算公式,适用于特定条件下的 传热过程。
数值模拟法
通过建立数学模型和数值求解方法, 计算出物体间的换热系数,适用于复 杂结构和非线性传热过程。
换热系数的影响因素
流体性质
流体的物理性质如粘度、导热 系数和比热容等,对换热系数
有显著影响。
总结词
应对气候变化的自然对流措施
总结词
自然对流在气候预测中的作用
详细描述
针对气候变化对自然对流的影响,可以采取相应的措施来 减缓其不利影响,如加强环境保护、推广可再生能源等。
生态系统案例
总结词
湿地生态系统中的自然对流特征
详细描述
湿地生态系统中的自然对流具有独特的特征和规律,如湿 地中的水体流动、气体交换等。了解这些特征有助于深入 探究湿地生态系统的功能和机制。
温度差
物体间的温度差是换热过程的 驱动力,温度差越大,换热系 数越大。
表面状况
物体的表面状况如粗糙度、清 洁度和润湿程度等,能够影响 换热系数的大小。
流动状态
流体的流动状态如层流或湍流 ,对换热系数有较大影响,湍 流状态下的换热系数通常较大
。
02
大自然对流现象
对流现象的定义与分类
定义
对流是指流体内部由于温度、密度等物理性质的不均匀分布引起的宏观运动。
换热系数大自然对 流课件
目 录
• 换热系数概述 • 大自然对流现象 • 换热系数与大自然对流的关系 • 换热系数在大自然对流中的应用 • 案例分析
01
换热系数概述
定义与意义
定义
换热系数是指在单位时间内,单 位面积上所传递的热量与对应的 温度差之间的比值,用于描述物 体间的热量传递速率。
自然对流换热试验

自然对流换热实验报告一、实验目的(1)了解空气沿水平圆柱体表面自然流动是的换热过程,掌握实验测试技术。
(2)测定单管(水平放置)的自然对流换热系数h 。
(3)根据实验测得的有关数据,计算各实验管的Nu 数、Gr 数和Pr 数,然后用作图法或最小二乘法确定经验方程式n Gr c Nr Pr)(=中的c 值和n 值,并给出Pr Gr 的范围。
二、实验原理对铜管进行加热,热量是以对流和辐射两种方式来散发,所以对流换热量为总流量与辐射热量之差。
即r h c Φ-Φ=Φ (W )式中:)(f w c t t hA -=Φ;UI h =Φ;⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=Φ4f 4w 0100T 100T A c r ε,所以⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛---=4f 4w 0100T 100T )()(f w f w t t c t t A UIh ε[])(K /W ∙m 式中:c Φ为对流换热量,W ;h Φ为加热器产生的热量,W ;r Φ为辐射换热量,W;U 加热器电压,V ;I 为加热器电流,A ;ε为圆柱体表面黑度,ε=0.064;0c 为黑体辐射系数,)(420K m /W 67.5∙=c ;w t 为管壁平均温度,℃;f t 为玻璃室内空气温度,℃;A 为圆柱体的表面积,m 2;h 为自然对流换热系数,)(K /W 2∙m 。
当实验管表面温度稳定时,测定每根管的加热电压U 、电流I 、管壁温度w t 、玻璃室内温度f t ,从表中查出圆管的直径和长度,计算出圆管表面积A ,计算出其对流换热系数h 。
根据相似理论,自然对流换热的准则为Pr),(Gr f Nr =在工业中广泛使用的是比式更为简单的经验方程式,即n Gr c Nr Pr)(=式中:c 、n 是通过实验所确定的常数(在一定的Pr Gr 数值范围内)。
为了确定上述关系式的具体形式,根据测量数据计算结果求得努塞尔准则Nu 、格拉晓夫准则Gr 和普朗特准则Pr ,即λhDNu =; 23υβtD g Gr ∆=; a υ=Pr式中:Pr 、β(空气的体胀系数,1/K )、υ(空气的运动黏度,m 2/s )等、λ(空气的导热系数,℃)(∙m /W )等物性参数由定性温度)(2fw t t +从气体的热物理性质表查取;2/8.9s m g =;D 为圆管壁面定型尺寸,m ;f w t t t -=∆,℃。
自然对流换热

大空间自然对流换热:周围没有其它物体阻碍换热面上边界层 形成和发展的自然对流换热。
有限空间自然对流换热:否则称为有限空间自然对流换热 。
1大空间自然对流换热
边界层:层流→紊流。
转变点取决于温差和流体 的性质 Gr Pr>109 流态为紊流 边界层内速度分布:
y 0和y 处,均为零
y= 1 处具有最大流速
形成厚 15 mm 的竖直空气夹层。试计算通过空气夹层的自然
对流换热量。
解 定性温度 tm (tw1 tw2 ) / 2 (100 40) / 2 70℃,据此查附录得,空气物性
1.029 kg/m3 , 20.02106 m2/s , 0.0296 W/(m 1m/
4
(
h
)1/
9
Gr Pr 2 105 ~ 1.1107 时,
Num
0.073(Gr
Pr
)1m/
3
(
h
)1/
9
(5-32)
(5-33) (5-34)
以上各式的适用范围为: Pr 0.5 ~ 2 h / 11 ~ 42
准则的定,性温度 : tm (tw1 tw2 ) / 2
例 5-8 温度分别为 100℃和 40℃,面积均为0.50.5 m2 的两竖壁,
)1/
9
0.197
(1.002
104
)1m/
4
(
0.015 0.5
)1/
9
1.335
Num 1.335 0.0296 2.63 W/(m2 K)
0.015
自然对流换热量为
Q Ft 2.63(0.50.5)(100 40) 39.5 W
作业
1. 4.
试验三空气沿水平圆管外表面的自然对流换热系数

式中,V——烟气试样体积(毫升); V1——烟气被KOH吸收后的体积(毫升);
升);V2——烟气被焦性没食子酸钾溶液吸收后的体积(毫 V3——烟气被氯化亚铜氨溶液吸收后的体积(毫升)。
⒊计算空气过剩系数
N2
N2
79 21
O2
1 2
CO
4.分析、讨论实验结果。
六、实验注意事项:
3、间隔10分钟,测一组管壁数据,直至前 后两组数据接近时为止,以这两组数据的平均值 作为计算数据Tw。
4、改变加热功率(即电压)至新工况,重 复上述步骤,进行实验4-6次。
5、操作过程:
(1)用水准瓶分别调节各吸收瓶内吸收液的液 面,使各瓶内吸收液充满至阀门处。
注意:在调节某一吸收瓶内的吸收液封时,应 关闭其他吸收瓶的开关。
(2)关闭K1至K6开关,打开K7及K8,提高水准 瓶,使指示液充满量管,将管路中空气排出,把烟 气试样接入干燥管进口,关闭K8,打开K6,降低水 准瓶,使烟气吸入量管。然后打开K8,提高水准瓶 此时吸入之烟气连同管路中的残余空气一起排出。 这样整个管路均被烟气“清洗”了一次,若“清洗” 不净,可再“清洗”1至2次。
用相似准则综合实验数据的方法,认识相似理论在 对流换热实验研究中的指导意义。
二、实验原理
当固体表面与流过该表面的流体之间存在温度 差时,固体表面与流体之间产生的热量交换现象称 为对流换热。对流换热过程是硅酸盐工业热工设备 中最主要的换热过程之一。由于对流换热一方面依 靠流体分子之间的导热作用,同时还受到流体宏观 运动的控制,因而影响对流换热的因素很多,主要 有三个方面,即流动工况、表面状态和工质物性。 从而使得对流换热过程成为所有换热过程中最复杂 的一种,亦使得实验研究成为研究对流换热过程的 一个极为重要的手段和解决问题的基本途径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空气的自然对流换热系数
1. 前言
空气的自然对流换热系数是指风或自然对流使物体与周围环境之
间发生换热的系数。
研究自然对流换热系数对于建筑、工业和环境等
领域都具有重要意义。
本文将对空气的自然对流换热系数的概念、影
响因素、计算方法及应用进行详细介绍。
2. 概念
空气的自然对流换热系数是指在自然状态下,在物体表面的温度
差引起自然对流,导致物体与周围环境之间发生换热的系数,记为h。
它的单位是瓦特/平方米•开尔文(W/(m²•K))。
3. 影响因素
空气的自然对流换热系数受多种因素影响,主要有以下几个方面:3.1 波动数
波动数是指物体表面所受的流体单元数,它是影响自然对流换热
系数的关键因素之一。
波动数越大,自然对流换热系数越高。
3.2 物体的尺寸和形状
在考虑物体的尺寸和形状时,应特别关注物体的曲率,因为曲率
会影响自然对流的速度和强度,从而影响自然对流换热系数。
3.3 物体表面的粗糙度
物体表面的粗糙度也会对自然对流换热系数产生影响。
粗糙表面
可以增加传热面积,从而增加自然对流换热系数。
相反,光滑表面会
降低自然对流换热系数。
3.4 温度差
物体表面与周围环境的温度差也会影响自然对流换热系数。
温度
差越大,自然对流换热系数越高。
3.5 环境温度
环境温度也会对自然对流换热系数产生影响。
在低温环境下,空
气粘度增加,导致自然对流速度减缓,从而降低自然对流换热系数。
4. 计算方法
自然对流换热系数的计算方法一般包括经验公式和数值模拟两种。
4.1 经验公式
经验公式是通过实验和经验得到的经验公式,适用于特定条件下
的自然对流换热系数计算。
目前常用的经验公式有:
Nusselt数的计算公式:
Nu = 0.60 + 0.387Ra^(1/6) 当Pr>0.6时
Nu = 0.54 + 0.0296Ra^(1/3) 当Pr<=0.6时
其中,Ra为雷诺数,Pr为普朗特数。
自然对流换热系数的计算公式:
h = Nu*k/L
其中,k为空气的热传导系数,L为特征长度。
4.2 数值模拟
数值模拟是通过计算机模拟的方法,对特定情况下的自然对流换热现象进行数值计算和分析。
数值模拟方法的优点是可以得到更加精确的计算结果,能够计算更加复杂的情况。
但其缺点是需要消耗大量的计算资源和时间。
5. 应用
自然对流换热系数的应用十分广泛,主要包括以下几个方面:5.1 建筑领域
在建筑领域,自然对流换热系数的研究应用十分广泛,特别是在建筑节能、通风和空调等领域。
通过合理地设计建筑结构、采用适当的保温材料、加强通风等措施,可以有效地提高建筑的自然对流换热系数,减少室内能量的损失。
5.2 工业领域
在工业领域,自然对流换热系数的研究应用主要集中在工业炉、锅炉、换热器等设备中。
通过研究和改善自然对流换热系数,可以提高工业设备的热效率和节能效果。
5.3 环境领域
在环境领域,自然对流换热系数的研究应用主要集中在环境污染预测、大气边界层研究等方面。
通过研究自然对流换热系数,可以更好地了解空气的流动规律,为环境保护和治理提供重要参考。
6. 结论
空气的自然对流换热系数是建筑、工业和环境等领域研究的重要内容。
本文对其概念、影响因素、计算方法及应用进行了详细介绍。
通过加强对自然对流换热系数的研究和应用,可以有效提高能源利用效率,减少环境污染,实现可持续发展。