初中数学竞赛讲义一元二次方程公共根问题定稿版

合集下载

中学数学竞赛讲座及练习第27讲一元二次方程

中学数学竞赛讲座及练习第27讲一元二次方程

中学数学竞赛讲座及练习第27讲一元二次方程本资料来自于资源最齐全的21世纪教育网第二十七讲一元二次方程一元二次方程是中学代数的重要内容之一,是进一步学习其他方程、不等式、函数等的基础,其内容非常丰富,本讲主要介绍一元二次方程的基本解法.方程ax2+bx+c=0(a≠0)称为一元二次方程.一元二次方程的基本解法有开平方法、配方法、公式法和国式分解法.对于方程ax2+bx+c=0(a≠0),△=b2-4ac称为该方程的根的判别式.当△>0时,方程有两个不相等的实数根,即当△=0当△<0分析可以使用公式法直接求解,下面介绍的是采用因式分解法求解.因为本资料来自于资源最齐全的21世纪教育网所以例2 解关于x的方程:x2-(p2+q2)x+pq(p+q)(p-q)=0.解用十字相乘法分解因式得[x-p(p-q)][x-q(p+q)]=0,所以x1=p(p-q),x2=q(p+q).例3 已知方程×1999x-1=0的较大根为a,方程x2+1998x-1999=0的较小根为β,求α-解由方程(20XX年x)2-20XX年×1999x-1=0得(20XX年2x+1)(x-1)=0,(x+1999)(x-1)=0,故x1=-1999,x2=1,所以β=-1999.所以α-β=1-(-1999)=20XX年.本资料来自于资源最齐全的21世纪教育网例4 解方程:(3x-1)(x-1)=(4x+1)(x-1).分析本题容易犯的错误是约去方程两边的(x-1),将方程变为3x-1=4x+1,所以x=-2,这样就丢掉了x=1这个根.故特别要注意:用含有未知数的整式去除方程两边时,很可能导致方程失根.本题正确的解法如下.解(3x-1)(x-1)-(4x+1)(x-1)=0,(x-1)[(3x-1)-(4x+1)]=0,(x-1)(x+2)=0,所以x1=1,x2=-2.例5 解方程:x2-3|x|-4=0.分析解法1 显然x≠0.当x>0时,x,所以x1=4,x2=-1(舍去).当x<0时,x2+3x-4=0,所以x3=-4,x4=1(舍去) 1=4,x2=-4.解法2 由于x2=|x|2,所以|x|2-3|x|-4=0,所以(|x|-4)(|x|+1)=0,所以|x|=4,|x|=-1(舍去).所以x1=4,x2=-4.本资料来自于资源最齐全的21世纪教育网例6 已知二次方程3x2-(2a-5)x-3a-1=0有一个根为2,求另一个根,并确定a的值.解由方程根的定义知,当x=2时方程成立,所以3×22-(2a-5)×2-3a-1=0,故a=3.原方程为3x2-x-10=0,即(x-2)(3x+5)=0,例7 解关于x的方程:ax2+c=0(a≠0).分析当c=0时,x1=x2当ac>0(即a,c同号时),方程无实数根.例8 解关于x的方程:(m-1)x2+(2m-1)x+m-3=0.分析讨论m,由于二次项系数含有m,所以首先要分m-1=0与m-1≠0两种情况(不能认为方程一定是一元二次方程);当m-1≠0时,再分△>0,△=0,△<0三种情况讨论.本资料来自于资源最齐全的21世纪教育网解分类讨论.(1)当m=1时,原方程变为一元一次方程x-2=0,所以x=2.(2)当m≠1时,原方程为一元二次方程.△=(2m-1)2-4(m-1)(m-3)=12m-11.例9 a2(x2-x+1)-a(x2-1)=(a2-1)x.解整理方程得(a2-a)x2-(2a2-1)x+(a2+a)=0.(1)当a2-a≠0,即a≠0,1时,原方程为一元二次方程,因式分解后为[ax-(a+1)][(a-1)x-a]=0,本资料来自于资源最齐全的21世纪教育网(2)当a2-a=0时,原方程为一元一次方程,当a=0时,x=0;当a=1时,x=2.例10 求k的值,使得两个一元二次方程x2+kx-1=0,x2+x+(k-2)=0有相同的根,并求两个方程的根.解不妨设a是这两个方程相同的根,由方程根的定义有a2+ka-1=0,① a2+a+(k-2)=0.② ①-②有ka-1-a-(k-2)=0,即(k-1)(a-1)=0,所以k=1(1)当k=1时,两个方程都变为x2+x-1=0,所以两个方程有两个相同的根没有相异的根;(2)当a=1时,代入①或②都有k=0,此时两个方程变为本资料来自于资源最齐全的21世纪教育网x2-1=0,x2+x-2=0.解这两个方程,x2-1=0的根为x1=1,x2=-1;x2+x-2=0的根为x1=1,x2=-2.x=1为两个方程的相同的根.例11 若k为正整数,且关于x的方程(k2-1)x2-6(3k-1)x+72=0有两个不相等的正整数根,求k的值.解原方程变形、因式分解为(k+1)(k-1)x2-6(3k-1)x+72=0,[(k+1)x-12][(k-1)x-6]=0,即4,7.所以k=2,x2同时为正整数,但当k=3时,x1=x2=3,与题目不符,所以,只有k=2为所求.例12 关于x的一元二次方程x2-5x=m2-1有实根a和β,且|α|+|β|≤6,确定m的取值范围.解不妨设方程的根α≥β,由求根公式得本资料来自于资源最齐全的21世纪教育网|α|+|β|=α+β=5<6,符合要求,所以m2≤1.例13 设a,b,c的三边,且二次三项式x2+2ax+b2与x2+2cx-b2有一次公因式,证明:△ABC证x2+2ax+b2=0与x2+2cx-b2=0必有公共根,设公共根为x0 ,则两式相加得本资料来自于资源最齐全的21世纪教育网若x0=0,代入①式得b=0,这与b为△ABC的边不符,所以公共根x0=-(a+c).把x0=-(a+c)代入①式得(a+c)2-2a(a+c)+bg2=0,整理得a2=b2+c2所以△ABC为直角三角形.例14 有若干个大小相同的球,摆成正三角形时比摆成正方形时每边多两个球,求球的个数.解(x-2)个球.此时正三角形共有球此时正方形共有(x-2)2个球,所以即x2-9x+8=0,x1=1,x2=8.本资料来自于资源最齐全的21世纪教育网因为x-2≥1,所以x1=1不符合题意,舍去.所以x=8,此时共有球(x-2)2=36个.练习九1.解方程:(2)20x2+253x+800=0;(3)x2+|2x-1|-4=0.2.解下列关于x的方程:(1)abx2-(a4+b4)x+a3b3=0;(2)(2x2-3x-2)a2+(1-x2)b22 3.若对任何实数a的方程x2-2ax-a+2b=0都有实数根,求实数b的取值范围.4.若方程x2+ax+b=0和x2+bx+a=0有一个公共根,求(a+b)20XX年的值.5.若a,b,c为△ABC的三边,且关于x 的方程4x2+4(a2+b2+c2)x+3(a2b2+b2c2+c2a2)=0有两个相等的实数根,试证△ABC是等边三角形.。

人教版九年级数学解一元二次方程讲义(含解析)

人教版九年级数学解一元二次方程讲义(含解析)

第2讲解一元二次方程∣⅛∣知识定位讲解用时:3分钟A、适用范围:人教版初三,基础偏上B、知识点概述:本讲义主要用于人教版初三新课,本节课我们要主要学习一元二次方程的求解,重点掌握直接开平方法、因式分解法、配方法以及公式法解一元二次方程,本节的重点是能够根据不同的方程特征选择合适的解法,难点是- 元二次方程与其他知识点的结合考查,希望同学们认真学习,熟练使用各种解法, 为后面一元二次方程的应用奠定良好基础。

特殊的一元二次方程的解法特殊的一元二次方程的解法主要有两种即直接开平方和因式分解:(1)解一元二次方程——直接开平方法形如x2=p或(nx+m)2=p(p≥0的一元二次方程可采用直接开平方的方法解一元二次方程。

如果方程化成x2=p的形式,那么可得x=±Jp ;如果方程能化成(nx+m)2=p(p≥0的形式,那么nx+m=± Jp .注意:①等号左边是一个数的平方的形式而等号右边是一个非负数;①降次的实质是由一个二次方程转化为两个一元一次方程;①方法是根据平方根的意义开平方.(2)解一元二次方程——因式分解法通过将一元二次方程因式分解成(X-P) (x-q) =O的形式,进而将一元二次方程的求解过程转化成求解两个一元一次方程的方法叫因式分解法。

因式分解法的一般步骤:①移项,将方程右边化为零;②将方程左边的二次三项式分解为两个一次因式的乘积;③令每一个因式分别为零,得到两个一元一次方程;分别解这两个一元一次方程,它们的解就是原方程的解•一般的一元二次方程的解法■ 9HrIB≡WI9≡HB99VWBS SWB9*mBBWaB9⅞-nB≡nB≡9HB9SVWB9*HraB≡PnB≡WI99T,VB9SVWB9S l HB!l'(VaB≡'1一般的一元二次方程的解法主要有两种即配方法和公式法:(1)解一元二次方程一一配方法将一元二次方程配成(x+m) 2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法。

第三讲 一元二次方程根的判别式与韦达定理(精讲)(解析版)

第三讲   一元二次方程根的判别式与韦达定理(精讲)(解析版)

2023年初高中衔接素养提升专题讲义第三讲 一元二次方程根的判别式与韦达定理(精讲)(解析版)【知识点透析】1、一元二次根的判别式一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:2224()24b b ac x a a -+=,把24b ac -叫做一元二次方程20 (0)ax bx c a ++=≠的根的判别式,表示为:24b ac∆=-(1) 当Δ=240b ac ->时,方程有两个不相等的实数根:x =(2) 当Δ=240b ac -=时,因此,方程有两个相等的实数根:1,22b x a=-(3) 当Δ=240b ac -<时,因此,方程没有实数根.【知识点精讲】【例1】已知关于x 的一元二次方程2320x x k -+=,根据下列条件,分别求出k 的范围:(1) 方程有两个不相等的实数根;(2) 方程有两个相等的实数根(3)方程有实数根;(4) 方程无实数根.【解析】:2(2)43412k k ∆=--⨯⨯=-(1) 141203k k ->⇒<;(2) 141203k k -=⇒=;(3) 141203k k -≥⇒≥;(4) 141203k k -<⇒<.【变式1】((2022秋·重庆开州·八年级统考期中)使得关于x 的不等式组6x ―a ≥―10―1+12x <―18x +32有且只有4个整数解,且关于x 的一元二次方程(a ―5)x 2+4x +1=0有实数根的所有整数a 的值之和为( )A .35B .30C .26D .21【答案】B【分析】先求出不等式组的解集,根据有且只有4个整数解可确定a 的取值范围,再通过根的判别式确定a 的取值范围,最后结合两个取值范围找出满足条件的整数相加即可.【详解】解:整理不等式组得:6x ―a ≥―10①―8+4x <―x +12②由①得:x ≥a ―106,由②得:x<4∵不等式组有且只有4个整数解,∴不等式组的4个整数解是:3,2,1,0,∴―1<a―106≤0,解得:4<a≤10,∵(a―5)x2+4x+1=0有实数根,∴Δ=b2―4ac=16―4×(a―5)×1=36―4a≥0,解得:a≤9,∵方程(a―5)x2+4x+1=0是一元二次方程,∴a≠5∴4<a≤9,且a≠5,满足条件的整数有:6、7、8、9;∴6+7+8+9=30,故选:B.【变式2】.已知关于x的一元二次方程:x2﹣(2k+1)x+4(k―12)=0.(1)求证:这个方程总有两个实数根;(2)若等腰△ABC的一边长a=4b、c恰好是这个方程的两个实数根,求△ABC 的周长.【解答】(1)证明:Δ=(2k+1)2﹣4×1×4(k―12)=4k2﹣12k+9=(2k﹣3)2,∵无论k取什么实数值,(2k﹣3)2≥0,∴△≥0,∴无论k取什么实数值,方程总有实数根;(2)解:∵x=2k+1±(2k―3)2,∴x1=2k﹣1,x2=2,∵b,c恰好是这个方程的两个实数根,设b=2k﹣1,c=2,当a 、b 为腰,则a =b =4,即2k ﹣1=4,解得k =52,此时三角形的周长=4+4+2=10;当b 、c 为腰时,b =c =2,此时b +c =a ,故此种情况不存在.综上所述,△ABC 的周长为10.【例2】已知实数x 、y 满足22210x y xy x y +-+-+=,试求x 、y 的值.【解析】:可以把所给方程看作为关于x 的方程,整理得:22(2)10x y x y y --+-+=由于x 是实数,所以上述方程有实数根,因此:222[(2)]4(1)300y y y y y ∆=----+=-≥⇒=,代入原方程得:22101x x x ++=⇒=-.综上知:1,0x y =-=【变式1】(2022秋·湖北武汉·八年级武汉市第一初级中学校考期末)已知a ,b ,c 满足a 2+6b =7,b 2―2c =―1,c 2―2a =―17,则a ―b +c 的值为( )A .―1B .5C .6D .―7【答案】B【分析】首先把a 2+6b =7,b 2―2c =―1,c 2―2a =―17,两边相加整理成a 2+6b +b 2―2c +c 2―2a +11=0,分解因式,利用非负数的性质得出a 、b 、c 的数值,代入求得答案即可.【详解】解:∵a 2+6b =7,b 2―2c =―1,c 2―2a =―17,∴a 2+6b +b 2―2c +c 2―2a =―,∴a 2+6b +b 2―2c +c 2―2a +11=0∴(a ―1)2+(b +3)2+(c ―1)2=0,∴a =1,b =―3,c =1,∴a ―b +c =1+3+1=5.故选:B .【变式2】((2022秋·江苏扬州·八年级统考期中)新定义,若关于x 的一元二次方程:m (x ―a )2+b =0与n (x ―a )2+b =0,称为“同类方程”.如2(x ―1)2+3=0与6(x ―1)2+3=0是“同类方程”.现有关于x 的一元二次方程:2(x ―1)2+1=0与(a +6)x 2―(b +8)x +6=0是“同类方程”.那么代数式ax 2+bx +2022能取的最大值是_________.【答案】2023【分析】根据“同类方程”的定义,可得出a ,b 的值,从而解得代数式的最大值.【详解】∵2(x ―1)2+1=0与(a +6)x 2―(b +8)x +6=0是“同类方程”,∴(a +6)x 2―(b +8)x +6=(a +6)(x ―1)2+1,∴(a +6)x 2―(b +8)x +6=(a +6)x 2―2(a +6)x +a +7,∴b +8=2(a +6)6=a +7 ,解得:a =―1b =2,∴a x 2+bx +2022=―x 2+2x +2022=―(x ―1)2+2023∴当x =1时,a x 2+bx +2022取得最大值为2023.故答案为:2023.2、一元二次方程的根与系数的关系一元二次方程20 (0)ax bx c a ++=≠的两个根为:x x ==所以:12b x x a+==-,12244ac c x x a a⋅====韦达定理:如果一元二次方程20 (0)ax bx c a ++=≠的两个根为12,x x ,那么:1212,b c x x x x a a+=-=【知识点精讲】【例3】若12,x x 是方程2220070x x +-=的两个根,试求下列各式的值:(1) 2212x x +;(2) 1211x x +;(3) 12(5)(5)x x --;(4) 12||x x -.【解析】:由题意,根据根与系数的关系得:12122,2007x x x x +=-=-(1) 2222121212()2(2)2(2007)4018x x x x x x +=+-=---=(2) 121212112220072007x x x x x x +-+===-(3) 121212(5)(5)5()2520075(2)251972x x x x x x --=-++=---+=-(4) 12||x x -====常见的一些变形结论:利用根与系数的关系求值,要熟练掌握以下等式变形:222121212()2x x x x x x +=+-,12121211x x x x x x ++=,22121212()()4x x x x x x -=+-,12||x x -=2212121212()x x x x x x x x +=+,33312121212()3()x x x x x x x x +=+-+等等.韦达定理体现了整体思想.【例4】.已知关于x 的方程220x mx m -+=.(1)若2m =-,方程两根分别为1x ,2x ,求12x x -和3312x x +的值;(2)若方程有一正数,有一负数根,求实数m 的取值范围.【答案】.(14- (2)m <0【解析】(1)由22121212=()4x x x x x x -+-,33212121212()[()3]x x x x x x x x +=++-,借助韦达定理求解.(2)借助韦达定理表示方程有一正数,有一负数根的等价条件,进而求解.【详解】(1)当2m =-时,2222x x +-=即:210x x +-=1212140,1,1x x x x ∆=+>+=-=-因此:2212121212=()45x x x x x x x x -+-=∴-=3322212121212121212()[]()[()3]4x x x x x x x x x x x x x x +=++-=++-=-(2)220x mx m -+=212128,,22m m m m x x x x ∆=-+==21280002m m m m x x ⎧∆=->⎪∴<⎨=<⎪⎩【变式1】已知两不等实数a ,b 满足222a a =-,222b b =-,求22b a a b +的值.【解析】:b a ,是一元二次方程0222=-+x x 的不等实根则有2,2-=-=+ab b a原式=5)(]3))[(()())(()(22222233-=-++=+-+=+ab ab b a b a ab b ab a b a ab b a 【变式2】(2022秋·浙江杭州·八年级杭州外国语学校校考期末)设m 是不小于﹣1的实数,使得关于x 的方程x 2+2(m ﹣2)x +m 2﹣3m +3=0有两个实数根x 1,x 2.(1)若x 21+x 22=2,求m 的值;(2)令T =mx 11―x 1+mx 21―x 2,求T 的取值范围.【答案】(1)1 (2)0<T ≤4且T ≠2【分析】首先根据方程有两个实数根及m 是不小于-1的实数,确定m 的取值范围,根据根与系数的关系,用含m 的代数式表示出两根的和、两根的积.(1)变形x 12+x 22为(x 1+x 2)2-2x 1x 2,代入用含m 表示的两根的和、两根的积得方程,解方程根据m 的取值范围得到m 的值;(2)化简T ,用含m 的式子表示出T ,根据m 的取值范围,得到T 的取值范围.(1)∵关于x 的方程x 2+2(m -2)x +m 2-3m +3=0有两个实数根,∴Δ=4(m -2)2-4(m 2-3m +3)≥0,解得m ≤1,∵m 是不小于-1的实数,∴-1≤m ≤1,∵方程x 2+2(m -2)x +m 2-3m +3=0x 1,x 2,∴x 1+x 2=-2(m -2)=4-2m ,x 1•x 2=m 2-3m +3.∵x 12+x 22=2,∴(x 1+x 2)2-2x 1x 2=2,∴4(m -2)2-2(m 2-3m +3)=2,整理得m 2-5m +4=0,解得m 1=1,m 2=4(舍去),∴m 的值为1;(2)T =mx 11―x 1+mx 21―x 2,=mx 1(1―x 2)+mx 2(1―x 1)(1―x 1)(1―x 2)=m [(x 1+x 2)―2x 1x 2]1―(x 1+x 2)+x 1x 2=m (4―2m ―2m 2+6m ―6)1―4+2m +m 2―3m +3=―2m(m ―1)2m 2―m=―2m(m ―1)2m (m ―1)=2-2m .∵当x =1时,方程为1+2(m ﹣2)+m 2﹣3m +3=0,解得m =1或m =0.∴当m =1或m =0时,T 没有意义.∴―1≤m <1且m ≠0∴0<2-2m ≤4且T ≠2.即0<T ≤4且T ≠2.【变式3】.已知12x x ,是一元二次方程24410kx kx k -++=的两个实数根.(1)是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值,若不存在,请说明理由;(2)若k 是整数,求使12212x x x x +-的值为整数的所有k 的值.【答案】(1)不存在k ;理由见解析;(2)235k =---,,.【详解】(1)假设存在实数k ,使()()12123222x x x x --=-成立.∵一元二次方程24410kx kx k -++=的两个实数根∴()()24004441160k k k k k k ≠⎧⎪⇒<⎨∆=--⋅+=-≥⎪⎩,又1x ,2x 是一元二次方程24410kx kx k -++=的两个实数根∴1212114x x k x x k +=⎧⎪+⎨=⎪⎩∴()()()()222121212121212222529x x x x x x x x x x x x --=+-=+-939425k k k +=-=-⇒=,但0k < .∴不存在实数k ,使()()12123222x x x x --=-成立.(2)∵()22212121221121244224411x x x x x x k x x x x x x k k +++-=-=-=-=-++∴要使其值是整数,只需1k +能整除4,∴11k +=±,2±,4±,注意到0k <,要使12212x x x x +-的值为整数的实数k 的整数值为-2,-3,-5.所以k 的值为235k =---,,【变式4】(2022秋·四川凉山·八年级校考阶段练习)设一元二次方程x 2―2022x +1=0的两根分别为a ,b ,根据一元二次方程根与系数的关系可知:ab =1,记S 1=11+a +11+b ,S 2=11+a2+11+b2,S3=11+a3+11+b3,⋯,S100=11+a100+11+b100,那么S1+S2+S3+⋯+S100=______.【答案】100【分析】根据ab=1得到b=1a ,b2=1a2,b3=1a3,…b100=1a100,代入计算即可.【详解】∵一元二次方程x2―2022x+1=0的两根分别为a,b,∴ab=1,∴b=1a ,b2=1a2,b3=1a3,…b100=1a100,∴S1=11+a+11+1a=11+a+a1+a=1+a1+a=1,S2=11+a2+11+1a2=11+a2+a21+a2=1+a21+a2=1,S100=11+a100+11+1a100=11+a100+a1001+a100=1+a1001+a100=1,∴S1+S2+S3+⋯+S100=1+1+1+…+1100=100,故答案为:100.。

最全最新初中数学竞赛专题讲解一元二次方程的求解

最全最新初中数学竞赛专题讲解一元二次方程的求解

初中数学竞赛专题讲解一元二次方程的求解方程是一种重要的数学模型,也是重要的数学思想之一。

有关方程的解的讨论问题一直是初中数学竞赛试题的热点与难点。

解决有关方程的解的讨论问题往往涉及到分类讨论、数形结合等数学思想。

1.形如方程的解的讨论:⑴若=0,①当=0时,方程有无数个解;②当≠0时,方程无解; ⑵若≠0,方程的解为=。

2.关于一元二次方程()0a ≠根的讨论,一般需应用到根的判别式、根与系数的关系等相关知识。

⑴若,则它有一个实数根1x =;若,则它有一个实数根1x =-。

⑵运用数形结合思想将方程()0a ≠根的讨论与二次函数()0a ≠的图象结合起来考虑是常用方法。

几个基本模型(1)设()()20f x ax bx c a =++≠,则()0f x =的两根12,x x ,满足12,m x x n <<的充要条件是202b m n a b af a ⎧<-<⎪⎪⎨⎛⎫⎪-≤ ⎪⎪⎝⎭⎩,()()00af m af n >⎧⎪⎨>⎪⎩(2)一般地设m n p <<,设()()20f x ax bx c a =++≠,则()0f x =的两根12,x x ,满足12,m x n x p <<>的充要条件是()()()000af m af n af p >⎧⎪<⎨⎪>⎩(3)一般地设m n p q <≤<设()()20f x ax bx c a =++≠,则()0f x =的两根12,x x ,满足12m x n p x q <<≤<<的充要条件是()()()()0000af m af n af p af q >⎧⎪<⎪⎨<⎪⎪>⎩(4)一般地设m n ≤设()()20f x ax bx c a =++≠,则()0f x =的两根12,x x ,满足12x m n x ≤≤≤的充要条件是()()00af m af n ≤⎧⎪⎨≤⎪⎩3.涉及分式方程根的讨论,一般考虑使公分母为零的整式方程的根(即原分式方程的增根)。

2023年初中数学竞赛讲义:一元二次方程

2023年初中数学竞赛讲义:一元二次方程

2023年初中数学竞赛讲义:一元二次方程一、引言一元二次方程是初中数学中重要的内容之一,在数学竞赛中也经常出现。

掌握一元二次方程的解法对于提高数学竞赛的成绩具有重要意义。

本讲义将系统地介绍一元二次方程的概念、性质以及解法,帮助大家在2023年初中数学竞赛中更好地应对与处理一元二次方程相关的题目。

二、一元二次方程的定义和性质2.1 定义一元二次方程是形如aa2+aa+a=0的方程,其中a aa0且a是未知数。

其中,a、a、a是已知数,分别称为二次项系数、一次项系数和常数项。

2.2 一元二次方程的图像特点一元二次方程的图像是一个抛物线,其开口方向取决于二次项系数a的正负。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

2.3 一元二次方程的解的性质一元二次方程的解有以下性质:•如果一元二次方程有解,则有两个解,可能相等也可能不相等。

•如果一元二次方程有两个不相等的实数解,则它们关于a轴对称。

•如果一元二次方程有两个相等的实数解,则它们落在同一条垂直于a轴的直线上。

三、一元二次方程的解法3.1 一元二次方程的解法分类一元二次方程的解法可以分为以下几种情况:1.直接套用求根公式法。

2.配方法解一元二次方程。

3.完全平方解一元二次方程。

4.图像法解一元二次方程。

3.2 直接套用求根公式法直接套用求根公式法是最基本的解一元二次方程的方法。

根据求根公式 $x = \\frac{-b \\pm \\sqrt{b^2-4ac}}{2a}$,我们可以直接将方程的系数带入公式求解。

3.3 配方法解一元二次方程配方法是解一元二次方程的常用方法。

其基本思想是通过合理的配方,将方程转化成完全平方形式,从而求得方程的解。

3.4 完全平方解一元二次方程完全平方解一元二次方程是一种简洁、直接的解法。

通过对方程进行平方操作,使其变形为完全平方形式,然后求解。

3.5 图像法解一元二次方程图像法是一种直观的解一元二次方程的方法。

《一元二次方程根与系数的关系》word版 公开课一等奖教案 (3)

《一元二次方程根与系数的关系》word版 公开课一等奖教案 (3)

当我们在日常办公时,经常会遇到一些不太好编辑和制作的资料。

这些资料因为用的比较少,所以在全网范围内,都不易被找到。

您看到的资料,制作于2021年,是根据最新版课本编辑而成。

我们集合了衡中、洋思、毛毯厂等知名学校的多位名师,进行集体创作,将日常教学中的一些珍贵资料,融合以后进行再制作,形成了本套作品。

本套作品是集合了多位教学大咖的创作经验,经过创作、审核、优化、发布等环节,最终形成了本作品。

本作品为珍贵资源,如果您现在不用,请您收藏一下吧。

因为下次再搜索到我的机会不多哦!方程应用本课教学反思本节课主要采用过程教案法训练学生的听说读写。

过程教案法的理论基础是交际理论,认为写作的过程实质上是一种群体间的交际活动,而不是写作者的个人行为。

它包括写前阶段,写作阶段和写后修改编辑阶段。

在此过程中,教师是教练,及时给予学生指导,更正其错误,帮助学生完成写作各阶段任务。

课堂是写作车间, 学生与教师, 学生与学生彼此交流, 提出反馈或修改意见, 学生不断进行写作, 修改和再写作。

在应用过程教案法对学生进行写作训练时, 学生从没有想法到有想法, 从不会构思到会构思, 从不会修改到会修改, 这一过程有利于培养学生的写作能力和自主学习能力。

学生由于能得到教师的及时帮助和指导,所以,即使是英语基础薄弱的同学,也能在这样的环境下,写出较好的作文来,从而提高了学生写作兴趣,增强了写作的自信心。

这个话题很容易引起学生的共鸣,比较贴近生活,能激发学生的兴趣, 在教授知识的同时,应注意将本单元情感目标融入其中,即保持乐观积极的生活态度,同时要珍惜生活的点点滴滴。

在教授语法时,应注重通过例句的讲解让语法概念深入人心,因直接引语和间接引语的概念相当于一个简单的定语从句,一个清晰的脉络能为后续学习打下基础。

此教案设计为一个课时,主要将安妮的处境以及她的精神做一个简要概括,下一个课时则对语法知识进行讲解。

在此教案过程中,应注重培养学生的自学能力,通过辅导学生掌握一套科学的学习方法,才能使学生的学习积极性进一步提高。

初中数学竞赛讲义一元二次方程公共根问题

初中数学竞赛讲义一元二次方程公共根问题

一元二次方程公共根问题若已知若干个一元二次方程有公共根,求方程系数的问题,叫一元二次方程的公共根问题,解题方法:1、直接求根法,再讨论根与根之间的公共关系。

2、由题意用以下解题步骤:若两个一元二次方程只有一个公共根,则:(1).设公共根为α,则α同时满足这两个一元二次方程;(2).用加减法消去α2的项,求出公共根或公共根的有关表达式;(3).把共公根代入原方程中的任何一个方程,然后通过恒等变形求出公共根.或求出字母系数的值或字母系数之间的关系式.例1 已知一元二次方程x2-4x+k=0有两个不相等的实数根,1.求k的取值范围.2.如果k是符合条件的最大整数,且一元二次方程x2-4x+k=0与x2+mx-1=0有一个相同的根,求此时m的值.解:(1)b²-4ac=16-4k>0, k<4;(2)由题意得:k=3.∴x²-4x+3=0,即(x-1)(x-3)=0,解方程,得x1=3,x2=1,当x=3时9+3m-1=0, m=-8/3,当x=1时,1+m-1=0,m=0。

∵m²+4>0 ∴此时 m 的值为m=0,或m=-8/3.例2 若两个关于x的方程x2+x+a=0与x2+ax+1=0只有一个公共的实数根,求a的值解:设两个方程的公共根为α,则有α2+α+a=0 ① α2+aα+1=0 ②①-②得(1-a )α+a -1=0,即(1-a )(α-1)=0因为只有一个公共根,所以a≠1,所以α=1把α=1代入x 2+x+a=0得12+1+a=0,a=-2又解:两个方程相减,得:x+a-ax-1=0,整理得:x (1-a )-(1-a )=0,即(x-1)(1-a )=0,若a-1=0,即a=1时,方程x 2+x+a=0和x 2+ax+1=0的b 2-4ac 都小于0,即方程无解;故a≠1,∴公共根是:x=1.把x=1代入方程有:1+1+a=0∴a=-2.例3、已知a >2,b >2,试判断关于x 的方程x 2-(a+b )x+ab=0与x 2-abx+(a+b )=0有没有公共根,请说明理由.解:不妨设关于x 的方程x 2-(a+b )x+ab=0与x 2-abx+(a+b )=0有公共根,设为x0,则有x 02−(a+b)x 0+ab =0① x 02−abx 0+(a+b)=02 整理可得(x 0+1)(a+b-ab )=0.∵a>2,b >2,∴a+b≠ab,∴x 0=-1; 把x 0=-1代入①得1+a+b+ab=0,这是不可能的.所以关于x 的两个方程没有公共根.又解:x 2- (a+b)x + ab = (x-a)(x-b) = 0 所以其两根分别是a 和 b若方程:x 2- abx + (a+b) = 0 有1根x = a,代入,得: a 2 – a 2b + a + b = 0 (b-1)a 2 - a - b = 0( (b-1)a - b ) ( a + 1 ) = 0得:a = b/(b-1) ,或 a = -1(a < 2 ,舍去) 由a = b/(b-1) > 2,(其中b-1>0),得: b > 2(b-1) 即:b < 2这与 b > 2 矛盾同理,方程:x 2 - abx + (a+b) = 0 有1根x = b,也能推出同样的矛盾所以两个方程没有公共根例4、求k 的值,使得一元二次方程210x kx +-=,2(2)0x x k ++-=有相同的根,并求两个方程的根.解答:不妨设a 是这两个方程相同的根,由方程根的定义有a 2+ka-1=0,①a 2+a+(k-2)=0.②①-②有ka-1-a-(k-2)=0,即(k-1)(a-1)=0,所以k=1,或a=1.(1)当k=1时,两个方程都变为x 2+x-1=0,所以两个方程有两个相同的根,没有相异的根;(2)当a=1时,代入①或②都有k=0,此时两个方程变为x 2-1=0,x 2+x-2=0.解这两个方程,x 2-1=0的根为x 1=1,x 2=-1;x 2+x-2=0的根为x 1=1,x 2=-2.∴x=1为两个方程的相同的根.例5二次项系数不相等的两个二次方程222(1)(2)(2)0a x a x a a --+++=和 222(1)(2)(2)0b x b x b b --+++=(其中a ,b 为正整数)有一个公共根,求ab ba b a a a --++的值。

初中数学竞赛精品标准教程及练习45一元二次方程的根

初中数学竞赛精品标准教程及练习45一元二次方程的根

初中数学竞赛精品标准教程及练习45一元二次方程的根一、一元二次方程的定义及基本知识回顾一元二次方程是指形如ax²+bx+c=0的方程,其中a、b、c为已知数,且a≠0。

求解一元二次方程的根需要运用二次根公式:x=(-b±√(b²-4ac)) / (2a)。

其中,当b²-4ac>0时,方程有两个不相等的实根;当b²-4ac=0时,方程有两个相等的实根;当b²-4ac<0时,方程无实根,但有两个共轭复根。

二、一元二次方程的解法解一元二次方程主要有以下几种方法:1.因式分解法:当方程为(x-p)(x-q)=0时,利用“互为相反数”的性质,得出方程的解为x=p或x=q。

2.公式法:对于一般的一元二次方程ax²+bx+c=0,带入二次根公式,即可求解方程的根。

3.完全平方公式法:对于形如(x+p)²=q的方程,利用完全平方公式可解出方程。

三、一元二次方程的根与系数的关系对于一元二次方程ax²+bx+c=0,根与系数之间有一定的关系,如下所示:1. 判别式:Δ=b²-4ac判别式Δ可以用来判断一元二次方程的根的情况。

当Δ>0时,方程有两个不相等的实根;当Δ=0时,方程有两个相等的实根;当Δ<0时,方程无实根,但有两个共轭复根。

2.根与系数的关系:设方程ax²+bx+c=0的根为x₁和x₂,则有以下关系成立:x₁+x₂=-b/ax₁x₂=c/a四、一元二次方程的应用题1.平方差公式的应用:已知两个数的和与差,求这两个数。

设这两个数为x和y,已知x+y=A,x-y=B,则由平方差公式可得x=(A+B)/2,y=(A-B)/22.求解图形问题:已知一元二次方程的解为一些图形的边长、面积或体积等,利用解二次方程可以求解出图形的相关信息。

3.求解时间问题:已知一些过程中的速度和时间,求解该过程的距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学竞赛讲义一元二次方程公共根问题精编W O R D版IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】一元二次方程公共根问题若已知若干个一元二次方程有公共根,求方程系数的问题,叫一元二次方程的公共根问题,解题方法:1、直接求根法,再讨论根与根之间的公共关系。

2、由题意用以下解题步骤:若两个一元二次方程只有一个公共根,则:(1).设公共根为α,则α同时满足这两个一元二次方程;(2).用加减法消去α2的项,求出公共根或公共根的有关表达式;(3).把共公根代入原方程中的任何一个方程,然后通过恒等变形求出公共根.或求出字母系数的值或字母系数之间的关系式.例1 已知一元二次方程x2-4x+k=0有两个不相等的实数根,1.求k的取值范围.2.如果k是符合条件的最大整数,且一元二次方程x2-4x+k=0与x2+mx-1=0有一个相同的根,求此时m的值.解:(1)b2-4ac=16-4k>0, k<4;(2)由题意得:k=3.∴x2-4x+3=0,即(x-1)(x-3)=0,解方程,得x1=3,x2=1,当x=3时9+3m-1=0, m=-8/3,当x=1时,1+m-1=0,m=0。

∵m2+4>0 ∴此时 m 的值为m=0,或m=-8/3.例2 若两个关于x的方程x2+x+a=0与x2+ax+1=0只有一个公共的实数根,求a的值解:设两个方程的公共根为α,则有α2+α+a=0 ① α2+aα+1=0 ②①-②得(1-a)α+a-1=0,即(1-a)(α-1)=0因为只有一个公共根,所以a≠1,所以α=1把α=1代入x2+x+a=0得12+1+a=0,a=-2又解:两个方程相减,得:x+a-ax-1=0,整理得:x(1-a)-(1-a)=0,即(x-1)(1-a)=0,若a-1=0,即a=1时,方程x2+x+a=0和x2+ax+1=0的b2-4ac都小于0,即方程无解;故a≠1,∴公共根是:x=1.把x=1代入方程有:1+1+a=0∴a=-2.例3、已知a>2,b>2,试判断关于x的方程x2-(a+b)x+ab=0与x2-abx+(a+b)=0有没有公共根,请说明理由.解:不妨设关于x的方程x2-(a+b)x+ab=0与x2-abx+(a+b)=0有公共根,设为x0,则有x02(a+b)x+ab=0① x2abx+(a+b)=02整理可得(x0+1)(a+b-ab)=0.∵a>2,b>2,∴a+b≠ab,∴x=-1;把x=-1代入①得1+a+b+ab=0,这是不可能的.所以关于x的两个方程没有公共0根.又解:x2- (a+b)x + ab = (x-a)(x-b) = 0?所以其两根分别是a 和 b?若方程:x2- abx + (a+b) = 0 有1根x = a,代入,得:a2– a2b + a + b = 0?(b-1)a2 - a - b = 0?( (b-1)a - b ) ( a + 1 ) = 0?得:a = b/(b-1) ,或 a = -1(a < 2 ,舍去)由a = b/(b-1) > 2,(其中b-1>0),得:b > 2(b-1)即:b < 2?这与 b > 2 矛盾?同理,方程:x2 - abx + (a+b) = 0 有1根x = b,也能推出同样的矛盾?所以两个方程没有公共根例4、求k 的值,使得一元二次方程210x kx +-=,2(2)0x x k ++-=有相同的根,并求两个方程的根.解答:不妨设a 是这两个方程相同的根,由方程根的定义有a 2+ka-1=0,①a 2+a+(k-2)=0.②①-②有ka-1-a-(k-2)=0,即(k-1)(a-1)=0,所以k=1,或a=1.(1)当k=1时,两个方程都变为x 2+x-1=0,所以两个方程有两个相同的根,没有相异的根;(2)当a=1时,代入①或②都有k=0,此时两个方程变为x 2-1=0,x 2+x-2=0.解这两个方程,x 2-1=0的根为x 1=1,x 2=-1; x 2+x-2=0的根为x 1=1,x 2=-2.∴x=1为两个方程的相同的根.例5二次项系数不相等的两个二次方程222(1)(2)(2)0a x a x a a --+++=和222(1)(2)(2)0b x b x b b --+++=(其中a ,b 为正整数)有一个公共根,求a b b a b a a a --++的值。

解答:由方程(a-1)x 2-(a 2+2)x+(a 2+2a )=0得,[(a-1)x-(a+2)](x-a )=0x 2=a ;同理可由方程(b-1)x 2-(b 2+2)x+(b 2+2b )=0?解得x 2=b ;∵a,b 为不相等的正整数,而两个方程有一个公共根.所以a-1只能为1或3,即a=2,b=4,或a=4,b=2.(若有也是同样的结果)当a=2,b=4,(把a=4,b=2代入计算的结果一样)例6已知关于x 的两个一元二次方程:方程①:01)2()21(2=-+++x k x k 方程②:032)12(2=--++k x k x(1)若方程①有两个相等的实数根,求解方程②;(2)若方程①和②中只有一个方程有实数根,请说明此时哪个方程没有实数根,并化简(3)若方程①和②有一个公共根a ,求代数式a a k a a 53)24(22++-+的值. 解答:练习:1.已知关于x 的一元二次方程062=+-k x x 有两个实数根。

(1)求k 的取值范围;(2)如果k 取符合条件的最大整数,且一元二次方程062=+-k x x 与012=-+mx x 有一个相同的根,求常数m 的值。

解(1) ∵,∴k≤9;(2) ∵k 是符合条件的最大整数且k≤9,∴k=9,当k=9时,方程x2-6x+9=0的根为x1=x2=3;把x=3代入方程x2+mx-1=0得9+3m-1=0,∴m=-8/32.已知一元二次方程042=+-k x x 有两个实数根。

(1)求k 的取值范围;(2)如果k 取符合条件的最大整数,且一元二次方程042=+-k x x 与012=-+mx x 有一个相同的根,求此时m 的值。

解答:(1)△>0解得k<4(2)k 是最大整数,说明k=3x 2-4x+k=0的根是1和3x 2+mx-1=0的根是1时,m=0x 2+mx-1=0的根是3时,m=-8/33.已知21,x x 是一元二次方程032)1(2=-+++k kx x k 有两个不相等的实数根。

(1)求k 的取值范围;(2)在(1)的条件下,当k 取符合条件的最小整数时一元二次方程02=+-k x x 与022=-+m mx x 只有一个相同的根,求m 的值。

解答:(1)∵方程有两个不相等的实数根,∴△=b 2-4ac=(2k )2-4(k+1)(k-3)>0解得k >-3/2∵方程是一元二次方程∴k+1≠0,∴k≠-1.∴实数k 的取值范围为:k >-3/2且k≠-1.(2)由(1)可得:k 取最小整数时k=0.∴x 2-x+0=0,解得x 1=0,x 2=1.①把x=0代入x 2+mx-m 2=0,m=0.②把x=1代入x 2+mx-m 2=0得,m 2-m-1=0,解得m=4、已知方程072=--kx x 与方程0)1(62=+--k x x 有公共根,求k 的值及两方程的所有公共根和所有的相异根。

解答:设两个方程公共根为x ,依题意得X2kx7=0①X26x(k+1)=0②②-①得,(-6+k)x+(6-k)=0,当-6+k=0,即k=6时,x取任意值,两个方程得解都相同.两个方程是同一个式子.方程得解是x1=7,x2=-1;当k≠6时,解得x=1.把x=1代入x2-kx-7=0得,1-k-7=0,k=-6.于是两方程为:x2+6x-7=0③,x1=1,x2=-7.X2-6x+5=0④,x1=1,x2=5.故答案为:k=-6;其公共根为1,相异根为:-7和5.5.关于x的方程x2+bx+1=0与x2-x-b=0有且只有一个公共根,求b的值.解:设方程的公共根为x=t,则T2+bt+1=0 (1)T2tb=0 (2),由(2)得b=t2-t(3)将(3)代入(1)得:t 3+1=0,解得,t=-1,当t=-1时,b=2.●变式:若两个方程x 2+ax+b=0和x 2+bx+a=0只有一个公共根,则( )A .a=bB .a+b=0C .a+b=1D .a+b=-1.解:设公共根为x 0,则?x 02+ax 0+b=0 ① x 02+bx 0+a=0 ②.①-②,得(a-b )(x 0-1)=0,当a=b 时,方程可能有两个公共根,不合题意;当x 0=1时,所以1+a+b=0,a+b=-1.故选D .●变式:已知实数a,b 满足a2+b2=1,且方程x2+ax+b=0和x2+bx+a=0至少有一个公共根,求a 、b 的值解:第一种情况:有两个相同的根,则a=b,即a=b=±2第二种情况:有一个相同的根,则x2+ax+b=0和x2+bx+a=0,两式作差,得(a-b )(x-1)=0可得x=1可得a+b+1=0加上a 2+b 2=1,可解得a=-1,b=o 或a=0,b=-16.若方程02=++b ax x 和02=++a bx x 只有一个公共根,求2012)(b a +的值。

解答:设公共根为t ,则t 2+at+b=0,t 2+bt+a=0,∴(a-b )t=a-b ,∵t 有唯一的值,∴a -b≠0,∴t=1,把t=1代入x 2+ax+b=0得a+b+1=0.a+b=-1 故答案是(-1)2012=17.当p 是什么实数时,方程032=-+px x 与方程0)1(42=---p x x 有一个公共根。

解答:X 2-4x-p+1=0.(1)x 2+px-3=0.(2)(2)-(1):(x+1)p+4x-4=0?p=4(1-x)/(x+1)代入(2):x 2+4x(1-x)/(1+x)-3=0?x 3-3x 2+x-3=0?(x 2+1)(x-3)=0?x=3?p=4(1-3)/(1+3)=-28.设a 、b 、c 为三个互不相等的实数,且1≠c ,已知关于x 的方程012=++ax x 和方程02=++c bx x 有一个公共根,方程02=++a x x 和方程02=++b cx x 有一个公共根,试求c b a ++的值。

分析:设x12+ax1+1=0,x12+bx1+c=0,得x1=,同理,由x22+x2+a=0,x22+cx2+b=0,得x2=(c≠1),再根据韦达定理即可求解.解答:解:设x12+ax1+1=0,x12+bx1+c=0,两式相减,得(a-b )x1+1-c=0,解得x1=,同理,由x22+x2+a=0,x22+cx2+b=0,得x2=(c≠1),∵x2=,∴是第一个方程的根,∵x1与是方程x12+ax1+1=0的两根,∴x2是方程x2+ax+1=0和x2+x+a=0的公共根,因此两式相减有(a-1)(x2-1)=0,当a=1时,这两个方程无实根,故x2=1,从而x1=1,于是a=-2,b+c=-1,所以a+b+c=-3.9.已知方程①:02=++c bx ax ,(其中0≠c )有整数根,是否存在整数p ,使得方程②:0)()(23=+++++c x p b x p a x 与方程①有相同的整数根?如果存在,请求出p 的值及相应的公共根,若不存在,请说明理由。

相关文档
最新文档