第四章++基因在大肠杆菌和酵母的高效表达
第四章基因在大肠杆菌、酵母中的高效的表达

第四章基因在大肠杆菌、酵母中的高效的表达前言基因表达是指结构基因在生物体中的转录、翻译以及所有加工过程。
基因工程主要目标之一是生产常规方法难以生产的大量蛋白质产物—即实现基因的高效表达。
基因高效表达研究是指外源基因在某种细胞中的表达活动,即剪切下外源基因片段,拼接到另一个基因表达体系中,使其能获得原生物活性又可高产的表达产物。
第一节基因的表达系统与表达策略一、最佳的基因表达体系:⑴目的基因的表达产量高;⑵表达产物稳定;⑶生物活性高;⑷表达产物容易分离纯化。
二、宿主细胞的选择(一)适合目的基因表达的宿主细胞的要求:1、容易获得较高浓度的细胞;2、能利用易得廉价原料;3、不致病、不产生内毒素;4、发热量低、需氧低、适当的发酵温度和细胞形态;5、容易进行代谢调控;6、容易进行DNA重组技术操作;7、产物的产量、产率高,8、产物容易提取纯化。
(二)宿主细胞分为两大类:1、原核细胞:常用有大肠杆菌、枯草芽胞杆菌、链霉菌等;2、真核细胞:常用有酵母、丝状真菌、哺乳动物细胞等。
大肠杆菌目前仍是基因工程研究中采用最多的原核表达体系。
优越性:①对大肠杆菌的基础生物学、分子遗传学等背景知识和基因表达的调控机理已有了深刻了解。
②有各类菌株和载体系列。
③目前以实现多种基因的高效表达。
表达基因产物形式多样:细胞内不溶性表达(包含体)、细胞内可溶性表达、细胞周质表达等。
④易培养,成本低。
缺点:①大肠杆菌中的表达不存在信号肽,产品多为胞内产物,提取困难。
②因分泌能力不足,真核蛋白质常形成不溶性的包含体,表达产物需经变性复性才恢复活性。
③蛋白质不能糖基化。
产物蛋白质N端多余一个蛋氨酸残基。
④其内毒素很难除去。
酵母酵母菌是研究基因表达最有效的单细胞真核微生物。
其基因组小,世代时间短,有单倍体双倍体两种形式,繁殖迅速,无毒性。
能外分泌,产物可糖基化。
已有不少真核基因成功表达。
三、根据表达蛋白用途选择基因的表达策略1.生物化学和分子生物学研究2.表达蛋白质用作抗原3.结构研究真核基因表达的特点●一条成熟的mRNA只能翻译成一条多肽,不存在象原核生物那样的多基因操纵子模式;●基因转录调节区很大,而且往往远离启动子达几百个甚至上千个碱基,它们并不直接影响RNA聚合酶与启动子区的结合,而是通过改变基因5’上游区DNA的构型来影响RNA聚合酶与启动子区的结合;●mRNA合成后穿过核膜进入细胞质中后才进行翻译工作,而且通常都有复杂的成熟和剪接过程;●基因的启动子区和原核基因差异很大,而且有增强子序列存在。
基因工程课后习题答案

2.质粒DNA和病毒(噬菌体)DNA作为载体的主要特征是什么为外源基因提供进入受体细胞的转移能力;为外源基因提供在受体细胞中的复制能力或整合能力;为外源基因提供在受体细胞中的扩增和表达能力;具有多种单一的核酸内切酶识别切割位点,具有合适的选择标记3.如何理解质粒的不相容性及其在DNA重组克隆过程中的运用意义质粒的不相容性:具有相同或相似复制子结构及调控模式的两种不同的质粒不能稳定存在于同一受体细胞内.4.列举表达质粒、穿梭质粒、探针质粒和cos质粒的不同用途表达质粒:在多克隆位点的上下游分别装有两套转录效率较高的启动子、合适的核糖体结合位点序列(SD)序列以及强有力的终止子结构,使得克隆在合适位点上的任何外源基因均能在受体细胞中高效表达。
穿梭质粒:质粒分子上含有两个亲缘关系不同的复制子以及相应的选择性标记,能在两种不同的受体细胞中复制并检测。
探针质粒:用来筛选克隆基因的表达调控元件。
通常含有报告基因,但缺少相应的调控序列(如启动子或终止子),只有含有启动子或终止子的调控序列被克隆进入载体后,报告基因才能别表达,表达量的大小直接反应了克隆进入的调控元件的强弱。
cos质粒:人工构建的含有λDNA的cos位点序列和质粒复制子的特殊类型的质粒载体。
具有大的装载量,可以用于构建基因组文库。
5. II类限制性核酸内切酶的主要酶学特征是什么分子量较小的单体蛋白,双链识别和切割活性仅需Mg2+,识别位点为4-6个bp的回文序列,切割位点在识别序列中或靠近识别序列7. KLenow酶与大肠杆菌DNA聚合酶I在结构和功能上的主要区别DNA聚合酶I包括大片段(klenow片段)和小片段功能上:DNA聚合酶I比klenow酶多了5’→3’核酸外切酶活性,两者都具有5’→3’DNA聚合酶活性和3’→5’核酸外切酶活性。
8.影响限制性核酸内切酶活性的主要因素有哪些?温度、盐度等物理因素,DNA样品纯度,DNA甲基化程度,限制性核酸内切酶的缓冲液性质,甘油和微量的金属离子会抑制限制性内切酶的活性9.如何理解粘性末端比平头末端更容易连接在退火条件下,粘性末端的连接为分子内反应,平头末端是分子间反应,平头末端的连接反应更加复杂,速度也慢。
基因工程第四章载体

(4) 插入失活型质粒载体
载体的克隆位点位于其某一个选择性 标记基因内部。
如pDF41、pDF42、pBR329。
外源DNA
抗菌素抗性
无抗菌素抗性
(5)正选择的质粒载体 Direct selection vectors
直接选择转化后的细胞。
只有带有选择标记基因的转化菌细胞才 能在选择培养基上生长。
如pUR2、pTR262等。
目前通用的绝大部分质粒载体都是正 选择载体。
(6) 表达型质粒载体
主要用来使外源基因表达出蛋白质产物。
注意启动子的性质,终止子、起始 密码、终止密码的阅读正确。
如果在大肠杆菌里表达,必须把所克隆的 真核生物的基因置于大肠杆菌的转录—翻 译信号控制之下。
表达载体的结构
1)普通载体元件
b)细菌抗性原理 Ampr基因编码-内酰胺酶,特异地 切割氨苄青霉素的-内酰胺环。
ii)氯霉素(chloramphenicol,Cml)
a)抑菌原理 通过与50S核糖体亚基结合,干扰细胞 蛋白质的合成并阻止肽键的形成。杀死 生长的细菌。
b)细菌抗性原理
Cmlr 编码乙酰转移酶,特异地使氯霉 素乙酰化而失活。
(2)长度 6.3 kb。
(3)选择标记
大肠杆菌素(colicin)E1和对E1免疫 的基因(immE1)
① colicin E1基因的结构
cea 结构基因
imm
kil
免疫基因 溶菌基因
② 杀死不含有ColE1细菌的原因 cea + kil基因产物
③ 不被其他细菌的colicin E1所杀死的原因 imm基因
① 双抗菌素抗性选择标记 插入失活,分两次先后选择: 没有获得载体的寄主细胞 在Amp或Tet中都死亡。
第4章 基因在大肠杆菌和酵母中的表达

降低包含体形成的措施: 降低培养温度;诱导物浓度; 培养基中加入添加剂;培养基组分、pH等。
包含体复性方法: 尿素; 透析、稀释和超滤复性法; PEG、TritonX、肝素、人工伴侣等
原核表达系统的优点与不足
优点:
产量高、表达高效; 操作简单(可调控表达、方便纯化); 可大规模发酵生产; 成本低。
不足:
缺乏真核中的修饰系统,产物有时缺乏活性。 表达产物易形成包含体。
第二节 真核表达——目的 基因在酵母中的表达
酵母菌表达外源蛋白的优点:
遗传背景清楚 属真核模式生物,具备蛋白质翻译后加 工系统 可发酵生产 不产生内毒素,属安全的表达系统
2
ü 优点: 1. 由于周质中蛋白质种类比较少,因此目标
蛋白质的纯化就比较简单
2. 蛋白质酶解的程度不甚严重
3. 促进了二硫键的形成及蛋白质的折叠作用 (氧化环境)
4. 蛋白质的N-末端结构真实
正确折叠的蛋白质,在转运过程中,在 体内对信号肽进行切割
五、包含体及复性
包含体(inclusion body):蛋白质在大肠杆菌中 大量表达时,在胞内聚集形成不可溶的、没有生物 活性的固体颗粒。
T7 RNA聚合酶/T7启动子的优点:
合成RNA的速度高;
只识别T7启动子,不启动其它基因的转录;
对利福平(能抑制大肠杆菌RNA聚合酶)等抗 生素有抗性,能表达一些大肠杆菌RNA聚合酶 不能转录的序列;
产物量大,可达总蛋白的25%以上。
1
94kDa 67 kDa 43 kDa
Ch05 基因在大肠杆菌酵母中的高效表达(part two)课件

(2) 碱金属离子介导的酵母菌完整细胞的转化
酿酒酵母的完整细胞经碱金属离子(如Li+等)、PEG、热休克 处理后,也可高效吸收质粒DNA,而且具有下列特性:
吸收线型DNA的能力明显大于环状DNA,两者相差80倍 共转化现象极为罕见
(3) 酵母菌电击转化法
酵母菌原生质体和完整细胞均可在电击条件下吸收质 粒DNA,但在此过程中应避免使用PEG,它对受电击的细 胞具有较很大的负作用。电击转化的优点是不依赖于受体 细胞的遗传特征及培养条件适用范围广,而且转化率可高 达105 / mg DNA。
乙型肝炎病毒的包装蛋白编码基因
108 aaLeabharlann 55 aaATGATG ATG
preS1 preS2
399 aa
226 aa 281 aa
226 aa S
TAA
S 多肽 M 多肽 L 多肽
传统乙肝疫苗的制备
乙肝病毒在体外细胞培养基中并不能繁殖,因此第 一代的乙肝疫苗是从病毒携带者的肝细胞质膜上提取出 来的。
用于酵母菌转化子筛选的标记基因主要有营养缺陷型 互补基因和显性标记基因两大类 (1) 营养缺陷型的互补基因
营养缺陷型互补基因主要有氨基酸和核苷酸生物合成基因,如: LEU、TRP、HIS、LYS、URA、ADE
但对于多倍体酵母来说,筛选营养缺陷型的受体非常困难
(2) 显性标记基因
显性标记基因的编码产物主要是毒性物质的抗性蛋白
目的基因能高效整合入酵母菌特定的染色体DNA区域
4.2.4 酵母菌的转化系统
酵母菌的转化程序 转化质粒在酵母细胞中的特点 用于转化子筛选的标记基因
4.2.4.1 酵母菌的转化程序
(1) 酵母菌原生质体转化法 早期酵母菌的转化都采用在等渗缓冲液中稳定的原生质 体转化法 原生质体转化法的一个显著特点是:一个受体细胞可同 时接纳多个质粒分子
极端耐热木聚糖酶基因在大肠杆菌和毕赤酵母中的高效表达

极端耐热木聚糖酶基因在大肠杆菌和毕赤酵母中的高效表达杨梦华;李颖;关国华;江正强【期刊名称】《微生物学报》【年(卷),期】2005(45)2【摘要】以海栖热袍菌 (Thermotoga maritima) MSB8菌株基因组DNA为模板,通过PCR扩增出木聚糖酶(XylanaseB)基因, 将此基因克隆至大肠杆菌表达载体pET-28a(+)和毕赤酵母表达载体pPIC9K,并分别转化大肠杆菌 BL21和毕赤酵母GS115.该木聚糖酶在大肠杆菌细胞中表达量高, 但不能分泌; 而在毕赤酵母细胞的表达产物可分泌至胞外.酶学性质分析表明,此酶分子量约为40kD,其最适反应温度为90℃, 最适反应pH值为6.65,且在碱性条件下稳定,具有重要的工业应用前景.【总页数】5页(P236-240)【作者】杨梦华;李颖;关国华;江正强【作者单位】中国农业大学生物学院,北京,100094;中国农业大学生物学院,北京,100094;中国农业大学生物学院,北京,100094;中国农业大学食品科学与营养工程学院,北京,100083【正文语种】中文【中图分类】Q786【相关文献】1.木聚糖酶Xyn43A基因在大肠杆菌及毕赤酵母中的表达比较 [J], 周晨妍;刘振华;王丹丹;李同彪;朱新术;王燕2.极端耐热木聚糖酶基因在大肠杆菌中的高效表达 [J], 薛业敏;毛忠贵;邵蔚蓝3.耐热木聚糖酶基因在毕赤酵母中的表达及酶学性质 [J], 张慧敏;李剑芳;邬敏辰;魏喜换;杨严俊4.链霉菌Streptomyces olivaceoviridis A1 木聚糖酶基因xynA在大肠杆菌及毕赤酵母中的高效表达 [J], 张红莲;姚斌;王亚茹;袁铁峥;张王照;伍宁丰;范云六5.短小芽孢杆菌β-1,4-木聚糖酶基因在大肠杆菌中的高效表达 [J], 刘伟丰;毛爱军;祝令香;乔宇;于巍;董志扬因版权原因,仅展示原文概要,查看原文内容请购买。
基因在大肠杆菌和酵母的高效表达

MCS
T7启动子 lacZ pET28a 结构
三、 蛋白质的融合表达
蛋白质融合表达是指外源基因与载体已有的担体蛋白的 编码基因拼接在一起,并作为一个新的开放阅读框进行
表达。
在这种融合蛋白结构中,通常载体的担体蛋白部分位于
N端,目的蛋白位于C端。
通过人工设计引入的蛋白酶切割位点或化学试剂特异性
载体与受体系统
载体:pET表达系统(pET15,pET16,pET28,pET30,pET42 等a/b/c三套,及pRSET)
大肠杆菌菌株:BL21(DE3)和BL21(DE3)pLysS。(DE3)菌株基 因组上以溶原形式携带一个克隆的T7RNA聚合酶基因,IPTG (异丙基硫代β-D-半乳糖苷)可诱导T7RNA聚合酶大量合 成。
4.3 基因在酵母中的高效表达 4.3.1 酵母表达系统概述 4.3.2 甲醇酵母表达系统 4.3.3 组织纤溶酶原激活剂在甲醇酵母中的表达
第一节 基因的表达系统与表达策略
基因的表达系统 基因的高效表达策略
一、基因的表达系统
表达载体的组成:
DNA复制及质粒DNA的筛选: 有DNA复制起点ori, 性基因 及Amp, Tet抗
融合型目的蛋白表达系统的构建
用于融合蛋白构建的担体蛋白: 谷胱甘肽转移酶(GST) 维持良好空间构象 免疫亲和层析 pRIT2T
金黄色葡萄球菌蛋白A(SAPA)
硫氧化还原蛋白(TrxA)
b-半乳糖苷酶(LacZ) 泛素蛋白(Ubi)
本章目录
4.1 基因的表达系统与表达策略 4.1.1 基因的表达系统 4.1.2 根据表达蛋白用途选择基因的表达策略 4.2 基因在大肠杆菌中的高效表达 4.2.1 基于T7噬菌体RNA聚合酶/启动子的大肠杆菌表达系统 4.2.2 蛋白质的融合表达 4.2.3 蛋白质的分泌型表达 4.2.4 蛋白质的包含体形式表达与蛋白质复性
外源基因在大肠杆菌中的表达

PL 和 PR 表达系统
转录调控的机理
由 l 噬菌体 PE 启动子控制的 cI 基因的产物是 PL 、 PR 启动子转录的
阻遏物。cI 基因的产物在大肠杆菌宿主中的浓度取决于一系列宿主与 噬菌体因子之间的错综复杂的平衡关系。由于通过细胞因子来控制cI 基因产物的产生和消失是相当困难的。
由于 PL 和 PR 表达系统诱导时不加化学诱导剂,成本又低廉,最初几 个在大肠杆菌中制备的药用重组蛋白质都采用 PL 或 PR 表达系统。
缺陷 在热脉冲诱导过程中,大肠杆菌热休克蛋白的表达也会被激活,其 中一些是蛋白水解酶,有可能降解所表达的重组蛋白。 在大体积发酵培养菌体时,通过热平衡交换方式把培养温度从30℃ 提高到 42℃ 需要较长的时间,这种缓慢的升温方式影响诱导效 果,对重组蛋白表达量有一定的影响。
T7 表达系统
大肠杆菌 T7 噬菌体具有一套专一性非常强的转录体系,利用这一 体系中的元件为基础构建的表达系统称为 T7 表达系统。
T7 表达系统
T7 噬菌体基因 1 编码的 T7 RNA 聚合酶选择性的激活 T7 噬菌体启 动子的转录。
T7 RNA 聚合酶活性高,其合成 RNA 的速度比大肠杆菌 RNA 聚合 酶快 5倍左右。并可以转录某些不能被大肠杆菌 RNA聚合酶有效转 录的序列。
对宿主菌的要求
用溶源化 l 噬菌体的大肠杆菌作 PL、PR 启动子表达载体的宿主菌
N4830-1,POP2136 等菌株已经溶源化 cI 857(ts) l 噬菌体, 可用作表达外源基因时的宿主菌。 把 cI 857(ts) 基因组装在表达载体上 宿主菌选择范围更大
PL 和 PR 表达系统存在的问题
这两个启动子受在培养基中的无机磷(Pi)浓度调控(Pi﹥5mmol/L 时抑制,Pi﹤1mmol/L 时激活),具有较高的转录水平。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
断裂位点,可以在体外从纯化的融合蛋白分子中释放回
收目的蛋白。
谷胱甘肽S-转移
酶(GST)融合蛋
白表达系统
pGEX载体
酶促裂解法:多残基位点
亲和层析
启动子 担体基因 接头 目的基因
表达
Met
Arg Ile-Glu-gly-Arg
Stop
凝血因子Xa的识别、作用序列
Ile-Glu-gly-Arg
酶解回收
MCS
T7启动子 lacZ pET28a 结构
三、 蛋白质的融合表达
蛋白质融合表达是指外源基因与载体已有的担体蛋白的 编码基因拼接在一起,并作为一个新的开放阅读框进行
表达。
在这种融合蛋白结构中,通常载体的担体蛋白部分位于
N端,目的蛋白位于C端。
通过人工设计引入的蛋白酶切割位点或化学试剂特异性
HS
A S
HS
S
+ 2e + 2H+
HS
+ R-S-S-R
B
S-S-R
S S
HS
HS
2R-SH
六、
利用重组大肠杆菌生产人胰岛素
胰岛素的结构及其生物合成 人胰岛素的生产方法 重组人胰岛素的大肠杆菌工程菌的构建
胰岛素的结构及其生物合成
N C
信号肽
B 肽
信号肽酶
C 肽
A 肽
C 肽(31)
K R S S S N S S C
分泌表达的优点:
①信号肽被切除后的蛋白质N末端的氨基酸序列与天然蛋白 是一致的 ②周质空间中的蛋白酶活性比细胞质中的要低,从而使蛋 白质较稳定地存在于周质中 ③周质中只有少量的细菌蛋白,使分离纯化更容易 ④周质空间存在一个氧化的环境,使得二硫键更容易形成
五 性
蛋白质的包含体形式表达与蛋白质复
蛋白修饰法,氨基柠檬酸酐酰化,蛋白带负电,抑制集聚
分子伴侣法,GroEL、GroES、DnaK,固定化,共表达
包涵体的变性与复性操作
包涵体的重折叠(refolding):二硫键形成
化学氧化法(A)需要电子受体,最廉价的电子受体为空气,二硫键形成随 机的,仅适用于那些不含游离半胱氨酸残基的蛋白质的重折叠 二硫键交换(B)需要还原型和氧化型谷胱甘肽(GSH和GSSG),二硫键形成 相对特异,因此适用性较广,重折叠效果好
极端pH:廉价,但许多蛋白质在极端pH条件下发生修饰反应
包涵体的变性与复性操作
(2)包涵体的复性与重折叠(refolding):
包涵体的复性与重折叠的主要任务是: 将多肽链中被拆开的游离巯基重新折叠
通过次级键的形成使蛋白质复性
包涵体的变性与复性操作
包涵体的复性
分段稀释法,逐步降低变性剂的浓度,防止二次集聚的发生 试剂添加法,精氨酸、甘氨酸、甘油、蔗糖、PEG、Ca2+
载体与受体系统
载体:pET表达系统(pET15,pET16,pET28,pET30,pET42 等a/b/c三套,及pRSET)
大肠杆菌菌株:BL21(DE3)和BL21(DE3)pLysS。(DE3)菌株基 因组上以溶原形式携带一个克隆的T7RNA聚合酶基因,IPTG (异丙基硫代β-D-半乳糖苷)可诱导T7RNA聚合酶大量合 成。
在某些生长条件下,大肠杆菌能积累某种特殊的生物大分子, 它们致密地集聚在细胞内,或被膜包裹或形成无膜裸露结构, 这种水不溶性的结构称为包涵体(Inclusion Bodies,IB)。
蛋白质的包涵体多见于生长在含有氨基酸类似物培养基的大 肠杆菌细胞中,由这些氨基酸类似物所合成的蛋白质往往会 丧失其理化特性和生物功能,从而集聚形成包涵体。 由高效表达质粒构建的大肠杆菌工程菌大量合成非天然性的 同源或异源蛋白质,后者在一般情况下也以包涵体的形式存 在于细菌细胞内。
目的蛋白稳定性高 目的蛋白易于分离 目的蛋白表达率高
目的蛋白溶解性好
目的蛋白需要回收
目的蛋白的回收
化学断裂法:如溴化氰(CNBr)它与多 肽链中的甲硫氨酸残基侧链的硫醚基反 应,生成溴化亚氨内酯,后者不稳定, 在水的作用下肽键断裂,形成两个多肽 降解片段。
酶促裂解法
酶促裂解法:单残基位点
蛋白内切酶 切割位点 Arg-C Glu-C Lys-C Arg-C Lys-C 担体蛋白
哺乳动物细胞系
可以悬浮培养, 生 长快, 连续传代 精确的糖基化 胞外表达 人本身的细胞系, 人的表达系统
二、基因的高效表达策略
用于生物化学和分子生物学研究: 重点考虑如何保持 蛋白质原有的功能 表达蛋白用作抗原:合成天然蛋白及表达融合蛋白的策 略,考虑如何便于分离 用于蛋白质结构研究:形成可溶性蛋白质,保持结构 完整
大肠杆菌表达外源基因的优势
繁殖迅速、培养简单、操作方便、遗传稳定 基因克隆及表达系统成熟完善 全基因组测序,共有4405个开放型阅读框架 被美国FDA批准为安全的基因工程受体生物
大肠杆菌表达外源基因的劣势
缺乏对真核生物蛋白质的修饰加工系统 缺乏对真核生物蛋白质的复性功能
内源性蛋白酶降解空间构象不正确的异源蛋白
R R
A 肽(21)
S
B 肽(30)
S S
高尔基体内的特异性肽酶
C
N S S N S S
C
基因工程法制人胰岛素
1982年,美国Ely LiLi公司首先使用重组大肠杆菌生产人 胰岛素,成为世界上第一个上市的基因工程药物。 由基因工程菌合成的重组人胰岛素在体外胰岛素受体结合
性能、淋巴细胞和成纤维细胞的应答能力、降血糖作用、血浆
细胞周质内含有种类繁多的内毒素
二)真核表达系统
酵母表达系统
全基因组测序,基因表达调控机理比较清楚,遗传操作简便
大规模发酵历史悠久、技术成熟、工艺简单、成本低廉
具有原核细菌无法比拟的真核蛋白翻译后加工系统 能将外源基因表达产物分泌至培养基中 不含有特异性的病毒、不产内毒素,美国FDA认定为安全的
药动力学等指标上均与天然胰岛素没有任何区别,而且还具有 无免疫原性、注射吸收迅速等优点,充分展示了基因工程在生 物医药领域中的巨大潜力。
重组人胰岛素的大肠杆菌工程菌的构建
A链和B链分别表达法
tac Me t b-Gal Apr ori Me Apr ori tac Me
化学合成A链 和B链的编码
t b-Gal
Ptac = 3 Ptrp = 11 Plac
启动子
启动子的可控性 乳糖启动子Plac的可控性:
阻遏蛋白 基底水平转录
P 乳糖 异丙基-b-D-硫代半乳 糖苷(IPTG)
O 诱导
高效转录
P
O
启动子
启动子的可控性 乳糖启动子Plac的可控性:
CAP
Plac 基因工程中使用的乳糖启动 子均为抗葡萄糖代谢阻遏的 突变型,即Plac UV5 O cAMP 高效转录
二、 基于T7噬菌体RNA聚合酶/启动子的大肠杆菌 表达系统
优点: 1)T7噬菌体RNA聚合酶合成RNA的速度高于大肠杆菌5倍;
2)T7噬菌体RNA聚合酶只识别自己的启动子序列,不启动大肠 杆菌DNA任何序列的转录; 3)T7噬菌体RNA聚合酶对抑制大肠杆菌RNA聚合酶的抗生素有 抗性; 4)T7噬菌体RNA聚合酶/启动子系统在一定条件下,基因表达 产物可占细胞总蛋白的25%以上。
包涵体表达形式的缺点:
以包涵体形式表达的重组蛋白丧失了原有的生物 活性,必须通过有效的变性复性操作,才能回收
得到具有正确空间构象的目标蛋白。
以包涵体形式表达目的蛋白的操 作
如果未进行特殊设计(如分泌型表达或融合型表达),
外源基因在大肠杆菌中表达的蛋白量占细胞总蛋白量
20%以上时,表达产物一般倾向于形成包涵体。因此, 以包涵体形式表达目的基因操作的关键就是选择高表达 的载体。
N Arg C N
每种蛋白酶均具有相应的断裂位点决 定簇
梭菌蛋白酶 葡萄球菌蛋白酶 假单孢菌蛋白酶 猪胰蛋白酶
单残基位点断裂的蛋白酶
如在精氨酸、谷氨酸、赖氨酸 残基处切开酰胺键,使目的蛋白分离
目的蛋白
C
酶促裂解法:多残基位点
亲和层析
启动子 担体基因 接头 目的基因
表达
Met
Arg Ile-Glu-gly-Arg
4.3 基因在酵母中的高效表达 4.3.1 酵母表达系统概述 4.3.2 甲醇酵母表达系统 4.3.3 组织纤溶酶原激活剂在甲醇酵母中的表达
第一节 基因的表达系统与表达策略
基因的表达系统 基因的高效表达策略
一、基因的表达系统
表达载体的组成:
DNA复制及质粒DNA的筛选: 有DNA复制起点ori, 性基因 及Amp, Tet抗
融合型目的蛋白表达系统的构建
用于融合蛋白构建的担体蛋白: 谷胱甘肽转移酶(GST) 维持良好空间构象 免疫亲和层析 pRIT2T
金黄色葡萄球菌蛋白A(SAPA)
硫氧化还原蛋白(TrxA)
b-半乳糖苷酶(LacZ) 泛素蛋白(Ubi)
维持良好空间构象
免疫亲和层析
pTrxFus
维持良好空间构象
以融合形式表达目的蛋白的优缺点
包涵体的变性与复性操作
(1)包涵体的溶解与变性 拆开错配的二硫键和次级键
能有效促进包涵体溶解变性的试剂和条件包括:
清洗剂:SDS、正十二醇肌氨酸,廉价,但影响复性和纯化 促溶剂:盐酸胍、尿素,前者昂贵,尿素便宜,但常被自发形成的 氰酸盐污染,后者能与多肽链中的氨基反应 混合溶剂:如尿素与醋酸、二甲基砜等联合使用,溶解力增强
第二节
基因在大肠杆菌中的高效表达
大肠杆菌高效表达设计 基于T7噬菌体RNA聚合酶/启动子的大肠杆菌表达系统