3 材料的凝固与结晶
第四章 凝固与结晶

Vs 令 s V ,则
4 3 s v g ( t ) 3 Ndt 0 3
t
由于在任意时间,每个真实晶核与虚拟晶核的体积相同, 故得:
dnr dvr d r dns dvs d s
令在时间dt内单位体积中形成得晶核数dP,
于是:dnr=VudP
dns=VdP 如果是均匀形核,dP不会随形核地点而有变化,此时可 得: dn V V Vr u r 1 r dns V V 合并二式,得 解为
2. 晶体长大方式和生长速率
a. 连续长大(Continous growth)
连续长大的平均生长速率由下式决定:
vg 1TK
b. 二维形核((Two-dimensional nucleation)
二维形核的平均生长速率由下式决定:
b vg 2 exp( ) TK
二维形核的生长方式由于其形核较大,因此实际上甚少见到。
V:晶体的配位数, η :晶体表面的配位数,
N AV
的乘积,
Lm :摩尔熔化潜热,即熔化时断开 1mol 原子的固态键 所需要的能量,
设NT=NA(每摩尔原子数),是内能变化。
2 Lm Lm U 0.5 N T (1 x )x Lm x(1 x ) x(1 x ) RTm N AV V RTm V
界面上空位数(未占据位置分数)为:1-x,
空位数为:NT(1-x)。 形成空位引起内能和组态熵的变化,相应引起表面吉布斯 自由能的变化: Δ GS=Δ H-TΔ S=(Δ U+PΔ V)-TΔ S≈Δ U-TΔ S (1)
形成NT(1-x)个空位所增加的内能为其所断开的固态键数
0.5NT(1-x)η x 和一对原子的键能 2 Lm
第三章凝固与结晶

整体、长时间原子无规则排列------长程无序
局部、短时间原子有规则排列------短程有序-------结构起伏(相起伏)
3两种模型
1) 微晶无序模型(准晶模型)---属于晶体,存在大量的,不断变化的缺陷
2) 随机密堆模型-----------------------升,σsl降,σsw降即s相与基底越浸润,形核功越小
4非均匀形核率
1) 特点:随ΔT升,N增大较平缓
有下降阶段,并中断---基底用尽
2) 影响因素:ΔT升---N升
θ降---A’降---N升
表面形状:凸-----N小 平----N中 凹---N大
物理因素:外加物理场能---N大
一、 均匀形核
1晶胚形成时的能量变化
总能量变化=驱动力+阻力
驱动力---体系体积自由能差 阻力---表面自由能
ΔG=ΔGv+ΔGb
=VΔGb+Sσ
=4/3 πr^3ΔGb+4πr^2σ
0<r<rk r增----ΔG升---不能长大
R=rk ΔG=ΔGmax----临界状态
----光滑界面----小锯齿界面
负梯度:
突出部分过冷度增大---优先生长---粗糙界面----树枝
---光滑界面----小平面树枝
第六节结晶理论的应用
一、 铸件晶粒细化---形成大量晶核
∵rk=(2Tmσ/Lm)*(1/ΔT) 又ΔGb=-LmΔT/Tm
∴A=16/3(πσ^3 Tm^2/Lm^2)*(1/ΔT^2)
结论:A∝1/ΔT^2,ΔT升-----A降
临界过冷度:ΔT*
材料科学基础-第二章-材料的凝固

制备材料的典型工艺过程:
金属材料:凝固 陶瓷材料:烧结 聚合物:反应合成
凝固与结晶:
凝固(Solidification) 物质从液态转变为固态的过程。
自由能大于体积自由能,即阻力大于驱动力,
那么尺寸在rK~ r0 范围的晶核能够成为稳定的 晶核吗?
当r = rK 时,G 有极大值GK
GK
4 3
2σ
GV
3 GV
4
2σ
GV
2 σ
1 3
4
2σ
GV
2
σ
1 3
4rK2σ
1 3
SKσ
结论:
晶核半径与G的关系
当形成临界晶核时,体积自由能的降低只补偿了表面自由能的2/3,还有 1/3的表面自由能需要另外供给,即需要对形核做功。称GK为形核功。
③形核率(Nucleation Rate)
单位时间、单位体积液相中形成的晶核数目,即晶核形成的速率,记
作
•
N
,单位为cm-3·s-1。
影响形核率的因素:
形核功
随过冷度的增加,即随温度的降低,形核 功减小,形核率增大。
原子扩散能力
随过冷度的增加, 即随温度的降低, 原子
扩散能力下降, 形核困难, 形核率减小。
当 r>rK时,随 r 的增加,体系自由能减 小,晶胚转变为晶核;
当 r=rK时,晶胚处于亚稳状态,即可能消 失,也可能长大成为晶核;
把半径为rK的晶胚称为临界晶核,rK称为临 界晶核半径。
第三章 材料的凝固与相图-1

金属化合物
间隙化合物:由过渡族金属元素与碳、氮、氢、硼等 原子半径较小的非金属元素形成的化合物。 尺寸较大的过渡族元素原子占据晶格的结点位置,尺寸 较小的非金属原子则有规则嵌入晶格的间隙中。 根据组成元素原子半径比值及结构特征的不同,间隙化 合物分间隙相和复杂结构的间隙化合物两种。
金属化合物
相:指合金中晶体结构相同、成分和性能均一并以界面与其他部 分分开的均匀组成部分。 组织:指在显微镜下观察到的金属中各相或各晶粒的形态、数量、 大小和分布的组合。 固态合金中有两类基本相:固溶体和金属化合物。
固溶体
合金组元通过溶解形成一种成分和性能均 匀的、且结构与组元之一相同的固相。 一般用α、β、γ…来表示。
二元匀晶相图
匀晶相图:只发生匀晶反应的相图。 特点:匀晶相图中两组元在液态、固态下都能无限互溶。
Cu-Ni合金、Au-Ag合金、W-Mo、Fe-Cr合金等
Cu-Ni合金相图为典型的匀晶相图
二元匀晶相图
1) 相图分析
Cu-Ni合金相图
a:Cu的熔点,c:Ni的熔点。
aa1c 为液相线,是各种成分 的合金在冷却时开始结晶或 加热时熔化终止的温度;该 线以上合金处于液相区L。
量为Q。则 : QL + Q =1
QL X1 + Q X2 =X
解方程组得:
QL
X2 X X2 X1
QαX X1 X2 X1X2-X、X2-X1、X-X1为相图中线段XX2 (ob)、X1X2 (ab)、 X1X(ao)的长度。
杠杆定律
QL XX2 ob Qα X1 X oa
F S dv
dx
粘度越大,F越大,原子扩散越困难,难于结晶。 原子排列越紧密,粘度越大;温度越高,粘度越小。
材料的凝固与结晶组织

二、晶态
1. 晶态结构
§1 基本概念
(1)晶态是原子在三维空间中有规则地周期性重复排列的物质。 (2) 非晶态是一种短程有序、长程无序的混合结构。
非晶态硒 硒鼓静电成像、
图书馆、 超市物品中用非晶态软磁材料条带(传感器标签)。
2. 晶态物理性能
(1) 有各向异性; (2) 有固定的熔点; (3) 在一定条件下有规则的几何外形。
§3 合金的结晶与相图
一、合金相结构 二、二元合金相图
(一)匀晶相图 (二)共晶相图 (三)共析相图
一、合金相结构
具有金属特性的物质。
§3 合金的结晶与相图
1. 合金 两种或两种以上的金属元素,或金属与非金属元素所组成的 2. 组元 组成合金的最基本独立物质。 相 合金中具有同一化学成分、同一聚集状态、同一结构且以界面
互相分开的各个均匀的组成部分。
4. 组织 用肉眼或显微镜所观察到的材料的内部微观形貌。 合金中的基本相结构:固溶体和金属间化合物 A(B) AxBy
一、合金相结构
§3 合金的结晶与相图
相:具有相同结构,相同成分和性能(也可以是连续变化
的)并以界面相互分开的均匀组成部分,如液相、固相是 两个不同的相。
5 256 0.062
6 512 0.044
7 1024 0.031
8 2048 0.022
三、结晶晶粒大小及控制
§2 纯金属的结晶
晶粒的大小对金属性能的影响:
(1)常温下,晶粒越小,金属的强度、硬度越高,塑性、韧性越好。 (2)高温下工作的金属晶粒过于细小反而不好,晶粒大小适中即可。
(3)对于用来制造电机和变压器的硅钢片来说,晶粒粗大反而好。
材料的凝固与结晶组织
金属的结晶与凝固

-Fe
-Fe
2.3 碳钢中杂质
2.3 碳钢中杂质
2.3 碳钢中杂质
杂质:碳钢在冶炼和加工过程中,由原材料、 冶炼方法、工艺操作等原因,而残留或带入钢中 的其他金属和非金属元素以及化合物等。
锰Mn
在碳钢中的含量一般小于0.8%, 是有益元素。 可固溶,也可形成高熔点MnS(1600℃)夹杂物。 主要作用: ①溶于铁素体, 起固溶强化作用; ②使硫的有害作用减弱; ③MnS在高温下具有一定的塑性,不会使钢发 生热脆,加工后硫化锰呈条状沿轧 的 树 枝 晶
2.1 结晶过程
铸锭(件)的组织: 液态金属被浇注到锭模中 便得到铸锭,而注入到铸型 模具中成型则得到铸件。 铸锭(件)的宏观组织通 常由三个区域组成。
2.1 结晶过程
表层细晶区: 浇注时,由于冷模壁产 生很大的过冷度及异质形 核作用,使表面形成一层 很细的等轴晶粒区。 柱状晶区: 由于模壁温度升高,结晶放出潜热,使细晶区 前沿液体的过冷度减小,形核困难。加上模壁的 定向散热,使已有的晶体沿着与散热相反的方向 生长而形成柱状晶区。
2.1 结晶过程
晶核长大是具有方向性的渐进过程。一般沿过 冷度大的方向生长,直到液相消耗完毕。 在正温度梯度下,晶核长大以平面状态推进, 称为均匀长大。在负温度梯度下,由于晶核棱角 处的散热条件好,生长快,先形成一次轴,一次 轴又会产生二次轴…,称为树枝状长大。
2.1 结晶过程
金 属 的 树 枝 晶 金 属 的 树 枝 晶
溶化 结晶
T1
T0
2.1 结晶过程
自发形核:液态金属中的原子排列不规则,但 也存在着一些原子排列规则的极小原子团,时聚 时散,称为晶坯。在实际结晶温度下,经孕育期 时间后,有些晶坯开始稳定并长大,形成晶核。 异质形核:更为普遍的是液体中存在的高熔点 固态杂质形成的晶核。 晶核形成后便向各个方 向生长,同时又有新的晶 核生成。直到液体完全消 失。每个晶核最终长成一 个晶粒,晶粒相接触后形 成晶界。
材料科学基础I 第四章 (凝固与结晶)

本章应掌握以下内容: 本章应掌握以下内容: 1. 金属凝固的过程和现象 2. 凝固和结晶的热力学条件 3. 几个重要概念:过冷度,临界晶核半径,临界形核功, 几个重要概念:过冷度,临界晶核半径,临界形核功, 形核率,均匀形核,非均匀形核, 形核率,均匀形核,非均匀形核,成分过冷 4. 冷却速度、过冷度对凝固过程和凝固组织的影响 冷却速度、 5. 液—固界面的结构及晶体生长形态 固界面的结构及晶体生长形态 6. 成分过冷对晶体生长形态的影响 7. 单相固溶体的长大 8. 两相共晶体的长大
三、近程有序(Short range order) 近程有序
由于有序原子集团的尺寸很小, 由于有序原子集团的尺寸很小,所以把液态金属结构的特点 概括为近程有序 温度降低,这些近程有序的原子集团( 近程有序。 概括为近程有序。温度降低,这些近程有序的原子集团(又称 晶胚Embryo)尺寸会增大;当具备结晶条件时,大于一定尺 为晶胚 )尺寸会增大;当具备结晶条件时, 寸的晶胚就会成为晶核 晶核(Nucleus)。晶核的出现就意味着结晶开 寸的晶胚就会成为晶核 。 始了。 始了。 综上所述,接近熔点的液态金属是由许多“原子集团”组成, 综上所述,接近熔点的液态金属是由许多“原子集团”组成, 其中原子呈规律排列,结构与原固体相似(近程有序);但是 其中原子呈规律排列,结构与原固体相似(近程有序);但是 ); 金属液体中存在很大的能量起伏,热运动激烈。 金属液体中存在很大的能量起伏,热运动激烈。原子集团的大 小不等,存在时间很短,时聚时散,空位较多。 小不等,存在时间很短,时聚时散,空位较多。原子集团之间 存在“空穴”和一些排列无序的原子。 存在“空穴”和一些排列无序的原子。
三、结晶的驱动力
∆G=GS‒GL<0,符合热力学第二定律。 ,符合热力学第二定律。 单位体积金属结晶时自由能的变化: 单位体积金属结晶时自由能的变化: ∆Gv=GS‒GL=(HS‒TSS) ‒(HL‒ TSL)= (HS‒ HL) ‒T (SS ‒ SL) = ‒∆Hm+ T∆S = ‒∆Hm+T(∆Hm/Tm) = ‒∆Hm(Tm‒T)/Tm =(‒∆Hm/Tm) ∆T ‒ ∆T=Tm‒T,称为过冷度 ,称为过冷度 ∆Hm,即结晶潜热 m 即结晶潜热L ∆Gv(<0)就是结晶的驱动力,∆T越大,结晶的驱动力越大。 就是结晶的驱动力, 越大 结晶的驱动力越大。 越大, 就是结晶的驱动力
金属的结晶与凝固

2.1 结晶过程
晶核长大是具有方向性的渐进过程。一般沿过 冷度大的方向生长,直到液相消耗完毕。 在正温度梯度下,晶核长大以平面状态推进, 称为均匀长大。在负温度梯度下,由于晶核棱角 处的散热条件好,生长快,先形成一次轴,一次 轴又会产生二次轴…,称为树枝状长大。
2.1 结晶过程
金 属 的 树 枝 晶 金 属 的 树 枝 晶
2.4 碳钢中杂质
氧O
是有害杂质气体元素。 在钢中以氧化物的形 式存在,形成硅酸盐 2MnO•SiO2、MnO•SiO2或 复合氧化物MgO•Al2O3、 MnO•Al2O3,它们与基体 结合力弱,不易变形, 易成为疲劳裂纹源。
2.2 同素异晶转变
纯铁在固态冷却 过程中发生两次晶 体结构的转变。 由于纯铁能够发 生同素异晶转变, 生产中才有可能使 用热处理等方法, 来改变钢的组织和 性能。所以它具有 重要的实际意义。
2.2 同素异晶转变
-Fe为体心立方晶体结构,-Fe为高温体心 立方晶体结构,-Fe为面心立方晶体结构。都 是铁的同素异晶体。
-Fe
-Fe
2.3 碳钢中杂质
2.3 碳钢中杂质
2.3 碳钢中杂质
杂质:碳钢在冶炼和加工过程中,由原材料、 冶炼方法、工艺操作等原因,而残留或带入钢中 的其他金属和非金属元素以及化合物等。
锰Mn
在碳钢中的含量一般小于0.8%, 是有益元素。 可固溶,也可形成高熔点MnS(1600℃)夹杂物。 主要作用: ①溶于铁素体, 起固溶强化作用; ②使硫的有害作用减弱; ③MnS在高温下具有一定的塑性,不会使钢发 生热脆,加工后硫化锰呈条状沿轧向分布。
2.4 碳钢中杂质
磷P
是有害杂质元素。一般控制在0.045%以下。 可全部固溶入α- 铁素体中,使钢在常温下硬度 提高,但剧烈地降低钢 的韧性和塑性,特别是 低温韧性,称冷脆性。 可提高钢在大气中的 抗腐蚀性能。 可改善钢的切削加工 性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章材料的凝固物质由液态转变为固态的过程称为凝固。
物质由液态转变为晶态的过程称为结晶。
物质由一个相转变为另一个相的过程称为相变。
因而结晶过程是相变过程。
3.1 纯金属的结晶一.结晶的热力学条件结晶的驱动力是实际结晶温度(T 1)下晶体与液体的自由能差ΔGV。
而理论结晶温度(T 0)与实际结晶温度(T 1)的差值称作过冷度(ΔT),即ΔT= T 0-T1。
过冷度大小与冷却速度有关,冷速越大,过冷度越大。
液体和晶体的自由能-温度曲线纯金属的冷却曲线二、纯金属的结晶过程1、结晶的基本过程结晶由晶核的形成和晶核的长大两个基本过程组成.液态金属中存在着原子排列规则的小原子团,它们时聚时散,称为晶坯。
在T 0以下, 经一段时间后(即孕育期), 一些大尺寸的晶坯将会长大,称为晶核。
晶核形成后便向各方向生长,同时又有新的晶核产生。
晶核不断形成,不断长大,直到液体完全消失。
每个晶核最终长成一个晶粒,两晶粒接触后形成晶界。
气体、液体、晶体的结构纯金属结晶过程示意图气体晶体液体 2、晶核的形成方式形核有两种方式,即均匀形核和非均匀形核。
由液体中排列规则的原子团形成晶核称均匀形核。
以液体中存在的固态杂质为核心形核称非均匀形核。
非均匀形核更为普遍。
3、晶核的长大方式晶核的长大方式有两种,即均匀长大和树枝状长大。
实际金属结晶主要以树枝状长大。
6三、凝固组织及其控制1、晶粒度表示晶粒大小的尺度叫晶粒度。
可用晶粒的平均面积或平均直径表示。
工业生产上采用晶粒度等级来表示晶粒大小。
z标准晶粒度共分八级,一级最粗,八级最细。
通过100倍显微镜下的晶粒大小与标准图对照来评级。
z(一)结晶后的晶粒大小及其控制72、决定晶粒尺寸的因素晶粒的大小取决于晶核的形成速度和长大速度。
z单位时间、单位体积内形成的晶核数目叫形核率(N)。
z单位时间内晶核生长的长度叫长大速度(G)。
zN/G比值越大,晶粒越细小。
因此,凡是促进形核、抑制长大的因素,都能细化晶粒。
83、控制晶粒度的方法⑴控制过冷度:随过冷度增加,N/G值增加,晶粒变细。
⑵变质处理:又称孕育处理。
即有意向液态金属内加入非自发形核物质从而细化晶粒的方法。
所加入的物质叫变质剂(或称孕育剂)。
⑶振动、搅拌:对正在结晶的金属进行振动或搅动,一方面可靠外部输入的能量来促进形核,另一方面也可使成长中的枝晶破碎,使晶核数目显著增加。
9铸铁变质处理前后的组织变质处理前变质处理后变质处理使组织细化。
变质剂为硅铁或硅钙合金。
10 4、晶粒大小对金属性能的影响常温下,晶粒越细,晶界面积越大,因而金属强度、硬度越高,同时塑性、韧性越好。
称为细晶强化。
高温下,晶粒过粗、过细都不好。
11(二)铸锭组织及其控制在实际生产中,液态金属被浇注到锭模中便得到铸锭,而注入到铸型模具中成型则得到铸件。
铸锭(件)的组织及其存在的缺陷对其加工和使用性能有着直接的影响。
121、铸锭的组织铸锭(件)的宏观组织通常由表层细晶区、柱状晶区和中心等轴晶区三个区组成:铸锭三区13⑴表层细晶区:浇注时,由于冷模壁产生很大的过冷度及非均匀形核作用,使表面形成一层很细的等轴晶粒区。
14⑵柱状晶区:由于模壁温度升高,结晶放出潜热,使细晶区前沿液体的过冷度减小,形核困难。
加上模壁的定向散热,使已有的晶体沿着与散热相反的方向生长而形成柱状晶区。
⑶中心粗等轴晶区: 由于结晶潜热的不断放出,散热速度不断减慢,导致柱状晶生长停止,当心部液体全部冷至实际结晶温度T 1以下时,在杂质作用下以非均匀形核方式形成许多尺寸较大的等轴晶粒。
15z 2、铸锭的缺陷z铸造缺陷的类型较多,常见的有缩孔、气孔、疏松、偏析等,它们对性能是有害的。
⑴缩孔:金属凝固时体积收缩,如果没有足够的液体补充便会形成孔隙。
如果孔隙集中在凝固的最后部位,则称缩孔。
可通过改变结晶时的冷却条件和加冒口等来进行控制。
钢锭出现缩孔在锻轧前应切除。
缩孔16⑵偏析:合金中各部分化学成分不均匀的现象称为偏析。
铸锭(件)在结晶时,由于各部位结晶先后顺序不同,合金中的低熔点元素偏聚于最终结晶区,造成宏观上的成分不均匀,称宏观偏析。
适当控制浇注温度和结晶速度可减轻宏观偏析。
⑶气孔: 气孔是指液态金属中溶解的气体或反应生成的气体在结晶时未逸出而存留于铸锭(件)中的气泡。
铸锭内表面未被氧化的气孔可在热加工时可焊合,如发生氧化则必须去除。
2、固态转变的特点z⑴形核一般在某些特定部位发生(如晶界、晶内缺陷、特定晶面等),因为这些部位或与新相结构相近,或原子扩散容易。
z ⑵由于固态下扩散困难,因而过冷倾向大,固态相变组织通常要比结晶组织细。
z⑶固态转变伴随着体积变化,易造成很大内应力,使材料发生变形或开裂。
3.2 合金的结晶合金的结晶过程比纯金属复杂,常用相图进行分析.相图是用来表示合金系中各合金在缓冷条件下结晶过程的简明图解。
又称状态图或平衡图。
合金系是指由两个或两个以上元素按不同比例配制的一系列不同成分的合金。
组元是指组成合金的最简单、最基本、能够独立存在的物质。
相图表示了在缓冷条件下不同成分合金的组织随温度变化的规律,是制订熔炼、铸造、热加工及热处理工艺的重要依据。
根据组元数, 分为二元相图、三元相图和多元相图。
一、二元相图的建立几乎所有的相图都是通过实验得到的,最常用的是热分析法。
二元相图的建立步骤为:[以Cu-Ni合金(白铜)为例]1.配制不同成分的合金,测出各合金的冷却曲线,找出曲线上的临界点(停歇点或转折点)。
2.将临界点标在温度-成分坐标中的成分垂线上。
3.将垂线上相同意义的点连接起来,并标上相应的数字和字母。
相图中,结晶开始点的连线叫液相线。
结晶终了点的连线叫固相线。
Cu-Ni合金二元相图建立示意图二、二元相图的基本类型与分析z两组元在液态和固态下均无限互溶时所构成的相图称二元匀晶相图。
z以Cu-Ni合金为例进行分析。
Cu -Ni 合金相图1、二元匀晶相图相图由两条线构成,上面是液相线,下面是固相线。
相图被两条线分为三个相区,液相线以上为液相区L ,固相线以下为α固溶体区,两条线之间为两相共存的两相区(L+ α)。
αLL+α液相线固相线⑴合金的结晶过程当液态金属自高温冷却到t1温度时,开始结晶出成分为α1的固溶体,其Ni含量高于合金平均成分,这种从液相中结晶出单一固相的转变称为匀晶转变或匀晶反应。
Cu-Ni二元合金的结晶过程z随温度下降,固溶体质量增加,液相质量减少。
同时,液相成分沿液相线变化,固相成分沿固相线变化,成分变化是通过原子扩散完成的。
当合金冷却到t 3时,最后一滴L 4成分的液体也转变为固溶体,此时固溶体的成分又变回到合金成分α4上来。
z液固相线不仅是相区分界线, 也是结晶时两相的成分变化线;匀晶转变是变温转变。
固溶体结晶时成分变化。
慢冷时原子扩散充分进行,固溶体成分均匀。
快冷时原子扩散不充分,固溶体成分不均匀。
枝晶偏析:在一个晶粒内化学成分分布不均匀。
对材料的机械性能、抗腐蚀性能、工艺性能都不利。
扩散退火:把合金加热到低于固相线100 ℃左右, 长时间保温, 原子充分扩散, 获得成分均匀的固溶体。
z (2)枝晶偏析Cu-Ni合金枝晶偏析示意图26(3)杠杆定律设合金总量为1,液相重量W L ,固相α重量为Wα。
已知液相L中Ni的重量分数为C L ,相α中N i的重量分数为Cα,合金中N i的重量分数量为C,则:bcab CC C C W W C C C C W C C CC W CW C W C W W W L L L LL L L L L ==⇒==⇒=•+•=+ααααααααα12、二元共晶相图当两组元在液态下完全互溶,在固态下有限互溶,并发生共晶反应时所构成的相图称作共晶相图。
Pb-Sn 合金相图共晶反应:一种液相在恒温下同时结晶出两种固相的反应,生成的两相混合物叫共晶体。
发生共晶反应时三相共存, 三相各自成分确定, 恒温进行。
以Pb-Sn 相图为例进行分析。
⑴相图分析①相:相图中有L、α、β三种相,α是溶质Sn在Pb中的固溶体,β是溶质Pb在Sn中的固溶体。
②相区:相图中有三个单相区:L、α、β;三个两相区:L+α、L+β、α+ β;一个三相区:即水平线CED。
水平线cde 为共晶反应线, 成分在ce 之间的合金平衡结晶时都会发生共晶反应。
cf 线为Sn在Pb中的溶解度线(α相的固溶线)。
Sn含量大于f 点的合金从高温冷却到室温时, 从α相中析出β相,叫二次β:α→βII 。
eg 线为Pb在Sn中溶解度线。
Sn含量小g 点的合金, 冷却过程中同样发生二次结晶, 析出二次α。
⑵合金的结晶过程 ①合金Ⅰ的结晶过程 合金I的室温组织为α+βII成分大于D点合金结晶过程与Ⅰ合金相似,室温组织为β+ αⅡ。
.2②合金Ⅱ(共晶合金)的结晶过程 合金的室温组织:共晶体(α+β)组织组成物:(α+β) 组成相:α和β相析出过程中两相相间形核、互相促进、共同长大,因而共晶组织较细,呈片、棒、点球等形状。
19.2wt%Sn温度, ℃1’共晶合金组织的形态③合金Ⅲ(亚共晶合金) 的结晶过程 合金室温组织:初生α+二次β+(α+β)组织组成物:α、二次β、(α+β)组成相:α、β④过共晶合金结晶过程与亚共晶合金相似,不同的是一次相为β, 二次相为αⅡ室温组织为βⅠ+(α+β)+αⅡ。
亚共晶合金组织过共晶合金组织亚共晶合金和过共晶合金组织初生α+二次β+(α+β)初生β+二次α+(α+β)⑶组织组成物在相图上的标注组织组成物是指组成合金显微组织的独立部分。
3、二元包晶相图Pt-Ag、Ag-Sn、Sn-Sb合金具有包晶相图。
Pt-Ag 合金相图Pt-Ag合金相图中存在三种相:L相:Pt与Ag形成的液溶体α相:Ag溶于Pt中的有限固溶体β相:Pt溶于Ag中的有限固溶体e 点为包晶点。
e 点成分的合金冷却到e 点温度(包晶温度)时发生包晶反应:L+α→β。
反应时三相共存, 它们的成分确定, 恒温进行。
水平线ced 为包晶反应线。
cf 为Ag在α中的溶解度线,eg 为Pt在β中的溶解度线。
4、形成稳定化合物的二元相图稳定化合物是指在熔化前不发生分解的化合物(如Mg-Si系的Mg 2Si和Fe-C系的Fe 3C) 。
其成分固定,在相图中是一条垂线(代表一个单相区)。
垂足是其成分, 顶点是其熔点, 结晶过程同纯金属.z分析这类相图时,可把稳定化合物当作纯组元看待,将相图分成几个部分进行分析.Mg 2SiMg 2Si+SiMg+ Mg 2SiSiL+ Mg 2SiL+ SiL+ Mg 2SiL+ Mg共析转变也是固态相变。
最常见的共析转变是铁碳合金中的珠光体转变:γS ⇄αP + Fe 3C 。
5、具有共析反应的二元相图z共析反应(共析转变)是指在一定温度下,由一定成分的固相同时析出两个成分和结构完全不同的新固相的过程。