随机变量的分布列与数学期望
随机变量与数学期望

③ 随机变量的矩母函数和其分布函数之间存在一一 对应4.9.1 (马尔科夫不等式)若X为一个非负随 机变量,则对于任意a>0,
命题4.9.2 (切比雪夫不等式)假设X为期望为, 方差为2,则对于任意k>0,
4.9 切比雪夫不等式和大数定律
例4.5.2 某厂找到并修复电力中断所需的时间 (小时)是一个随机变量,称为X,其密度函数
如果当故障持续时间为x,修复的费用为x3,那 么这种故障的预期费用是多少?
方法一:先求Y=X3的密度函数,再求Y期望; 方法二:利用命题4.5.1(计算较简单)。
4.5 期望的性质
数学期望的性质
① 线性性质:若a和b是常数,则 ② 随机变量和的期望:
不能求方差,因为那里各项不独立。
4.7 协方差和相关系数
相关系数的定义
相关系数的性质(证明方法类似于第2章样本相 关系数)
Corr(X,Y)=1或-1,当且仅当X和Y线性相关,即 P(Y=a+bX)=1 (当b>0, 相关系数为1; 当b<0, 相 关系数为-1)。
4.7 协方差和相关系数
4.9 切比雪夫不等式和大数定律
问题:若从均值为的总体中取n个样本(n充 分大),那么样本均值 与总体均值有什么 关系?
定理4.9.1 (弱大数定律)令X1, X2, …为一列独 立同分布的随机变量,且其期望为E[Xi]= , 方差有限。则对于任意>0,
说明:样本均值可用于估计总体均值。
4.9 切比雪夫不等式和大数定律
连续型随机变量独立等价性条件(密度函数):
4.3 随机变量的联合分布
例4.3.4 设X和Y为相互独立的随机变量且有相同的密 度函数,
试求随机变量X/Y的密度函数。 解:
随机变量与期望方差

0.1 b=
0.4 .
归纳求离散型随机变量期望的步骤: ①、确定离散型随机变量可能的取值。
②、写出分布列,并检查分布列的正确与否。
③、求出期望。
例1、随机抛掷一个骰子,设随机变量ξ 为所得骰子的点数,
(1)求随机变量ξ 的概率分布律; (2)求Eξ 。 解:(1)随机变量ξ的概率分布律为: x P(ξ =x) 1 1/6 2 1/6 3 1/6 4 1/6 5 1/6 6 1/6
解:(1) X~B(3,0.7)
X P 0 1
3
2
2
3
0.3
C 0.7 0.3
1 3
C 0.7 0.3
2 3 2
0.7
3
1 2 (2) EX 0 0.33 1 C3 0.7 0.32 2 C3 0.72 0.3 3 0.73
EX 2.1 3 0.7
k
…
pqk-1 …
q D 2 p
例4 有一批数量很大的产品,其次品率是 15%,对这批产品进行抽查,每次抽出1件, 如果抽出次品,则抽查终止,否则继续抽查, 直到抽出次品,但抽查次数最多不超过10 次.求抽查次数ξ的期望(结果保留三个有 效数字).
分析: (1)P(ξ=k)=0.85 k-1×0.15,( k=1,2,…,9) k=10时,前9次取出的都是正品,第10次可能取出次品,也 可能取出正品, 所以P(ξ=10)=0.859×(0.15+0.85)=0.859 (2)写出ξ的分布列,由概率分布可得
x 6 7 8 9 10 上海队员: P ( x ) 0 0.3 0.4 0.2 0.1
x 6 7 8 9 10 辽宁队员: P( x) 0.04 0.24 0.44 0.22 0.06
3.2 概率论——随机变量的期望

a 3
b 2
7 12
(2)
2
例(分赌本问题) :17世纪中叶,一位赌徒向法国数学家 Pascal提出一个使他苦恼许久的问题:甲,乙两赌徒赌技 相同,各出50法朗,每局中无平局.他们约定, 谁先赢三局,则
得全部赌本。 当甲赢两局, 乙赢一局时, 赌博被迫中断 。 现问100法朗 如何分配才算公平 ?
,n
1,2
, 其中C
(
i 1
1 n2
)1
.
证明:EX不存在.
证明:
C C
1
xn
pn
n
1
n2
1
n
级
数
1发散,
1n
故级数 xn pn也发散, 由定义知期望EX不存在. 1
例6: 证明:Cauchy分布的期望不存在。
证明:
X
~
f
(
x)
1
(1
x
2
)
xR
x
f
( x)dx
x
1
(1
x2 ) dx
即Cauchy分布的期望不存在.
0 32 1 30 2 17 3 21 1.27 100 100 100 100
概率论
可以想象,若另外统计100天,车工小张不出废品, 出一件、二件、三件废品的天数与前面的100天一般 不会完全相同,这另外100天每天的平均废品数也不 一定是1.27.
一般来说, 若统计n天 ,
(假定小张每天至多出 三件废品)
解:
X0 1
P 1 p p
EX 显然存在
EX 0 (1 p) 1 p p
例 2:设r.v. X服从几何分布,即X~ g(k, p), 求 EX
六个常用分布的数学期望和方差

即
12
若随机变量X~U( a , b ),则
ab
(b a)2
E(X)
, D( X )
2
12
五.指数分布
随机变量X服从参数为λ的指数分布,其概率密度为:
f
(
x)
1
θ
e
x θ
0
x0 x0
E(X )
xf ( x)dx
x
1
e
x θ
dx
x
( x)de θ
0
θ
0
(
x)e
x
x
e dx
X X1 X2 Xn
E( X ) E( X1 ) E( X 2 ) E( X n ) np
D( X ) D( X1 ) D( X 2 ) D( X n ) np(1 p)
即: 若随机变量X~B( n , p ),则
E( X ) np,D( X ) np(1 p)
E[3( X 2 1)] 3E( X 2 ) 3
3{D( X ) [E( X )]2 } 3 33
例2.已知X和Y相互独立,且X在区间(1,5)上服从
均匀分布, Y ~ N (1,求9)(1, ) (X,Y)的联合概率密度;(2)
E(3X 4Y 2) , D(3X 4Y 2)
E( X ) xf ( x)dx
b
x
1
dx
a ba
1 x2 b
ba 2 a
ab 2
E( X 2 ) b x 2
1
b3 a3 dx
a 2 ab b2
a ba
3(b a)
3
D( X )
E( X 2 ) [E( X )]2
由分布列求期望、方差(共11张PPT)

[解析] (1)依题意,随机变量 ξ 的取值是 2、3、4、5、6. 因为 P(ξ=2)=3822=694; P(ξ=3)=2×8232=1684; P(ξ=4)=32+28×2 3×2=2614; P(ξ=5)=2×832×2=1624; P(ξ=6)=2×82 2=644. 所以,当 ξ=4 时,其发生的概率最大,为 P(ξ=4)=2614.
• 【典例2】 编号1,2,3的三位学生随意入座编号为 1,2,3的三个座位,每位学生坐一个座位,设与座位编 号相同的学生的个数是ξ.
• (1)求随机变ຫໍສະໝຸດ ξ的概率分布;• (2)求随机变量ξ的数学期望和方差.
• [分析] (1)随机变量ξ的意义表示对号入座的学生个数; 它的取值只有(zhǐyǒu)0、1或3,若2人对号入座第3人 必对号入座,所以ξ=2不存在.由排列知识与等可能 事件概率公式易求分布列.
• 回归课本 • 1.一般地,若离散(lísàn)型随机变量ξ的概率分布列为
ξ
x1
x2
…
xn
…
P
p1
p2
…
pn
…
• 则称Eξ=x1p1+x2p2+…+xnpn+…为ξ的数学期望 或平均值、均值,数学期望又简称为期望.它反映了 离散(lísàn)型随机变量取值的平均水平.
第一页,共11页。
• 3.如果离散型随机变量ξ所有可能的取值是x1, x2,…,xn,…且取这些值的概率分别是p1,p2,…, pn,…,设Eξ是随机变量ξ的期望,那么把Dξ=(x1- Eξ)2·p1+(x2-Eξ)2·p2+…+(xn-Eξ)2·pn+…叫做 随机变量ξ的均方差(fānɡ chà),简称方差(fānɡ chà).Dξ的算术平方根叫做随机变量ξ的标准差,记 作σξ.随机变量的方差(fānɡ chà)与标准差都反映了随 机变量取值的稳定与波动、集中与离散的程度.其中 标准差与随机变量本身有相同的单位.
随机变量及其分布-离散型随机变量的数学期望和方差

离散型随机变量的数学期望和方差知识点一、离散型随机变量的数学期望 1.定义一般地,如果离散型随机变量的分布列为则称n n i i p x p x p x p x X E +++++= 2211)(为随机变量X 的数学期望或均值。
2.意义:反映离散型随机变量取值的平均水平。
3.性质:若X 是随机变量,b aX Y +=,其中b a ,是实数,则Y 也是随机变量,且b X aE b aX E +=+)()( 二、离散型随机变量的方差 1.定义一般地,如果离散型随机变量的分布列为则称∑=-=ni i ip X E x X D 12))(()(为随机变量的方差。
2.意义:反映离散型随机变量偏离均值的程度。
3.性质:)()(2X D a b aX D =+ 三、二项分布的均值与方差如果),(~p n B X ,则np X E =)(,)1()(p np X D -=。
题型一离散型随机变量的均值【例1】设随机变量X的分布列如下表,且E(X)=1.6,则a-b=()X0123P0.1a b0.1A.0.2 B.0.1C.-0.2 D.0.4【例2】随机抛掷一枚质地均匀的骰子,则所得点数ξ的数学期望为()A.0.6 B.1C.3.5 D.2【例3】某次考试中,第一大题由12个选择题组成,每题选对得5分,不选或错选得0分.小王选对每题的概率为0.8,则其第一大题得分的均值为________.【例4】(2016年高考全国乙卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P(X≤n)≥0.5,确定n的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?【过关练习】1.今有两台独立工作的雷达,每台雷达发现飞行目标的概率分别为0.9和0.85,设发现目标的雷达的台数为ξ,则E (ξ)等于( ) A .0.765 B .1.75 C .1.765D .0.222.某射手射击所得环数ξ的分布列如下:3.已知随机变量ξ的分布列为则x =______,P (1≤ξ<3)=4.(2015年高考重庆卷)端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白棕5个,这三种粽子的外观完全相同.从中任意选取3个. (1)求三种粽子各取到1个的概率;(2)设X 表示取到的豆沙粽个数,求X 的分布列与数学期望.题型二 离散型随机变量方差的计算【例1】若X 的分布列为其中p ∈(0,1),则( ) A .D (X )=p 3 B .D (X )=p 2 C .D (X )=p -p 2D .D (X )=pq 2【例2】设随机变量ξ的分布列为P (ξ=k )=C k n⎝⎛⎭⎫23k .⎝⎛⎭⎫13n -k ,k =0,1,2,…,n ,且E (ξ)=24, 则D (ξ)的值为( ) A .8 B .12 C.29D .16【例3】若D (ξ)=1,则D (ξ-D (ξ))=________.【例4】若随机变量X 1~B (n,0.2),X 2~B (6,p ),X 3~B (n ,p ),且E (X 1)=2,D (X 2)=32,则σ(X 3)=( )A .0.5 B. 1.5 C. 2.5D .3.5【例5】根据以往的经验,某工程施工期间的降水量X (单位:mm)对工期的影响如下表:求工期延误天数Y 的均值与方差.【过关练习】1.某人从家乘车到单位,途中有3个路口.假设在各路口遇到红灯的事件是相互独立的,且概率都是0.4,则此人上班途中遇到红灯的次数的方差为( ) A .0.48 B .1.2 C .0.72D .0.62.设投掷一个骰子的点数为随机变量X ,则X 的方差为________.3.盒中有2个白球,3个黑球,从中任取3个球,以X 表示取到白球的个数,η表示取到黑球的个数.给出下列结论:①E (X )=65,E (η)=95;②E (X 2)=E (η);③E (η2)=E (X );④D (X )=D (η)=925.其中正确的是________.(填上所有正确结论的序号)4.海关大楼顶端镶有A 、B 两面大钟,它们的日走时误差分别为X 1、X 2(单位:s),其分布列如下:课后练习【补救练习】1.若随机变量ξ~B(n,0.6),且E(ξ)=3,则P(ξ=1)的值为()A.2×0.44B.2×0.45C.3×0.44D.3×0.642.已知ξ~B(n,p),E(ξ)=8,D(ξ)=1.6,则n与p的值分别为()A.100和0.08 B.20和0.4C.10和0.2 D.10和0.83.有甲、乙两种水稻,测得每种水稻各10株的分蘖数据,计算出样本均值E(X甲)=E(X乙),方差分别为D(X甲)=11,D(X乙)=3.4.由此可以估计()A.甲种水稻比乙种水稻分蘖整齐B.乙种水稻比甲种水稻分蘖整齐C.甲、乙两种水稻分蘖整齐程度相同D.甲、乙两种水稻分蘖整齐程度不能比较4.一次数学测验有25道选择题构成,每道选择题有4个选项,其中有且只有一个选项正确,每选一个正确答案得4分,不做出选择或选错的不得分,满分100分,某学生选对任一题的概率为0.8,则此学生在这一次测试中的成绩的期望为________;方差为________.【巩固练习】1.现有10张奖券,8张2元的、2张5元的,某人从中随机抽取3张,则此人得奖金额的数学期望是() A.6 B.7.8C.9 D.122.一射手对靶射击,直到第一次命中为止,每次命中的概率为0.6,现有4发子弹,则命中后剩余子弹数目的均值为()A.2.44 B.3.376C.2.376 D.2.43.已知随机变量X+Y=8,若X~B(10,0.6),则E(Y),D(Y)分别是()A.6,2.4 B.2,2.4C.2,5.6 D.6,5.64.马老师从课本上抄录一个随机变量ξ的概率分布列如下表:请小牛同学计算ξ“?”处的数值相同.据此,小牛给出了正确答案E (ξ)=________.5.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p ,且三个公司是否让其面试是相互独立的.记X 为该毕业生得到面试的公司个数,若P (X =0)=112,则随机变量X 的数学期望E (X )=________.6.随机变量ξ的分布列如下:其中a ,b ,c 成等差数列,若E (ξ)=13,则D (ξ)=________.7.某城市出租汽车的起步价为6元,行驶路程不超出3 km 时按起步价收费,若行驶路程超出3 km ,则按每超出 1 km 加收3元计费(超出不足 1 km 的部分按 1 km 计).已知出租车一天内行车路程可能为200,220,240,260,280,300(单位:km),它们出现的概率分别为0.12,0.18,0.20,0.20,0.18,0.12,设出租车行车路程ξ是一个随机变量,司机收费为η(元),则η=3ξ-3,求出租车行驶一天收费的均值.8.为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物.某人一次种植了n 株沙柳,各株沙柳成活与否是相互独立的,成活率为p ,设ξ为成活沙柳的株数,数学期望E (ξ)=3,标准差D (ξ)为62. (1)求n ,p 的值并写出ξ的分布列;(2)若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率.【拔高练习】1.设ξ为离散型随机变量,则E (E (ξ)-ξ)=( ) A .0 B .1 C .2D .不确定2.甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望).3.A ,B 两个投资项目的利润率分别为随机变量X 1和X 2.根据市场分析,X 1和X 2的分布列分别为:(1)在A ,B 两个项目上各投资10012A 和B 所获得的利润,求方差D (Y 1),D (Y 2);(2)将x (0≤x ≤100)万元投资A 项目,(100-x )万元投资B 项目,f (x )表示投资A 项目所得利润的方差与投资B 项目所得利润的方差的和.求f (x )的最小值,并指出x 为何值时,f (x )取到最小值.。
高考数学 题型通关21讲第7讲 分布列与数学期望(解析版)

第7讲 分布列与数学期望高考预测一:求概率及随机变量的分布列的基本类型 类型一:利用古典概型求概率1.10月1日,某品牌的两款最新手机(记为W 型号,T 型号)同时投放市场,手机厂商为了解这两款手机的销售情况,在10月1日当天,随机调查了5个手机店中这两款手机的销量(单位:部),得到如表(Ⅰ)若在10月1日当天,从A ,B 这两个手机店售出的新款手机中分别随机抽取1部,求抽取的2部手机中至少有1部为W 型号手机的概率;(Ⅱ)现从这5个手机店中任选3个举行促销活动,用X 表示其中W 型号手机销量超过T 型号手机销量的手机店的个数,求随机变量X 的分布列和数学期望;(Ⅲ)经测算,W 型号手机的销售成本η(百元)与销量ξ(部)满足关系34ηξ=+.若表中W 型号手机销量的方差20(0)S m m =>,试给出表中5个手机店的W 型号手机销售成本的方差2S 的值.(用m 表示,结论不要求证明)【解析】解:()I 设事件1M 为从A 店售出的手机中随机抽取1部手机,抽取的手机为W 型号手机, 设事件2M 为从A 店售出的手机中随机抽取1部手机,抽取的手机为W 型号手机, 则事件1M ,2M 相互独立,且161()6123P M ==+,262()695P M ==+, ∴抽取的2部手机中至少有1部为W 型号手机的概率为13221233535355P =⨯+⨯+⨯=.()II 由表格可知W 型号手机销售量超过T 型号手机的店有2个,故X 的可能取值有0,1,2.且33351(0)10C P X C ===,1223353(1)5C C P X C ===,2123353(2)10C C P X C ===. X ∴的分布列为:数学期望为1336()012105105E X =⨯+⨯+⨯=.20()()III D s m ξ==,34ηξ=+,2()9()9S D D m ηξ∴===.2.为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x 和y 的数据,并制成如图,其中“*”表示服药者,“+”表示未服药者.(1)从服药的50名患者中随机选出一人,求此人指标y 的值小于60的概率;(2)从图中A ,B ,C ,D 四人中随机选出两人,记ξ为选出的两人中指标x 的值大于1.7的人数,求ξ的分布列和数学期望()E ξ;(3)试判断这100名患者中服药者指标y 数据的方差与未服药者指标y 数据的方差的大小.(只需写出结论)【解析】解:(1)由图知:在50名服药患者中,有15名患者指标y 的值小于60, 答:从服药的50名患者中随机选出一人,此人指标小于60的概率为:1535010p ==. (2)由图知:A 、C 两人指标x 的值大于1.7,而B 、D 两人则小于1.7,可知在四人中随机选项出的2人中指标x 的值大于1.7的人数ξ的可能取值为0,1,2, 2411(0)6P C ξ===, 1122242(1)3C C P C ξ===,2411(2)6P C ξ===, ξ∴的分布列如下:答:121()0121636E ξ=⨯+⨯+⨯=.(3)答:由图知100名患者中服药者指标y 数据的方差比未服药者指标y 数据的方差大.3.已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束. (1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X 表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X 的分布列和数学期望.【解析】解:(1)记“第一次检测出的是次品且第二次检测出的是正品”为事件A ,则P (A )1123252332010A A A ⨯===; (2)X 的可能取值为200,300,400,222521(200)2010A P X A ====,311232323562323(300)6010A C C A P X A ++⨯⨯====, 133(400)1(200)(300)110105P X P X P X ==-=-==--=; 所以X的分布列为:数学期望为13320030040035010105EX =⨯+⨯+⨯=. 类型二:利用相互独立事件的概率乘法公式和互斥事件概率加法公式求概率 4.电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值. 假设所有电影是否获得好评相互独立.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (Ⅱ)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;(Ⅲ)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等.用“1k ξ=”表示第k 类电影得到人们喜欢.“0k ξ=”表示第k 类电影没有得到人们喜欢(1k =,2,3,4,5,6).写出方差1D ξ,2D ξ,3D ξ,4D ξ,5D ξ,6D ξ的大小关系.【解析】解:(Ⅰ)设事件A 表示“从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影”,总的电影部数为140503002008005102000+++++=部, 第四类电影中获得好评的电影有:2000.2550⨯=部,∴从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的频率为:P (A )500.0252000==. (Ⅱ)设事件B 表示“从第四类电影和第五类电影中各随机选取1部,恰有1部获得好评”, 第四类获得好评的有:2000.2550⨯=部, 第五类获得好评的有:8000.2160⨯=部,则从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率:P (B )50(800160)(20050)1600.35200800⨯-+-⨯==⨯.(Ⅲ)由题意知,定义随机变量如下:0,1,k k k ξ⎧=⎨⎩第类电影没有得到人们喜欢第类电影得到人们喜欢,则k ξ服从两点分布,则六类电影的分布列及方差计算如下: 第一类电影:1()10.400.60.4E ξ=⨯+⨯=,221()(10.4)0.4(00.4)0.60.24D ξ=-⨯+-⨯=.第二类电影:2()10.200.80.2E ξ=⨯+⨯=,222()(10.2)0.2(00.2)0.80.16D ξ=-⨯+-⨯=.第三类电影:3()10.1500.850.15E ξ=⨯+⨯=,223()(10.15)0.15(00.15)0.850.1275D ξ=-⨯+-⨯=.第四类电影:4()10.2500.750.25E ξ=⨯+⨯=,224()(10.25)0.25(00.25)0.750.1875D ξ=-⨯+-⨯=.第五类电影:5()10.200.80.2E ξ=⨯+⨯=,225()(10.2)0.2(00.2)0.80.16D ξ=-⨯+-⨯=.第六类电影:6()10.100.90.1E ξ=⨯+⨯=,225()(10.1)0.1(00.1)0.90.09D ξ=-⨯+-⨯=.∴方差1D ξ,2D ξ,3D ξ,4D ξ,5D ξ,6D ξ的大小关系为:632541D D D D D D ξξξξξξ<<=<<.5.设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)设甲同学上学期间的三天中7:30之前到校的天数为X ,求0X =,1X =,2X =,3X =时的概率(0)P X =,(1)P X =,(2)P X =,(3)P X =.(2)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.【解析】解:(1)321(0)(1)327P X ==-=,123222(1)(1)339P X C ==-=, 223224(2)()(1)339P X C ==-=,33328(3)()327P X C ===. (2)设乙同学上学期间的三天中在7:30之前到校的天数为Y , 则1(0)(0)27P Y P X ====,2(1)(1)9P Y P X ====, 4(2)(2)9P Y P X ====,8(3)(3)27P Y P X ====, 418220()(2)(0)(3)(1)927279243P M P X P Y P X P Y ∴===+===⨯+⨯=. 类型三:利用条件概率公式求概率6.如图所示,质点P 在正方形ABCD 的四个顶点上按逆时针方向前进.现在投掷一个质地均匀、每个面上标有一个数字的正方体玩具,它的六个面上分别写有两个1、两个2、两个3一共六个数字.质点P 从A 点出发,规则如下:当正方体上底面出现的数字是1,质点P 前进一步(如由A 到)B ;当正方体上底面出现的数字是2,质点P 前两步(如由A 到)C ,当正方体上底面出现的数字是3,质点P 前进三步(如由A 到)D .在质点P 转一圈之前连续投掷,若超过一圈,则投掷终止.(1)求点P 恰好返回到A 点的概率;(2)在点P 转一圈恰能返回到A 点的所有结果中,用随机变量ξ表示点P 恰能返回到A 点的投掷次数,求ξ的分布列及数学期望.【解析】解:(1)投掷一次正方体玩具,因每个数字在上底面出现是等可能的,故其概率12163P ==. 易知只投掷一次不可能返回到A 点.①若投掷两次质点P 就恰好能返回到A 点,则上底面出现的两个数字,应依次为:(1,3)、(3,1)、(2,2)三种结果,其概率为2211()333P =⨯=.②若投掷三次质点P 恰能返回到A 点,则上底面出现的三个数字,应依次为:(1,1,2)、(1,2,1)、(2,1,1)三种结果,其概率为3311()339P =⨯=. ③若投掷四次质点P 恰能返回到A 点,则上底面出现的四个数字应依次为:(1,1,1,1),其概率为4411()381P ==.所以,质点P 恰好返回到A 点的概率为:23411137398181P P P P =++=++=.(2)由(1)知,质点P 转一圈恰能返回到A 点的所有结果共有以上问题中的7种情况, 且ξ的可能取值为2,3,4.则1273(2)373781P ξ===,199(3)373781P ξ===,1181(4)373781P ξ===,故ξ的分布列为:所以,27918523437373737E ξ=⨯+⨯+⨯=.7.根据以往的经验,某工程施工期间的降水量X (单位:)mm 对工期的影响如下表:300700X <700900X <9002610历年气象资料表明,该工程施工期间降水量X 小于300,700,900的概率分别为0.3,0.7,0.9,求: ()I 工期延误天数Y 的均值与方差;(Ⅱ)在降水量X 至少是300的条件下,工期延误不超过6天的概率.【解析】()I 由题意,(300)0.3P X <=,(300700)(700)(300)0.70.30.4P X P X P X <=<-<=-=,(700900)(900)(700)0.90.70.2P X P X P X <=<-<=-=,(900)10.90.1P X =-=Y 的分布列为()00.320.460.2100.13E Y ∴=⨯+⨯+⨯+⨯=2222()(03)0.3(23)0.4(63)0.2(103)0.19.8D Y =-⨯+-⨯+-⨯+-⨯=∴工期延误天数Y 的均值为3,方差为9.8;(Ⅱ)(300)1(300)0.7P X P X =-<=,(300900)(900)(300)0.90.30.6P X P X P X <=<-<=-= 由条件概率可得(300900)0.66(6|300)(300)0.77P X P Y X P X <===.类型四:利用统计图表中的数据求概率8.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:C)︒有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率代替最高气温位于该区间的概率. (1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量n (单位:瓶)为多少时,Y 的数学期望达到最大值?【解析】解:(1)由题意知X 的可能取值为200,300,500,216(200)0.290P X +===,36(300)0.490P X ===, 2574(500)0.490P X ++===, X ∴的分布列为:(2)由题意知这种酸奶一天的需求量至多为500瓶,至少为200瓶,∴只需考虑200500n ,当300500n 时,若最高气温不低于25,则642Y n n n =-=;若最高气温位于区间[20,25),则63002(300)412002Y n n n =⨯+--=-; 若最高气温低于20,则62002(200)48002Y n n n =⨯+--=-, 20.4(12002)0.4(8002)0.26400.4EY n n n n ∴=⨯+-⨯+-⨯=-,当200300n 时,若最高气温不低于20,则642Y n n n =-=,若最高气温低于20,则62002(200)48002Y n n n =⨯+--=-, 2(0.40.4)(8002)0.2160 1.2EY n n n ∴=⨯++-⨯=+.300n ∴=时,Y 的数学期望达到最大值,最大值为520元.9.某贫困地区共有1500户居民,其中平原地区1050户,山区450户.为调查该地区2017年家庭收入情况,从而更好地实施“精准扶贫”,采用分层抽样的方法,收集了150户家庭2017年年收入的样本数据(单位:万元).(1)应收集多少户山区家庭的样本数据?(2)根据这150个样本数据,得到2017年家庭收入的频率分布直方图(如图所示),其中样本数据分组区间为(0,0.5],(0.5,1],(1,1.5],(1.5,2],(2,2.5],(2.5,3].如果将频率视为概率,估计该地区2017年家庭收入超过1.5万元的概率;(3)样本数据中,有5户山区家庭的年收入超过2万元,请完成2017年家庭收入与地区的列联表,并判断是否有90%的把握认为“该地区2017年家庭年收入与地区有关”?附:2() n ad bcK-=++++2)k【解析】解:(1)由已知可得每户居民被抽取的概率为0.1,故应收集手机4500.145⨯=户山区家庭的样本数据.(2)由直方图可知该地区2017年家庭年收入超过1.5万元的概率约为(0.5000.3000.100)0.50.45++⨯=.(3)样本数据中,年收入超过2万元的户数为(0.3000.100)0.515030+⨯⨯=户.而样本数据中,有5户山区家庭的年收入超过2万元,故列联表如下:所以2150(2540580)2003.175 2.706 301201054563K⨯-⨯==≈>⨯⨯⨯,∴有90%的把握认为“该地区2017年家庭年收入与地区有关”.高考预测二:超几何分布和二项分布类型一:超几何分布10.已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(Ⅰ)应从甲、乙、丙三个部门的员工中分别抽取多少人?(Ⅱ)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查. ()i 用X 表示抽取的3人中睡眠不足的员工人数,求随机变量X 的分布列与数学期望;()ii 设A 为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A 发生的概率.【解析】解:(Ⅰ)单位甲、乙、丙三个部门的员工人数分别为24,16,16.人数比为:3:2:2, 从中抽取7人现,应从甲、乙、丙三个部门的员工中分别抽取3,2,2人.(Ⅱ)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查. ()i 用X 表示抽取的3人中睡眠不足的员工人数,随机变量X 的取值为:0,1,2,3,34337()k kC C P X k C -⋅==,0k =,1,2,3. 所以随机变量的分布列为:随机变量X 的数学期望11218412()0123353535357E X =⨯+⨯+⨯+⨯=; ()ii 设A 为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,设事件B 为:抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人,事件C 为抽取的3人中, 睡眠充足的员工有2人,睡眠不足的员工有1人, 则:A BC =,且P (B )(2)P X ==,P (C )(1)P X ==,故P (A )6()(2)(1)7P B C P X P X ===+==. 所以事件A 发生的概率:67. 11. 2.5PM 是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物. 2.5PM 日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.石景山古城地区2013年2月6日至15日每天的 2.5PM 监测数据如茎叶图所示.(1)小陈在此期间的某天曾经来此地旅游,求当天 2.5PM 日均监测数据未超标的概率;(2)从所给10天的数据中任意抽取三天数据,记ξ表示抽到 2.5PM 监测数据超标的天数,求ξ的分布列及期望.【解析】解:(1)记“当天 2.5PM 日均监测数据未超标”为事件A , 因为有24+天 2.5PM 日均值在75微克/立方米以下, 故P (A )243105+==. (2)ξ的可能值为0,1,2,3.由茎叶图可知:空气质量为一级的有2天,空气质量为二级的有4天,只有这6天空气质量不超标,而其余4天都超标.363101(0)6C P C ξ===,21643101(1)2C C P C ξ===,12643103(2)10C C P C ξ===,343101(3)30C P C ξ===.ξ的分布列如下表:1131601236210305E ξ∴=⨯+⨯+⨯+⨯=.类型二:二项分布12.某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出一个球,在摸出的2个球中,若都是红球,则获得一等奖;若只有1个红球,则获得二等奖;若没有红球,则不获奖. (1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中或一等奖的次数为X ,求X 的分布列、数学期望和方差.【解析】解:(1)设顾客抽奖1次能中奖的概率为P .116511101037111010C C P C C =-=-=,(2)设该顾客在一次抽奖中获一等奖的概率为1P ,1145112101015C C P C C ==, 故而1?(3,)5X B .3464(0)()5125P X ∴===,1231448(1)()55125P X C ===, 2231412(2)()55125P X C ===,311(3)()5125P X ===. 故X 的分布列为数学期望13()355E X ==,方差1412()35525D X ==. 13.近年来,空气质量成为人们越来越关注的话题,空气质量指数(,)AirQualityIndex AQI 是定量描述空气质量状况的指数,空气质量按照AQI 大小分为六级,0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;大于300为严重污染.环保部门记录了2017年某月哈尔滨市10天的AQI 的茎叶图如下:(1)利用该样本估计该地本月空气质量优良(100)AQI 的天数;(按这个月总共30天计算) (2)现工作人员从这10天中空气质量为优良的日子里随机抽取2天进行某项研究,求抽取的2天中至少有一天空气质量是优的概率;(3)将频率视为概率,从本月中随机抽取3天,记空气质量优良的天数为ξ,求ξ的概率分布列和数学期望.【解析】解:(1)从茎叶图中可发现该样本中空气质量优的天数为2,空气质量良的天数为4,故该样本中空气质量优良的频率为63105=,从而估计该月空气质量优良的天数为330185⨯=(2)现工作人员从这10天中空气质量为优良的日子里随机抽取2天进行某项研究, 基本事件总数2615n C ==,抽取的2天中至少有一天空气质量是优的对立事件是抽取的2天中至少有一天空气质量都不是优,∴抽取的2天中至少有一天空气质量是优的概率:2426315C p C =-=.(3)由(1)估计某天空气质量优良的概率为35,ξ∴的所有可能取值为0,1,2,3,且3~(3,)5B ξ,328(0)()5125P ξ===, 1233236(1)()55125P C ξ===, 2233254(2)()55125P C ξ===, 3327(3)()5125P ξ===, 故ξ的分布列为:3~(3,)5B ξ,33 1.85E ξ=⨯=.高考预测三:概率与其他知识点交汇 类型一:以其他知识为载体14.已知正四棱锥PABCD 的侧棱和底面边长相等,在这个正四棱锥的8条棱中任取两条,按下列方式定义随机变量ξ的值:若这两条棱所在的直线相交,则ξ的值是这两条棱所在直线的夹角大小(弧度制); 若这两条棱所在的直线平行,则0ξ=;若这两条棱所在的直线异面,则ξ的值是这两条棱所在直线所成角的大小(弧度制). (1)求(0)P ξ=的值;(2)求随机变量ξ的分布列及数学期望()E ξ.【解析】解:(1)根据题意,该四棱锥的四个侧面均为等边三角形,底面为正方形,PAC ∆,PBD ∆为等腰直角三角形.ξ的可能取值为:0,3π,2π, 在这个正四棱锥的8条棱中任取两条基本事件总数2828n C ==种情况, 当0ξ=时有2种,当3πξ=时有342420⨯+⨯=种,当2πξ=时有246+=种.21(0)2814P ξ∴===. (2)21(0)2814P ξ===. 205()3287P πξ===, 63()22814P πξ===.随机变量ξ的分布列如下表:15329()0143721484E πππξ=⨯+⨯+⨯=. 15.从集合{1M =,2,3,4,5,6,7,8,9}中抽取三个不同的元素构成子集1{a ,2a ,3}a . (1)求对任意的i 和(1j i =,2,3,1j =,2,3,)i j ≠满足||2i j a a -的概率;(2)若1a ,2a ,3a 成等差数列,设其公差为(0)ξξ>,求随机变量ξ的分布列与数学期望()E ξ.【解析】解:(1)由题意知基本事件数为3984C =,而满足条件||2i j a a -,即取出的元素不相邻,则用插空法有3735C =种,故所求事件的概率为3558412P ==; (2)分析1a ,2a ,3a 成等差数列的情况:1ξ=的情况有7种:{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8},{7,8,9}, 2ξ=的情况有5种:{1,3,5},{2,4,6},{3,5,7},{4,6,8},{5,7,9}. 3ξ=的情况有3种:{1,4,7},{2,5,8},{3,6,9}.4ξ=的情况有1种:{1,5,9}.故ξ的分布列如下:所以753115()1234161615168E ξ=⨯+⨯+⨯+⨯=. 类型二:构造递推关系求概率问题16.为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0i p i =,1,⋯,8)表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11(1i i i i p ap bp cp i -+=++=,2,⋯,7),其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=. ()i 证明:1{}(0i i p p i +-=,1,2,⋯,7)为等比数列; ()ii 求4p ,并根据4p 的值解释这种试验方案的合理性.【解析】(1)解:X 的所有可能取值为1-,0,1.(1)(1)P X αβ=-=-,(0)(1)(1)P X αβαβ==+--,(1)(1)P X αβ==-,X ∴的分布列为:(2)()i 证明:0.5α=,0.8β=,∴由(1)得,0.4a =,0.5b =,0.1c =.因此110.40.50.1(1i i i i p p p p i -+=++=,2,⋯,7),故110.1()0.4()i i i i p p p p +--=-,即11()4()i i i i p p p p +--=-,又1010p p p -=≠,1{}(0i i p p i +∴-=,1,2,⋯,7)为公比为4,首项为1p 的等比数列;()ii 解:由()i 可得,881887761001(14)41()()()143p p p p p p p p p p --=-+-+⋯+-+==-,81p =,18341p ∴=-, 444332*********()()()()3257p p p p p p p p p p p -∴=-+-+-+-+==. 4p 表示最终认为甲药更有效的概率.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为410.0039257p =≈,此时得出错误结论的概率非常小,说明这种试验方案合理. 17.从原点出发的某质点M ,按向量(0,1)a =移动的概率为23,按向量(0,2)b =移动的概率为13,设M 可到达点(0,)(1n n =,2,3,)⋯的概率为n P . (1)求1P 和2P 的值;(2)求证:2111()3n n n n P P P P +++-=--;(3)求n P 的表达式.【解析】解:(1)123P =,22217()339P =+= (2)证明:M 点到达点(0,2)n +有两种情况 ①从点(0,1)n +按向量(0,1)a =移动 ②从点(0,)n 按向量(0,2)b =移动∴212133n n n P P P ++=+ ∴2111()3n n n n P P P P +++-=-- 问题得证.(3)数列1{}n n P P +-是以21P P -为首项,13-为公比的等比数列 1111211111()()()()3933n n n n n P P P P --++-=--=-=- 11()3n n n P P -∴-=-又因为111221()()()n n n n n P P P P P P P P ----=-+-+⋯+-12111()()()333n n -=-+-+⋯+-111[1()]123n -=-- 11n n P P P P ∴=-+∴113()434n n P =⨯-+. 类型三:利用导数研究概率问题18.某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为(01)p p <<,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为()f p ,求()()f p f p 的最大值点0p (即()f p 取最大值时对应的p 的值).(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的0p 作为p 的值,已知每件产品的检验费用为3元,若有不合格品进入用户手中,则工厂要对每件不合格品支付28元的赔偿费用 ()i 若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用之和记为X 求()E X ; ()ii 以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?【解析】解:(1)记20件产品中恰有2件不合格品的概率为()f p ,则221820()(1)f p C p p =-,2182172172020()[2(1)18(1)]2(1)(110)f p C p p p p C p p p ∴'=---=--,令()0f p '=,得0.1p =, 当(0,0.1)p ∈时,()0f p '>, 当(0.1,1)p ∈时,()0f p '<, f ∴()p 的最大值点00.1p =.(2)()i 由(1)知0.1p =,令Y 表示余下的180件产品中的不合格品数,依题意知~(180,0.1)Y B ,20328X Y =⨯+,即6028X Y =+,()(6028)6028()60281800.1564E X E Y E Y ∴=+=+=+⨯⨯=. ()ii 如果对余下的产品作检验,由这一箱产品所需要的检验费为600元, ()564600E X =<,∴应该对余下的产品不进行检验.19.某有机水果种植基地试验种植的某水果在售卖前要成箱包装,每箱80个,每一箱水果在交付顾客之前要按约定标准对水果作检测,如检测出不合格品,则更换为合格品.检测时,先从这一箱水果中任取10个作检测,再根据检测结果决定是否对余下的所有水果作检测.设每个水果为不合格品的概率都为(01)p p <<,且各个水果是否为不合格品相互独立.(Ⅰ)记10个水果中恰有2个不合格品的概率为()f p ,求()f p 取最大值时p 的值0p ;(Ⅱ)现对一箱水果检验了10个,结果恰有2个不合格,以(Ⅰ)中确定的0p 作为p 的值.已知每个水果的检测费用为1.5元,若有不合格水果进入顾客手中,则种植基地要对每个不合格水果支付a 元的赔偿费用(*)a N ∈.(ⅰ)若不对该箱余下的水果作检验,这一箱水果的检验费用与赔偿费用的和记为X ,求EX ; (ⅱ)以检验费用与赔偿费用和的期望值为决策依据,当种植基地要对每个不合格水果支付的赔偿费用至少为多少元时,将促使种植基地对这箱余下的所有水果作检验?【解析】解:(Ⅰ)记10个水果中恰有2个不合格的概率为()f p ,则22810()(1)f p C p p =-,282710()[2(1)8(1)]f p C p p p p ∴'=---,由()0f p '=,得0.2p =.且当(0,0.2)p ∈时()0f p '>,当(0.2,1)p ∈时,()0f p '<,()f p ∴的最大值点00.2p =.(Ⅱ)由(Ⅰ)知00.2p =.(ⅰ)令Y 表示余下的70个水果中的不合格数,依题意~(70,0.2)Y B ,10 1.515X aY aY =⨯+=+. ()(15)15()15700.21514E X E aY aE Y a a ∴=+=+=+⨯⨯=+.(ⅱ)如果对余下的水果作检验,则这箱水果的检验费为120元, 由1514120a +>,得1057.514a >=,且*a N ∈, ∴当种植基地要对每个不合格水果支付的赔偿费用至少为8元时,将促使种植基地对这箱余下的所有水果作检验.高考预测三:决策问题20.某公司计划购买2台机器,该种机器使用三年后即被淘汰,机器有一易损零件,在购买机器时,可以额外购买这种零件作为备件,每个300元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得到下面柱状图.以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数.(1)求X 的分布列;(2)若要求()0.5P X n ,试确定n 的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在19n =与20n =之中选其一,应选用哪个?【解析】解:(1)每台机器更换的易损零件数为8,9,10,11,记事件1A 为第一台机器3年内换掉7i +个零件(1i =,2,3,4),记事件1B 为第二台机器3年内换掉7i +个零件(1i =,2,3,4),由题知134134()()()()()()0.2P A P A P A P B P B P B ======,22()()0.4P A P B ==,则X 的可能的取值为16,17,18,19,20,21,22,11(16)()()0.20.20.04P X P A P B ===⨯=;1221(17)()()()()0.20.40.40.20.16P X P A P B P A P B ==+=⨯+⨯=;132231(18)()()()()()()0.20.20.20.20.40.40.24P X P A P B P A P B P A P B ==++=⨯+⨯+⨯=;14233241(19)()()()()()()()()0.20.20.20.20.40.20.20.40.24P X P A P B P A P B P A P B P A P B ==+++=⨯+⨯+⨯+⨯=;243342(20)()()()()()()0.40.20.20.40.20.20.2P X P A P B P A P B P A P B ==++=⨯+⨯+⨯=;3443(21)()()()()0.20.20.20.20.08P X P A P B P A P B ==+=⨯+⨯=;44(22)()()0.20.20.04P X P A P B ===⨯=.从而X 的分布列为(2)要()0.5P x n ,0.040.160.240.5++<,0.040.160.240.240.5+++,则n 的最小值为19;(3)购买零件所需费用含两部分,一部分为购买机器时购买零件的费用,另一部分为备件不足时额外购买的费用,当19n =时,费用的期望为193005000.210000.0815000.045940⨯+⨯+⨯+⨯=元,当20n =时,费用的期望为203005000.0810000.046080⨯+⨯+⨯=元,若要费用最少,所以应选用19n =.高考预测四:正态分布21.为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:)cm .根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.0410.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95 经计算得16119.9716i i x x ===∑,0.212s =≈,其中i x 为抽取的第i 个零件的尺寸,1i =,2,⋯,16. 用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01). 附:若随机变量Z 服从正态分布2(,)N μσ,则(33)0.9974P Z μσμσ-<<+=,160.99740.9592≈,0.09.【解析】解:(1)抽取的一个零件的尺寸在(3,3)μσμσ-+之内的概率为0.9974,从而零件的尺寸在(3,3)μσμσ-+之外的概率为0.0026,故~(16,0.0026)X B .因此,16(1)1(0)10.99740.0408P X P X =-==-≈;(2)由9.97,0.212x s =≈,得μ的估计值为ˆ9.97μ=,σ的估计值为ˆ0.212σ=, 由样本数据可以看出有一个零件的尺寸在ˆˆˆˆ(3,3)μσμσ-+之外, 因此需对当天的生产过程进行检查,剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22, 剩下数据的平均数为1(169.979.22)10.0215⨯-=, 因此μ的估计值为10.02,162221160.212169.971591.134i i x ==⨯+⨯≈∑,剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22, 剩下数据的样本方差为221(1591.1349.221510.02)0.00815--⨯≈. 因此σ0.09.22.从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如图频率分布直方图:(1)求这500件产品质量指标值的样本平均值x 和样本方差2s (同一组的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标Z 服从正态分布2(,)N μσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s①利用该正态分布,求(187.8212.2)P Z <<②某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数.利用 ①的结果,求EX 附:6 2.44≈,若2~(,)z n μσ,则()0.6826p Z μσμσ-<<+=,(22)0.9544p Z μσμσ-<<+=.【解析】解:(1)抽取产品的质量指标值的样本平均数为:1700.021800.091900.222000.332100.242200.082300.02200x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=,样本方差2s 分别为:2222222(30)0.02(20)0.09(10)0.2200.33100.24200.08300.02150s =-⨯+-⨯+-⨯+⨯+⨯+⨯+⨯=. (Ⅱ)()i 由(Ⅰ)知~(200,150)Z N ,从而(187.8212.2)(20012.220012.2)0.6826P Z P Z <<=-<<+=;()ii 由()i 知一件产品的质量指标值位于区间(187.8,212.2)的概率为0.6826,依题意知~(100,0.6826)X B ,所以1000.682668.26EX =⨯=.。
概率论,方差,分布列知识总结

分布列、期望、方差知识总结一、知识结构二、知识点1.随机试验的特点:①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.2.分类随机变量(如果随机试验可能出现的结果可以用一个变量X来表示,并且X是随着试验的结果的不同而变化,那么这样的变量叫做随机变量.随机变量常用大写字母X、Y等或希腊字母ξ、η等表示。
)离散型随机变量在上面的射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.连续型随机变量对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量.连续型随机变量的结果不可以一一列出.3.离散型随机变量的分布列一般的,设离散型随机变量X可能取的值为x1,x2, ,x i , ,x nX取每一个值xi(i=1,2,)的概率P(ξ=x i)=P i,则称表为离散型随机变量X 的概率分布,简称分布列性质:①pi≥0, i =1,2,…;②p1 + p2 +…+p n= 1.③一般地,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和。
4.求离散型随机变量分布列的解题步骤例题:篮球运动员在比赛中每次罚球命中得1分,不中得0分,已知某运动员罚球命中的概率为0.7,求他罚球一次的得分的分布列.解:用随机变量X表示“每次罚球得的分值”,依题可知,X可能的取值为:1,0且P(X=1)=0.7,P(X=0)=0.3因此所求分布列为:引出二点分布如果随机变量X的分布列为:其中0<p<1,q=1-p,则称离散型随机变量X服从参数p的二点分布二点分布的应用:如抽取彩票是否中奖问题、新生婴儿的性别问题等.超几何分布一般地, 设总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n(n ≤N)件,这n 件中所含这类物品件数X 是一个离散型随机变量,则它取值为k 时的概率为()(0,1,2,,)k n k M N MnNC C P X k k m C --===,其中{}min,m M n =,且*,,,,n N M N n M N N ∈≤≤ 则称随机变量X 的分布列为超几何分布列,且称随机变量X 服从参数N 、M 、n 的超几何分布注意:(1)超几何分布的模型是不放回抽样;(2)超几何分布中的参数是N 、M 、n ,其意义分别是总体中的个体总数、N 中一类的总数、样本容量解题步骤:例题、在某年级的联欢会上设计了一个摸奖游戏,在一个口袋中装有10个红球和20个白球,这些球除颜色外完全相同.游戏者一次从中摸出5个球.至少摸到3个红球就中奖,求中奖的概率解:设摸出红球的个数为X,则X 服从超几何分布,其中30,10,5N M n === X 可能的取值为0,1,2,3,4, 5. 由题目可知,至少摸到3个红球的概率为(3)(3)(4)(5)P X P X P X P X ==+=+=≥324150102010201020555303030C C C C C C C C C =++ ≈0.191答:中奖概率为0.191.nNn MN MCC C -0nNn MN MCC C 11--nNm n MN m MCC C --条件概率1.定义:对任意事件A 和事件B ,在已知事件A 发生的条件下事件B 发生的概率,叫做条件概率P(B|A),读作A 发生的条件下B 的概率2.事件的交(积):由事件A 和事件B 同时发生所构成的事件D ,称为事件A 与事件B 的交(或积作D=A ∩B 或D=AB3.条件概率计算公式:P(B|A)相当于把A 看作新的基本事件空间,求A∩B发生的概率:解题步骤:例题、10个产品中有7个正品、3个次品,从中不放回地抽取两个,已知第一个取到次品,求第二取到次品的概率.解:设 A = {第一个取到次品}, B = {第二个取到次品},所以,P(B|A) = P(AB) / P(A)= 2/9 答:第二个又取到次品的概率为2/9..0)(,)()()|(>=A P A P AB P A B P .1)|(0)()|()(0)A (P ≤≤⋅=>A B P A P A B P AB P (乘法公式);,则若.151)(21023==⇒C C AB P .103)(=A P相互独立事件2.相互独立事件同时发生的概率公式两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随机变量的分布列与数学期望
1.根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立.
(I)求该地1位车主至少购买甲、乙两种保险中的l种的概率;
(Ⅱ)X表示该地的l00位车主中,甲、乙两种保险都不购买的车主数.求X的期望.
2.红队队员甲、乙、丙与蓝队队员A、B、C 进行围棋比赛,甲对A、乙对B、丙对C各一盘。
已知甲胜A、乙胜B、丙胜C的概率分别为0.6,0.5,0.5.假设各盘比赛结果相互独立。
(Ⅰ)求红队至少两名队员获胜的概率;(Ⅱ)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望Eξ。
3.为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取14件和5件,测量产品中微量元素x,y 的含量(单位:毫克).下表是乙厂的5件产品的测量数据:
(1)已知甲厂生产的产品共98件,求乙厂生产的产品数量;
(2)当产品中的微量元素x,y满足x≥175且y≥75时,该产品为优等品,用上述
样本数据估计乙厂生产的优等品的数
量;
(3)从乙厂抽出的上述5件产品中,随即抽取2件,求抽取的2件产品中优等品
数 的分布列及其均值(即数学期望).
4.本着健康、低碳的生活理念,租自行车骑游的人越来越多。
某自行车租车点的收费标准是每车每次租不超过两小时免费,超过两小时的收费标准为2元(不足1小时的部分按1小时计算)。
有人独立来该租车点则车骑游。
各租一车一次。
设甲、乙不超过两小
;两小时以上且不超时还车的概率分别为11,
42
;两人租车时过三小时还车的概率分别为11,
24
间都不会超过四小时。
(Ⅰ)求出甲、乙所付租车费用相同的概率; (Ⅱ)求甲、乙两人所付的租车费用之和为随机变量ξ,求ξ的分布列与数学期望E ξ;
5.如图4, EFGH 是以O 为圆心,半径为1的圆的内接正方形,将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE (阴影部分)内”,则
(1)=______P A ();(2)=______P A (B|)
5解析:(1)由几何概型概率计算公式可得2==S P A S π正圆();
(2)由条件概率的计算公式可得
2114===24
P AB P A P A ππ⨯()(B|)()
1【命题意图】本题主要考查独立事件的概率、对立事件的概率、互斥事件的概率及二项分布的数学期望,考查考生分析问题、解决问题的能力.
【解析】记A表示事件: 该地的1位车主购买甲种保险;
B表示事件: 该地的1位车主购买乙种保险但不购买甲种保险;
C表示事件: 该地的1位车主至少购买甲、乙两种保险中的l种;
D表示事件: 该地的1位车主甲、乙两种保险都不购买.
(I)()0.5
P B=,
P A=, ()0.3
=+……………………………3分
C A B
=+=+=…………
P C P A B P A P B
()()()()0.8…………………6分
(Ⅱ)D C=,()1()10.80.2
=-=-=
P D P C
:,即X服从二项分
(100,0.2)
X B
布, ……………………………10分
所以期望1000.2
EX=⨯=. ……………………………12分
【点评】概率与统计是每年的必考题,一般
安排在解答题的前3题.本题属于已知概率求概率类型. 考查保险背景下的概率问题,要求考生熟练掌握独立事件的概率、对立事件的概率、互斥事件的概率及二项分布的数学期望.
2.解析:(Ⅰ)记甲对A、乙对B、丙对C各一盘中甲胜A、乙胜B、丙胜C分别为事件,,
D E F,则甲不胜A、乙不胜B、丙不胜C分别为事
件,,
D E F,根据各盘比赛结果相互独立可得
故红队至少两名队员获胜的概率为=+++
P P DEF P DEF P DEF P DEF
()()()()
=+++
P D P E P F P D P E P F P D P E P F P D P E P F
()()()()()()()()()()()()
=. =⨯⨯-+⨯-⨯+-⨯⨯+⨯⨯0.55
0.60.5(10.5)0.6(10.5)0.5(10.6)0.50.50.60.50.5
(Ⅱ)依题意可知0,1,2,3
ξ=,
ξ====-⨯-⨯-=;
P P DEF P D P E P F
(0)()()()()(10.6)(10.5)(10.5)0.1
ξ==++
P P DEF P DEF P DEF
(1)()()()
=⨯-⨯-+-⨯⨯-+-⨯-⨯=;
0.6(10.5)(10.5)(10.6)0.5(10.5)(10.6)(10.5)0.50.35
ξ==++
P P DEF P DEF P DEF
(2)()()()
=⨯⨯-+-⨯⨯+⨯-⨯=;
0.60.5(10.5)(10.6)0.50.50.6(10.5)0.50.4
ξ===⨯⨯=.故ξ的分布列为
P P DEF
(3)()0.60.50.50.15
ξ0 1 2 3
P 0.1 0.35 0.4
0.15
故00.110.3520.430.15 1.6E ξ=⨯+⨯+⨯+⨯=. 3
:,10
1)2P(,106)1P(,103)0P(, 0,1,2:)3(;14355
2:,2,5,5)2(;35514
98:)1(:25222513122523其分布列为故可以取值优等品的数量为故可估计出乙厂生产的的产品是优等品编号为件产品中从乙厂抽取的乙厂的产品数量为解ξξξξξ==========⨯=⨯C C C C C C C
.5
41012101100)E(=⨯+⨯+⨯=∴ξξ的数学期望为 4.解析:
(1)所付费用相同即为0,2,4元。
设付0元为1111428P =⋅=,付2元为2111248P =⋅=,付4元为31114416P =⋅= 则所付费用相同的概率为123
516P P P P =++= (2)设甲,乙两个所付的费用之和为ξ,ξ可为0,2,4,6,8
1(0)811115(2)4422161111115(4)4424241611113(6)442416111(8)4416P P P P P ξξ
ξ
ξ
ξ==
==⋅+⋅===⋅+⋅+⋅===⋅+⋅===⋅=
分布列
ξ
0 2 4 6 8 P
18 516 516 316 116 5591784822
E ξ=+++= 17. (本小题满分13分)
某班50位学生期中考试数学成绩的频率分布直方图如图4所示,其中成绩分组区间是:[40,50],[50,60],
[60,70],[70,80],[80,90],[90,100]。
(1)求图中x 的值;
(2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分
以上(含90分)的人数记为ξ,求ξ得数学期望。
【答案】(1)0.024
x=;(2)25
Eξ=。