控制系统仿真_薛定宇第九章_分数阶系统的分析与设计

合集下载

东北大学薛定宇 控制系统及计算机仿真chap 9

东北大学薛定宇 控制系统及计算机仿真chap 9

微积分计算:glfdiff()、fode_sol()

线性分数阶系统分析与设计
类的建立:@fotf;fotf.m、display.m 重载函数(FOTF互连)支持 *、+、feedback()


时域与频域分析:重载函数尽量控制系统工具箱 函数同名,且调用方式尽可能保持一致

step(), lsim(), bode(), nyquist(), nichols(), isstable(), norm()
国家级精品课程
控制系统仿真与CAD
第十一章 分数阶系统的分析与设计
东北大学信息学院 薛定宇
第十一章 分数阶系统的分析与设计


基于传统微积分理论的控制都是整数阶控制 误用的词:分数阶更确切的名称是非整数阶 本章主要内容
分数阶微积分的定义与计算 分数阶线性微分方程的求解 分数阶传递函数模型 —— FOTF 类
16/20

例11-13 分数阶微分方程 传递函数


输入信号

检验:用步长0.0005
控制系统仿真与CAD 国家级精品课程
2015/12/10
17/20
11.5 分数阶系统的设计

分数阶PID控制器

Igor Podlubny

分数阶对象最优分数阶PID控制器设计界面
控制系统仿真与CAD 国家级精品课程

微分、积分

扩展:统一微积分
控制系统仿真与CAD 国家级精品课程
2015/12/10
3/20
分数阶微积分的历史

法国数学家Guillaume Franç ois Antoine L’Hô pital

分数阶系统的分数阶PID控制器设计

分数阶系统的分数阶PID控制器设计

分数阶系统的分数阶PID控制器设计
薛定宇;赵春娜
【期刊名称】《控制理论与应用》
【年(卷),期】2007(24)5
【摘要】对于一些复杂的实际系统,用分数阶微积分方程建模要比整数阶模型更简洁准确.分数阶微积分也为描述动态过程提供了一个很好的工具.对于分数阶模型需要提出相应的分数阶控制器来提高控制效果.本文针对分数阶受控对象,提出了一种分数阶PID控制器的设计方法.并用具体实例演示了对于分数阶系统模型,采用分数阶控制器比采用古典的PID控制器取得更好的效果.
【总页数】6页(P771-776)
【作者】薛定宇;赵春娜
【作者单位】东北大学,信息科学与工程学院,辽宁,沈阳,110004;东北大学,信息科学与工程学院,辽宁,沈阳,110004
【正文语种】中文
【中图分类】TP273
【相关文献】
1.一种分数阶系统的内模控制器设计方法 [J], 张博;赵志诚;王元元
2.分数阶系统的自适应PID控制器参数优化 [J], 张艳珠;葛筝;王艳梅
3.带有传感器故障的不确定分数阶系统观测器设计 [J], 张雪峰;刘博豪
4.含有关联噪声的非线性分数阶系统的扩展卡尔曼滤波器设计 [J], 高哲; 陈小姣
5.一类分数阶系统的分析及控制器设计 [J], 王晓燕;王东风;韩璞
因版权原因,仅展示原文概要,查看原文内容请购买。

分数阶微积分的分数阶控制系统仿真研究的毕业论文

分数阶微积分的分数阶控制系统仿真研究的毕业论文
3.4 本章小结..................................................................................................................31
4分数阶控制系统的仿真..............................................................................................32
1.3本文研究容.............................................................................................................3
2数学理论基础....................................................................................................... ........3
2.1数学基本函数.............................................................................................................4
2.2 分数阶微积分的定义................................................................................................8
4.1整数阶控制系统仿真实例.......................................................................................32

控制系统计算机辅助设计-MATLAB语言和应用

控制系统计算机辅助设计-MATLAB语言和应用

2018/10/16
控制系统计算机辅助设计-MATLAB语言与应用
11

我国较有影响的控制系统仿真与计算机辅助设计 成果是中科院系统科学研究所韩京清研究员等主 持的国家自然科学基金重大项目开发的CADCSC 软件。 清华大学孙增圻、袁曾任教授的著作和程序。 以及北京化工学院吴重光、沈成林教授的著作和 程序等。
控制系统计算机辅助设计-MATLAB语言与应用
13


2018/10/16

系统仿真领域有很多自己的特性,如果能选择一种 能反映当今系统仿真领域最高水平,也是最实用的 软件或语言介绍仿真技术,使得读者能直接采用该 语言解决自己的问题,将是很有意义的。
实践证明,MATLAB 就是这样的仿真软件,由于 它本身卓越的功能,已经使得它成为自动控制、航 空航天、汽车设计等诸多领域仿真的首选语言。 所以在本书中将介绍基于 MATLAB/Simulink的控 制系统仿真与设计方法及其应用。
控制系统计算机辅助设计-MATLAB语言与应用
2
2018/10/16
1.1 控制系统计算机辅助设计 技术的发展综述

早期的控制系统设计可以由纸笔等工具容易地计算 出来,如 Ziegler 与 Nichols 于1942年提出的 PID 经 验公式就可以十分容易地设计出来。
随着控制理论的迅速发展,光利用纸笔以及计算器 等简单的运算工具难以达到预期的效果,加之在计 算机领域取得了迅速的发展,于是很自然地出现了 控制系统的计算机辅助设计 (computer-aided control system design , CACSD)方法。
控制系统计算机辅助设计-MATLAB语言与应用
18

2018/10/16

《控制系统数字仿真与cad》第2章控制系统的数学模型及其转换

《控制系统数字仿真与cad》第2章控制系统的数学模型及其转换
j 1 n i 1
(s z j )
m
式中 zj(j=1,2,…,m) 和pi(i=1,2,…,n) 称为 系统的零点和极点,它们既可以为实数又可 以为复数,而K称为系统的增益。 在MATLAB下零极点模型可以由增益 K和零、 极点所构成的列向量唯一确定出来。即 Z=[z1;z2;…;zm]; P=[p1;p2;…;pn];K=K

例2-3 对于单输入多输出系统 3s 2 s 3 2s 5 G ( s) 3 3s 5s 2 2s 1

解 则可将其用下列MATLAB语句表示 >>num=[0 0 3 2;1 0 2 5];den=[3 5 2 1]; Printsys(num,den) 执行结果为:

对于单输入多输出系统,列向量P中 储存为系统的极点;零点储存在矩阵Z的 列中, Z的列数等于输出向量的维数,每 列对应一个输出,对应增益则在列向量K 中。 因此,系统的零极点模型在MATLAB命 令中可用一个增益向量、零点向量和极 点向量来唯一确定。

【例2-4】已知单入双出系统的零极点模型
执行结果为 num/den= 6s ^3 12s ^ 2 6s 10
s ^ 4 2s ^3 3s ^ 2 s 1
其中MATLAB的printsys( )函数可按特殊格式打印出 状态空间和传递函数表示的系统。 printsys(num,den,‘s’) %显示∕打印连续系统的传 递函数,默认方式; printsys(num,den,‘z’) %显示∕打印离散系统的脉 冲传递函数;
2.1 线性系统数学模型的基本描述方法
根据系统数学描述方法的不同,系统可建立不 同的数学模型。 2.1.1 传递函数 单入单出系统可用高阶微分方程来表示,其一 般形式为:

分数阶控制理论研究

分数阶控制理论研究
针对不同的被控对象,设计出了多种分数阶控制 器,如分数阶PID控制器、分数阶滑模控制器等, 取得了良好的控制效果。
基于MATLAB/Simulink的分数阶控制系统的设计 和仿真平台开发成功,为分数阶控制系统的设计 和应用提供了有效的工具。
针对分数阶控制系统的参数整定问题,提出了一 些有效的参数整定方法,如基于粒子群优化算法 、遗传算法等。
根据不同的分类标准,分数阶控制系统可以分为不同的类型。例如,可以根据分数阶导数的阶数和特征进行分 类,也可以根据系统的结构和功能进行分类。
分数阶控制系统的稳定性分析
分数阶控制系统的稳定性条

对于一个分数阶控制系统,需要满足一定的条件才能 保证系统的稳定性。这些条件包括分数阶导数的性质 、控制器的设计、以及系统的参数等。
加强与国际学术界的交流与 合作,推动我国在分数阶控 制领域的学术研究与应用实 践的发展。
THANKS
谢谢您的观看
电力系统的故障诊断
利用分数阶控制器,可以实现对电力系统的故障诊断和 预警,有效预防和应对各种电力系统故障。
电力系统的优化运行
分数阶控制器可以优化电力系统的运行,例如调整发电 机的励磁控制,提高电力系统的效率和经济性。
05
结论与展望
研究成果总结
分数阶控制系统的稳定性和控制性能得到了充分 验证,实验结果表明分数阶控制器可以有效地提 高系统的鲁棒性和响应速度。
基于时域的鲁棒性分析
利用时域方法分析分数阶控制系统在时域上的鲁棒性,通过状态 空间模型来分析系统的鲁棒性。
基于LMI的鲁棒性分析
利用线性矩阵不等式(LMI)方法,分析并设计具有鲁棒性的分数 阶控制系统。
04
分数阶控制在工程中的应用
分数阶控制在机器人控制系统中的应用

分数阶PIλDμ控制器的设计方法——极点阶数搜索改进法

分数阶PIλDμ控制器的设计方法——极点阶数搜索改进法

分数阶PIλDμ控制器的设计方法——极点阶数搜索改进法严慧
【期刊名称】《机械设计与制造工程》
【年(卷),期】2010(039)017
【摘要】基于分数阶被控系统提出了分数阶PIλDμ控制器,该控制器将传统整数阶PID控制器的微分与积分阶数扩展到分数,增加了2个参数μ和λ.相比整数阶PID 控制器,分数阶PIλDμ控制器的设计更加灵活,但设计过程较复杂.在极点阶数搜索法的基础上,提出了分数阶PIλDμ控制器设计的改进方法,其基本原理是,首先估计比例参数KP,其次搜索一对使系统时域性能较好的极点,然后根据时域指标搜索较好的μ,λ并计算出KI,KD,最终设计出合适的分数阶PIλDμ控制器.仿真结果证实,与极点阶数搜索法相比,它的改进法设计出的分数阶PIλDμ控制器能够更好地调节系统,系统响应能够达到更高的时域指标,并且具备很好的动、稳态性能.
【总页数】5页(P44-48)
【作者】严慧
【作者单位】金陵科技学院,信息技术学院,江苏,南京,211169
【正文语种】中文
【中图分类】TP273
【相关文献】
1.控制系统的分数阶建模及分数阶Piλ Dμ控制器设计 [J], 邓立为;宋申民;庞慧
2.一类采用分数阶PIλ控制器的分数阶系统可镇定性判定准则 [J], 高哲
3.分数阶PIλDμ控制器阶数变化对控制性能的影响 [J], 严慧
4.分数阶PIλDμ控制器的设计方法——极点阶数搜索改进法 [J], 严慧
5.分数阶PI^λD^μ控制器参数设计方法——极点阶数搜索法 [J], 严慧;于盛林;李远禄
因版权原因,仅展示原文概要,查看原文内容请购买。

分数阶控制系统

分数阶控制系统
扩展频率分析包括三部分内容 , 第一是分数阶 代数方程的解性质 , 它从复域主黎曼面形变的角度 给出方程具有惟一有效解的充分必要条件 , 这既能 解释构成传递函数基本分数环节的形成依据 , 也提 供了分数系统零极点的定义形式 , 它的主黎曼面有 效解与分数微分方程特征根相统一 , 是联系分数系 统扩展频率分析与时域分析的纽带 。第二是分数系 统扩展频率特性 , 由扩展 Bode 图与 Nyquist 曲线表 示出 , 因为其过程可逆 , 故也可由此对分数阶系统 进行经典频域辨识 。第三是稳定性分析 , 扩展对数 频率判据与 Nyquist 判据分析范围到整个正负频率 域内 , 扩展后的判据将试用于不受阶次复杂性影响 的一般分数系统[7 ,8] 。
(7)
3) 状态空间描述[4] 考虑 ( n , m) 次的分数微分
方程 :
[ DnΠm + a1 D ( n - 1)Πm + …+ an D0 ] x ( t) ≡0
(8)
x (0) = [ x (0) , x′(0) , …, x ( t) (0) ]T
(9)
式中 , m , n 分别为正整数和非负整数 , 且 m 表示
D1Πm x ( t) = Ax ( t)
(11)
x (0) = [ x1 (0) , x2 (0) , …, xn (0) ] T
(12)
式中 , x ( t) ∈Rn , A ∈Rn ×n 。
x ( t) = ( x1 ( t) , x2 ( t) , …, xn ( t) ) T
(13)
扩展频率分析包括三部分内容第一是分数阶代数方程的解性质它从复域主黎曼面形变的角度给出方程具有惟一有效解的充分必要条件这既能解释构成传递函数基本分数环节的形成依据供了分数系统零极点的定义形式它的主黎曼面有效解与分数微分方程特征根相统一是联系分数系统扩展频率分析与时域分析的纽带
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微积分计算:glfdiff()、fode_sol()
线性分数阶系统分析与设计
类的建立:@fotf;fotf.m、display.m 重载函数(FOTF互连)支持 *、+、feedback() 时域与频域分析:重载函数尽量控制系统工具箱
函数同名,且调用方式尽可能保持一致
step(), lsim(), bode(), nyquist(), nichols(), isstable(), norm()
控制系统仿真与CAD 国家级精品课程
2019/8/22
13/20
例11-7 分数阶PID控制器 例11-8
例11-9 反馈系统
控制系统仿真与CAD 国家级精品课程
2019/8/22
14/20
11.3.2 分数阶线性系统分析
稳定性分析
基阶 稳定区域 重载函数编写
isstable.m
其他内容:解析解法、成比例阶系统、微分算子 近似,基于框图的分数阶非线性系统仿真方法
控制系统仿真与CAD 国家级精品课程
2019/8/22
20/20
输入信号单位阶跃 MATLAB求解
解的验证:选择步长为0.001
控制系统仿真与CAD 国家级精品课程
2019/8/22
9/20
11.3 分数阶传递函数模型与分析
Laplace变换在分数阶系统中应用
Laplace变换的重要性质
零初值:
分数阶传递函数
控制系统仿真与CAD 国家级精品课程
2019/8/22
10/20
11.3.1 分数阶传递函数类的编程
分数阶传递函数模型
定义一个类:FOTF类
建立 @fotf 目录
在此目录下至少建立两个文件
fotf.m:创建FOTF对象 display.m:显示该对象的内容
其他该对象的重载函数,置于@fotf 中
控制系统仿真与CAD 国家级精品课程
例11-10
控制系统仿真与CAD 国家级精品课程
2019/8/22
15/20
系统的范数
MATLAB 实现 例11-11 上例的系统范数
系统的频域分析:bode()、nyquist()、nichols() 例11-12 上例频域分析
控制系统仿真与CAD 国家级精品课程
2019/8/22
分数阶微积分研究的开始
早期研究是纯数学研究
控制方面的研究
Manabe,1960开始 Igor Podlubny 1999
控制器、专著
控制系统仿真与CAD 国家级精品课程
2019/8/22
4/20
分数阶微积分的定义
Grünwald-Letnikov定义
Riemann-Liouville定义 Caputo定义——非零初值
16/20
例11-13 分数阶微分方程 传递函数
输入信号 检验:用步长0.0005
控制系统仿真与CAD 国家级精品课程
2019/8/22
17/20
11.5 分数阶系统的设计
分数阶PID控制器
Igor Podlubny
分数阶对象最优分数阶PID控制器设计界面
控制系统仿真与CAD 国家级精品课程
2019/8/2211/源自0 fotf.m 文件——创建类,@fotf 目录中
FOTF对象的输入
控制系统仿真与CAD 国家级精品课程
2019/8/22
12/20
display.m 模型显示 (略) 例11-6
重载函数 (置于@fotf目录)
系统连接:mtimes.m、plus.m、feedback.m等 时域分析:step.m、lsim.m 频域分析:bode.m、nyquist.m、nichols.m 稳定性、范数:isstable.m、norm.m
控制系统仿真与CAD 国家级精品课程
2019/8/22
5/20
分数阶微积分的计算
给定函数采样值 y、时间 t、阶次 g
MATLAB函数的直接调用
g 可以为正数也可以为负数
时间等间距
控制系统仿真与CAD 国家级精品课程
2019/8/22
6/20
分数阶微积分计算举例
函数调用 例11-1 常数的微积分是什么?
国家级精品课程
控制系统仿真与CAD
第十一章 分数阶系统的分析与设计
东北大学信息学院 薛定宇
第十一章 分数阶系统的分析与设计
基于传统微积分理论的控制都是整数阶控制 误用的词:分数阶更确切的名称是非整数阶 本章主要内容
分数阶微积分的定义与计算 分数阶线性微分方程的求解 分数阶传递函数模型 —— FOTF 类
如何在MATLAB下定义并编程新的类、对象
线性分数阶系统的分析 分数阶系统控制器设计
控制系统仿真与CAD 国家级精品课程
2019/8/22
2/20
11.1 分数阶微积分的定义与计算
Newton 和 Leibniz 分别创立了微积分学
Sir Issac Newton的记号
微分
Gottfried Leibniz的记号
微分、积分
扩展:统一微积分
控制系统仿真与CAD 国家级精品课程
2019/8/22
3/20
分数阶微积分的历史
法国数学家Guillaume François Antoine L’Hôpital
1695年,询问Leibniz, n=1/2? Leibniz给出了t 的1/2导数 彼此关于此问题的通信标志
例11-2 正弦函数的分数阶微分
信息量比整数阶微分丰富
控制系统仿真与CAD 国家级精品课程
2019/8/22
7/20
11.2 分数阶线性微分方程的求解
分数阶线性微分方程
闭式算法
MATLAB实现
控制系统仿真与CAD 国家级精品课程
2019/8/22
8/20
例11-4 分数阶微分方程求解
2019/8/22
18/20
例11-23 分数阶受控对象 输入模型
启动optimfopid界面

控制器

控制器
整数阶PID控制器
局限性:受控对象不能含有延迟
控制系统仿真与CAD 国家级精品课程
2019/8/22
19/20
分数阶控制系统小结
给出了分数阶微积分的定义与计算方法
相关文档
最新文档