自动控制原理例题详解-线性离散控制系统的分析与设计考试题及答案(DOC)
自动控制原理例题详解线性离散控制系统的分析与设计考习题及答案

精心整理----------2007--------------------一、(22分)求解下列问题: 1. (3分)简述采样定理。
解:当采样频率s ω大于信号最高有效频率h ω的2倍时,能够从采样信号)(*t e 中 完满地恢复原信号)(t e 。
(要点:h s ωω2>)。
2.(3分)简述什么是最少拍系统。
解:在典型输入作用下,能以有限拍结束瞬态响应过程,拍数最少,且在采样时刻上无稳态误差的随动系统。
3.(34.(x()∞5.(5解:(G 6.(5试用Z 解:二、((i X s )z 图11.(5分)试求系统的闭环脉冲传递函数()()o i X z X z ; 2.(5分)试判断系统稳定的K 值范围。
解:1.101111111()(1)(1)11(1)1(1)()1e11e 1e G G z z Z s s z Z s s z z z z z z z e z -------⎡⎤=-⎢⎥+⎣⎦⎡⎤=--⎢⎥+⎣⎦=-----=---=-11010*******1e ()()e 1e ()1()1e (1e )(e )(1e )(1e )e e o i K X z KG G z z X z KG G z K z K z K K z K K ------------==-++--=-+--=-+- 2.(5三、(8已知(z)1Φ=1.(3分)简述离散系统与连续系统的主要区别。
解:连续系统中,所有信号均为时间的连续函数;离散系统含有时间离散信号。
2.(3分)简述线性定常离散系统的脉冲传递函数的定义。
解:在系统输入端具有采样开关,初始条件为零时,系统输出信号的Z 变换与输入信号的Z 变换之比。
3.(3分)简述判断线性定常离散系统稳定性的充要条件。
解:稳定的充要条件是:所有特征值均分布在Z 平面的单位圆内。
4.(5分)设开环离散系统如图所示,试求开环脉冲传递函数)(z G 。
解:22522510252510()[[25e e (e e )eT T T T Tz z z G z Z Z s s z z z z -----=⨯==++---++ 5.(5分)已知系统差分方程、初始状态如下:0)(2)1(3)2(=++++k c k c k c ,c(0)=0,c(1)=1。
【精品】自动控制原理试卷及答案20套 (1)

四、已知一单位闭环系统的开环传递函数为 ,现加入串联校正装置: ,试:(20分)
(3)判断此校正装置属于引前校正还是迟后校正?
(4)绘制校正前、后系统及校正装置的对数幅频特性。
计算校正后的相位裕量。
六.非线性系统结构如图所示,设输入r=0,试描绘该系统的相平面图。(14分)
七.设采样系统的方框图如图所示,其中 ,采样周期T=0.25s,求能使系统稳定的K1值范围。(15分)
R(s)+C(s)
求系统传递函数 (10分)
系统的传递函数方块图如图所示。试确定K和a取何值时,系统将维持以角频率 的持续振荡。(10分)
6.已知非线性控制系统的结构图如图7-38所示。为使系统不产生自振,是利用描述函数法确定继电特性参数a,b的数值。(15分)
7.线性离散控制系统如下图所示,试确定使系统稳定的K值范围。(15分)
《自动控制原理》试题(三)A卷
一、单项选择题:在下列各题中,有四个备选答案,请将其中唯一正确的答案填入题干的括号中。
(本大题共3小题,总计60分)
1、(本小题20分)
设一反馈控制系统的开环传递函数如下,试绘制K1变化时系统特征方程的根轨迹,并求出系统稳定时K1的取值范围。
2、(本小题20分)
设1型单位反馈系统原有部分的开环传递函数为:
要求设计串联校正装置,使系统具有K=12及γ=40度的性能指标。
3、(本小题20分)
答()
2、(本小题4分)
如图所示是某系统的单位阶跃响应曲线,下面关于性能指标正确的是――
A. B. C. D.
答()
3、(本小题5分)
胡寿松《自动控制原理》课后习题及详解(线性离散系统的分析与校正)【圣才出品】

第 7 章 线性离散系统的分析与校正 7-1 试根据定义 确定下列函数的 和闭合形式的 E(z): 解:(1)由题意可得
令
,可得:
(2)将
展成部分分式得:
其中,
则有
经采样拉氏变换得:
令
,可得:
。
7-2 试求下列函数的 z 变换:
将 z 1 代入到 D z ,得
1 由劳斯稳定判据可知使系统稳定的 K 值取值范围是 0 K 1.6631。
解:(1)对输入 对 作 z 变换得: 则有: 用幂级数法可得
图 7-3 开环离散系统 作 z 变换得:
所以
(2)由题可知: 且有
则 所以
。
10 / 26
圣才电子书 十万种考研考证电子书、题库视频学习平台
7-14 试判断下列系统的稳定性: (1)已知闭环离散系统的特征方程为
解:(1)由题可知
图 7-4 离散系统
z 域特征方程为: 特征值为: 由于 z1 1,因此闭环系统不稳定。
将 z 1 代入到 D z ,得 特征方程为:
1 特征值为: 由于 2 0 ,故闭环系统不稳定。 (2)特征方程为
12 / 26
圣才电子书 十万种考研考证电子书、题库视频学习平台
则有:
。
7-9 设开环离散系统如图 7-1 所示,试求开环脉冲传递函数 G(z)。
解:系统 a
图 7-1 开环采样系统
系统 b
6 / 26
圣才电子书 十万种考研考证电子书、题库视频学习平台
7-10 试求图 7-2 闭环离散系统的脉冲传递函数 Φ(z)或输出 z 变换 C(z)。
(完整版)第7章线性离散控制系统的分析参考答案

第七章 习题与答案7-1 离散控制系统由哪些基本环节组成?答:离散控制系统由连续的控制对象,离散的控制器,采样器和保持器等几个环节组成。
7-2 香农采样定理的意义是什么?答:香农采样定理给出了采样周期的一个上限。
7-3 什么是采样或采样过程?答:采样或采样过程,就是抽取连续信号在离散时间瞬时值序列的过程,有时也称为离散化过程。
7-4 写出零阶保持器的传递函数,引入零阶保持器对系统开环传递函数的极点有何影响?答:零阶保持器的传递函数为。
零阶保持器的引入并不影响开环系统se s H Ts--=1)(0脉冲传递函数的极点。
7-5 线性离散控制系统稳定的充要条件是什么?答:线性离散控制系统稳定的充要条件是: 闭环系统特征方程的所有根的模,1<i z 即闭环脉冲传递函数的极点均位于z 平面的单位圆内。
7-6 求下列函数的z 变换。
)(z F (1) 2)5()(T t t f -=解:34225252)1()1(]!2[!2][])5[()]([-+===-=---z z z T t Z zt Z z T t Z t f Z (2) atte t f -=)(解:令,查表可得t t f =)(2)1(][)(-==z Tz t Z z F 根据复数位移定理,有2)1()(][-==-aT aT aTatze Tze zeF teZ 7-7 求下列函数的z 反变换。
(1))1)(5(175)(2---=z z zz z F 解:首先将展开成部分分式,即zz F )(5213)5)(1(175)(-+-=---=z z z z z z z F 把部分分式中的每一项乘上因子z 后,得5213)(-+-=z zz z z F 查z 变换表得,1]1[1=--z z Z n z z Z 55[1=--最后可得,2,1,0,523)(=⨯+=n nT f n (2) 5.05.1)(22+-=z z z z F 解:首先将展开成部分分式,即zz F )(5.0112)55.0)(1()(---=--=z z z z z z z F 把部分分式中的每一项乘上因子z 后,得5.012)(---=z zz z z F 查z 变换表得,1]1[1=--z z Z n z z Z )5.0(5.0[1=--最后可得,2,1,0,)5.0(2)(=-=n nT f n 7-8设z 变换函数为,试利用终值定理确定。
(完整word版)自动控制原理试卷包含答案

自动控制原理试卷一. 是非题(5分):(1)系统的稳态误差有系统的开环放大倍数k 和类型决定的( );(2)系统的频率特性是系统输入为正弦信号时的输出( );(3)开环传递函数为)0(2>k s k 的单位负反馈系统能跟深速度输入信号( );(4)传递函数中的是有量纲的,其单位为 ( );(5)闭环系统的极点均为稳定的实极点,则阶跃响应是无 调的( );二. 是非题(5分):(1)为了使系统的过度过程比较平稳要求系统的相角裕量大于零( );(2)Bode 图的横坐标是按角频率均匀分度的,按其对数值标产生的( );(3)对于最小相位系统,根据对数幅频特性就能画出相频特性( );(4)单位闭环负反馈系统的开环传递函数为)()()(s D s N s G =,劳斯稳定判据是根据)(s D 的系数判闭环 系统的稳定性( );奈奎斯特稳定判据是根据)(s G 的幅相频率特性曲线判闭环系统的稳定性 ( )。
三. 填空计算题(15分):(1)如图所示:RC 网络,其输出)(t u c 与输入)(t u r 的微分方程描述为 ,假定在零初始条件下,系统的传递函数)(s φ= ,该系统在)(1)(t t u r =作用时,有)(t u c = 。
(2)系统结构如图,该系统是 反馈系统,是 阶系统,是 型系统,若要使系统的放大系数为1,调节时间为0.1秒(取%σ的误差带),0k 应为 ,t k 应为 。
(3)如果单位负反馈系统的开环传递函数是))(()()(b s a s c s k s G +++=,该系统是 阶系统,是 型系统,该系统的稳态位置误差系数为 ,稳态速度误差系数为 ,稳态加速度误差系数为速度误差系数为 。
四. 是非简答题(5分):(1)已知某系统的开环传递函数在右半s 平面的极点数为,试叙述Nyquist 稳定判据的结论。
(2)试叙述系统稳定的充分必要条件。
(3)系统的稳定性不仅与系统结构有关,而且与输入信号有关,该结论是否正确。
自动控制原理(二)_华中科技大学中国大学mooc课后章节答案期末考试题库2023年

自动控制原理(二)_华中科技大学中国大学mooc课后章节答案期末考试题库2023年1.死区特性可减小稳态误差。
参考答案:错误2.已知两系统的传递函数分别为W1(s)和W2(s),两子系统串联联结和并联连接时,系统的传递函数阵分别为:()【图片】【图片】【图片】参考答案:_3.对于线性定常系统,可控性与可达性是等价的。
参考答案:正确4.对于线性离散控制系统,可以直接应用连续系统劳斯判据判断系统稳定性。
()参考答案:错误5.判断以下二次型函数的符号性质:【图片】参考答案:负定6.只要系统可观,则可用输出反馈(至状态微分)任意配置闭环极点使系统稳定。
参考答案:正确7.描述函数法主要研究自持震荡参考答案:正确8.具有饱和非线性元件的非线性控制系统如下图所示,下列说法正确的是:()【图片】参考答案:当K=5时,系统稳定_当K=15时,系统自振荡频率为_当K=10时,系统存在稳定振荡点9.已知【图片】的拉氏变换为【图片】, 求【图片】的Z变换。
()参考答案:_10.某离散控制系统【图片】(单位反馈T=0.1)当输入r(t)=t时.该系统稳态误差为∞。
参考答案:错误11.相轨迹振荡趋于原点,该奇点为。
参考答案:稳定焦点12.采样系统的闭环极点在Z平面上的分布对系统的动态响应起着决定性作用,采样系统的暂态特性主要由闭环脉冲传递函数的极点来确定。
()参考答案:正确13.非线性系统自持振荡与有关。
参考答案:系统结构和参数14.设闭环离散系统如图所示,其中采样周期为【图片】。
【图片】则下列说法正确的是()参考答案:作用下的稳态误差为_作用下的稳态误差为15.对于下述系统的能控能观分解后的各子系统(特征值、和互异),以下说法正确的是:【图片】参考答案:x1。
x2-x3-x4子系统状态完全能控_x5子系统状态完全不能控16.状态反馈既不改变系统的可控性也不改变系统的可观性参考答案:错误17.对非线性系统:【图片】【图片】其在原点处渐进稳定,但不是大范围渐进稳定的。
自动控制原理试卷、习题及答案2套

自动控制 (A )试卷一、系统结构如图所示,u1为输入, u2为输出,试求 1.求网络的传递函数G(s)=U1(s)/U2(s)2. 讨论元件R1,R2,C1,C2参数的选择对系统的稳定性是否有影响。
(15分)2二、图示系统,试求,(1) 当输入r(t)=0,n(t)=1(t)时,系统的稳态误差e ss;(2) 当输入r(t)=1(t),n(t)=1(t)时,系统的稳态误差e ss; (3) 若要减小稳态误差,则应如何调整K 1,K 2?(15分)三.已知单位负反馈系统的开环传递函数为.)())(()(1Ts s 1s 12s K s G 2+++=试确定当闭环系统稳定时,T ,K 应满足的条件。
(15分)四、已知系统的结构图如图所示,(1) 画出当∞→0:K 变化时,系统的根轨迹图;(2) 用根轨迹法确定,使系统具有阻尼比50.=ζ时,K 的取值及闭环极点(共轭复根)。
(15分)五、已知最小相位系统的对数幅频特性渐近特性曲线,1.试求系统的开环传递函数G (s );2.求出系统的相角裕量γ;3.判断闭环系统的稳定性。
(15分)六、设单位反馈系统的开环传递函数如下,2s158s -+=)()(s H s G 1. 试画出系统的乃奎斯特曲线;2. 用乃氏判据判断系统的稳定性(15分) 七、已知单位反馈系统的开环传递函数为1)s(2s 4G +=)(s使设计一串联滞后校正装置,使系统的相角裕量040≥γ,幅值裕量10db K g≥,并保持原有的开环增益值。
(10分)自动控制理论B一. 试求图示系统的输出z 变换C(z).(20分)(b)(a)二.闭环离散系统如图所示,其中采样周期T =1s ,(20分)1. 试求系统的开环脉冲传递函数G(z); 2. 求系统的闭环脉冲传递函数)z (Φ; 3. 确定闭环系统稳定时K 的取值范围。
(注:()T 22e z z )s 1(Z ,1z Tz )s 1(Z ,1z z )s1(Z αα--=+-=-=)三. 设单位反馈线性离散系统如图所示,其中T =1秒,试求取在等速度 输入信号r (t )=1作用下,能使给定系统成为最少拍系统的数字控制器的脉冲传递函数D (z )。
自控试题及答案

⾃控试题及答案《⾃动控制原理》试卷(五)A⼀、选择题:(共20分)1、(本⼩题4分)系统的传递函数可通过求取该系统的――⽽求得.A.阶跃响应函数B.脉冲响应函数C.斜坡响应函数D.抛物线响应函数2、(本⼩题4分)如图所⽰是某系统的单位阶跃响应曲线,下⾯关于性能指标正确的是――A. s t r6= B. s t s 4= C. s t p 14= D. %30%=δ3、(本⼩题5分)已知控制系统开环传递函数为)5)(2(10)(2++=s s s s W ,当输⼊46)(+=t t r 时,系统稳态误差为――A.0B. ∞C. 0.6D. 64、(本⼩题4分)系统根轨迹如图所⽰,当根轨迹与虚轴相交时,下述正确的是――13.102468101214tA. 1=ξB. 162=KC. 42.2=ωD. 0=ω5、(本⼩题4分)下列线性系统判断中正确的是――A.(1)稳定B.(2)稳定C.(3)稳定D. 全不稳定⼆、控制系统的⽅框图如图所⽰,试⽤梅逊公式求系统的传递函数。
10分三、系统的传递函数⽅块图如图所⽰。
试确定K 和a 取何值时,系统将维持以⾓频率12-=s ω的持续振荡。
(10分)四、已知已知单位反馈系统的开环传递函数为)1()(41)(2++=s s a s s G a 的变化范围为[0,+∞),试绘制系统的闭环根轨迹。
(15分)五、已知⼀最⼩相位系统开环的对数幅频特性如下图所⽰,(15分)试写出系统开环传递函数()s W k ,求系统相位裕量和增益裕量。
六、⾮线性制起始点在(,1)0(0>=c c c 的cc -七、线性离散控制系统如下图所⽰,试确定使系统稳定的K值范围。
(15分)《⾃动控制原理》试卷(五)A标准答案与评分标准⼀、选择题:(每题4分)1、B2、D3、A4、B5、A⼆、.(本题共10分)解:…………………………………………2分两条前向通道及为)()()()(423211s G p s G s G s G p == …………………………………………2分三个相互接触的回路)()()()()()()()(23231212121s H s G s G L s H s G s G L s H s G L -==-= ………………………………………信号流程图的特征式为:=?=?+-+=++-=?21232121123211)()()()()()()()(1)(1s H s G s G s H s G s G s H s G L L L ……………3分根据梅逊公式,系统的传递函数为)()()()()()()()()(1)()()()(1)()(4232121123212211s G s H s G s G s H s G s G s H s G s G s G s G p p s G s C ++-+=?+??=……………………………………1.5分三、(本⼤题10分)系统的结构图,系统的特征⽅程为:()01223=+++++K s K as s ………………………………………….2分列写劳斯表:…………………………………………………………………3分()1211210123++-+++K s a K a K s K a s K s欲使系统振荡,1s ⾏各元素应全为0,即:………………………………2分()021=+-+a K a K由辅助⽅程:………………………………………………………………….1分 ()012=++=K as s F解得:21=+=a K n ω由式(1)、(2)解得系统振荡时2,75.0==K a …………………………2分四、(本题共15分)解系统闭环特征⽅程为04141)(23=+++=a s s s s D即有41ss s a等效开环传递函数为2*11)21()(+=s s K s G ……………………………………………………3分aK 41*1=,变化范围为 [0,+∞)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
----------2007--------------------一、(22分)求解下列问题: 1. (3分)简述采样定理。
解:当采样频率s ω大于信号最高有效频率h ω的2倍时,能够从采样信号)(*t e 中 完满地恢复原信号)(t e 。
(要点:h s ωω2>)。
2.(3分)简述什么是最少拍系统。
解:在典型输入作用下,能以有限拍结束瞬态响应过程,拍数最少,且在采样时刻上无稳态误差的随动系统。
3.(3分)简述线性定常离散系统稳定性的定义及充要条件。
解:若系统在初始扰动的影响下,其输出动态分量随时间推移逐渐衰减并趋于零,则称系统稳定。
稳定的充要条件是:所有特征值均分布在Z 平面的单位圆内。
4.(3分)已知X(z)如下,试用终值定理计算x (∞)。
)5.0)(1()(2+--=z z z zz X解: 经过验证(1)X()z z -满足终值定理使用的条件,因此,211x()lim(1)X()lim20.5z z zz z z z →→∞=-==-+。
5.(5分)已知采样周期T =1秒,计算G (z ) = Z [G h (s )G 0(s ) ]。
)2)(1(1e 1)()()(0++-==-s s s s G s G s G Ts h 解:111121111(1)(1e )()(1)Z[](1)()s s 11e (1e )e z z z G z z z z z z z --------=--=--=+---++ 6.(5分) 已知系统差分方程、初始状态如下:)k (1)(8)1(6)2(=++-+k c k c k c ,c(0)=c(1)=0。
试用Z 变换法计算输出序列c (k ),k ≥ 0。
解:22()6()8()()()(1)(68)3(1)2(2)6(4)1(){2324},06k k z C z C z C z R z z z z zC z z z z z z z c k k -+===-+--+---=-⨯+≥ 二、(10分)已知计算机控制系统如图1所示,采用数字比例控制()D z K =,其中K >0。
设采样周期T =1s ,368.0e 1=-。
注意,这里的数字控制器D (z )就是上课时的()c G z 。
(i X s )z 图11.(5分)试求系统的闭环脉冲传递函数()()o i X z X z ; 2.(5分)试判断系统稳定的K 值范围。
解:1.101111111()(1)(1)11(1)1(1)()1e 11e 1e G G z z Z s s z Z s s z z z z z z z e z -------⎡⎤=-⎢⎥+⎣⎦⎡⎤=--⎢⎥+⎣⎦=-----=---=-1101011111111e ()()e 1e ()1()1e (1e )(e )(1e )(1e )e e oi K X z KG G z z X z KG G z K z K z K K z K K ------------==-++--=-+--=-+- 2.(5分)特征方程为 11e e 0z K K ---+-=特征根为11e e z K K --=-+ 欲使系统稳定,需满足条件 11e e 1z K K --=-+<则使系统稳定的K 值范围为0 2.16K <<三、(8分)设数字控制系统的框图如下已知)0067.01)(6065.01)(1()5355.01)(4815.11(7385.0)(111111---------++=z z z z z z z G ,T = 0.5秒,设计响应单位阶跃输入信号时的最少拍系统(要求给出Gc (z )及C (z )、E (z) )。
解:选取11()(1)(1b )e z z z Φ--=-+、11()(11.4815)z az z Φ--=+;(z)1()0.403,0.597e z a b ΦΦ=-⇒== (4分)1111()0.5457(10.6065)(10.0067)()()()(10.597)(10.05355)c e z z z G z G z z z z ΦΦ------==++; 1111()()()0.403(11.4815)1C z z R z z z z Φ---==+-;1111()()()(1)(10.597)1e Ez z R z z z z Φ---==-+- (4分)R (z C (z )2007补考一、求解下列问题:1.(3分) 简述离散系统与连续系统的主要区别。
解:连续系统中,所有信号均为时间的连续函数;离散系统含有时间离散信号。
2.(3分) 简述线性定常离散系统的脉冲传递函数的定义。
解:在系统输入端具有采样开关,初始条件为零时,系统输出信号的Z 变换与输入信号的Z 变换之比。
3.(3分) 简述判断线性定常离散系统稳定性的充要条件。
解:稳定的充要条件是:所有特征值均分布在Z 平面的单位圆内。
4.(5分) 设开环离散系统如图所示,试求开环脉冲传递函数)(z G 。
解: 22522510252510()[][]25e e (e e )e T T T T Tz z z G z Z Z s s z z z z -----=⨯==++---++ 5.(5分) 已知系统差分方程、初始状态如下:0)(2)1(3)2(=++++k c k c k c ,c(0)=0,c(1)=1。
试用Z 变换法计算输出序列c (k ),k ≥ 0。
解:221112()3()2()()32()(1)(2),021k k k k z z zz C z zC z C z z C z z z z z z z c k k z z --=-=-++=⇒=++=+=---≥++二、(10分)已知系统结构如下图所示采样周期T = 0.25秒,0.5e ()s K G s s -=,1e ()Tsh G s s--=, r (t )=t 。
1.(5分)试求系统的闭环脉冲传递函数;2.(5分)试判断系统稳定的K 值范围。
解: 2.52 2.5 2.52(1e )0.393()(1e )e 1.6070.607T T T K z K zG z z z z z ----==-++-+; 闭环脉冲传递函数为: ()()1()G z z G z Φ=+;闭环特征方程为:0607.0)607.1393.0(2=+-+z K z ;)稳定条件:D (1) = 0.393 K > 0;(-1)2D (-1) =3.214 - 0.393K > 0; 得到0 < K < 8.178。
三、(8分)设数字控制系统的框图如下:已知)6.01)(1()53.01(47.0)(1111------+=z z z z z G ,T = 0.5秒,设计响应斜坡输入信号r (t ) = t 时的最少拍系统(要求给出Gc (z )及C (z )、E (z) )。
解:选取12()(1)e z z Φ-=-、12()2z z z Φ--=-;211)1/()(---=z z z R1111()2(10.6)(1-0.5)()()()0.74(10.53)(1)c e z z z G z G z z z z ΦΦ-----==+-; 21122(10.5)()()()(1)z z C z z R z z Φ----==-; 1()()()e E z z R z z Φ-==——————————————2008——————————————一、2.(3分) 写出脉冲序列*()x t 及其Z 变换X (z )的表达式。
解:*00()()()()()n nn x t x nT t nT X z x nT z δ∞=∞-==-=∑∑3.(3分) 写出离散系统稳态位置误差、速度误差、加速度误差系数表达式。
解:1lim[1()]p z K G z →=+ (1分)1lim(1)()v z K z G z →=- (1分)21lim(1)()a z K z G z →=- (1分)4.(3分) 写出输出采样信号的Z 变换C (z )。
解:()()1()G z C z R z HG z =+() (3分)R (z C (z )7.(5分) 已知)(t x 的拉氏变换为)()(a s s as X +=, 求)(t x 的Z 变换。
解:11()11(1e )()[][]1e (1)(e )aTaT aT X s s s az z z X z Z Z s s a z z z z ---=-+-=-=-=+---- (5分) 8.(5分) 已知差分方程、初始状态及输入,试用Z 变换法计算输出序列c (k )。
(2)5(1)6()()c k c k c k r k +-++=;(0)(1)0c c ==;()1(),0r k k k =>。
解:2()5()6()()z C z zC z C z R z -+=,()1zR z z =- 2()(1)(56)(1)(2)(3)2(1)(2)2(3)11()23022k k z z z z zC z z z z z z z z z z c k k ===-+--+------=-+⋅≥ (5分)二.(9分)设离散系统的方框图如下图所示,设采样周期T =0.1s ,368.0e 1=-。
⊗()R s T-1.(5分)试求系统的闭环脉冲传递函数; 2.(4分)试判断系统稳定的K 值范围。
1.系统的开环传递函数为101010221011()(10.1)(10)10(1e )1e (1)(e )0.6321.3680.368()0.632()1()(0.632 1.368)0.368T T TK G z Z KZ K s s s s s s z z Kz K z z z z Kz z z G z Kzz G z z K z Φ---⎡⎤⎡⎤⎡⎤===-⎢⎥⎢⎥⎢⎥+++⎣⎦⎣⎦⎣⎦-⎡⎤=-=⎢⎥----⎣⎦=-+==++-+ 2.闭环系统的特征方程为:2()(0.632 1.368)0.3680D z z K z =+-+= (1分)方法一:11w z w +=-,w 域特征方程为:20.632 1.264(2.7360.632)0Kw w K ++-= 列出劳斯表:2100.632 2.7360.6321.2642.7360.632w K Kw w K--欲使系统稳定K 需满足:0.63200 4.332.7360.6320K K K >⎧⇒<<⎨->⎩(3分)方法二:利用朱利稳定判据判断:0.3681(1)0.63200 4.33(1) 2.7360.6320D K K D K ⎧<⎪=>⇒<<⎨⎪-=->⎩ (3分)三.(8分) 设数字控制系统的框图如下⊗()R z -已知1111110.761(10.046)(1 1.134)()(1)(10.135)(10.183)z z z G z z z z ------++=---,T = 1秒, 设计()1()r t t =时的最少拍系统(要求给出数字控制器()c G z 及相应的C (z )、E (z ) )。