2014年全国中考数学试题分类汇编10 平面直角坐标系与点的坐标(含解析)

合集下载

中考数学靶向专题练习《平面直角坐标系的十大必考问题》专题汇编

中考数学靶向专题练习《平面直角坐标系的十大必考问题》专题汇编

中考数学靶向专题练习《平面直角坐标系的十大必考问题》专题汇编1. 如图是雷达探测器测得的结果,图中显示在点A,B,C,D,E,F处有目标出现,目标的表示方法为(r,α),其中,r表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度.例如,点A,D的位置表示为A(5,30°),D(4,240°).用这种方法表示点B,C,E,F的位置,其中正确的是( )A.B(2,90°)B.C(2,120°)C.E(3,120°)D.F(4,210°)2. 某同学的座位号为(2,4),那么该同学所座位置是( )A.第2排第4列B.第4排第2列C.第2列第4排D.不好确定3.观察中国象棋的棋盘,其中红方“马”的位置可以用一个数对(3,5)来表示,红“马”走完“马3进四”后到达B点,则表示B点位置的数对是__ __.4. 如图中的三个点分别表示学校、图书馆、李华家,学校和图书馆都在李华家的北偏西方向,学校又在图书馆的北偏东方向,那么图中表示图书馆的点是__ .5. 将正整数按如图所示的规律排列下去,若有序实数对(m,n)表示第m排,从左到右第n个数,如(4,3)表示实数8,则表示实数15的有序实数对是__ 表示实数2 009的有序实数对是__ .1. 如图是某地区简图的一部分,图中“大北门”在F6区,那么“故宫”“鼓楼”所在的区域分别是 ( C )A.D7区,E6区B.D6区,E7区C.E7区,D6区D.E6区,D7区2. 如图是某学校平面简图的一部分,其中M1代表仓库,其所在的区域为A2区.M2代表办公楼,M3代表实验楼,试说出办公楼、实验楼所在的区域.3. 如图是小李设计的49方格扫雷游戏,“★”代表地雷(图中显示的地雷在游戏中都是隐藏的),点A可用(2,3)表示,如果小惠不想因走到地雷上而结束游戏的话,下列选项中,她应该走( )A.(7,2)B.(2,6)C.(7,6)D.(4,5)4. 如图,是做课间操时,李明,李刚和李红三人的相对位置,如果用(4,5)表示李明的位置,(2,4)表示李刚的位置,则李红的位置可表示为( )A.(0,0)B.(0,1)C.(1,0)D.(1,2)5.如图,由李亮家向东走20 m,再向北走10 m就到了李丽家;若再向北走30 m就到了李红家;再向东走40 m,就到了李涛家.若用(0,0)表示李亮家的位置,用(2,1)表示李丽家的位置.(1)李红、李涛家如何表示?(2)李刚家的位置是(6,3),则李涛到李刚家怎么走?1. 若点A(a,b)在第二象限,则点B(a,-b)在( )A.第一象限B.第二象限C.第三象限D.第四象限2. 在平面直角坐标系中,点P(m-3,4-2m)不可能在( )A.第一象限B.第二象限C.第三象限D.第四象限3. 点P(5,-8)关于x轴的对称点为A,A关于y轴的对称点为B,则B的坐标为( )A.(5,8)B.(5,-8)C.(-5,-8)D.(-5,8)4. 已知A(1+2a,4a-5),且点A到两坐标轴的距离相等,则点A的坐标为 .5. 已知点P到x轴的距离是2,到y轴的距离是1,求点P的坐标.1. 在平面直角坐标系中有两点A(-2,2),B(3,2),C是坐标轴上的一点,若△ABC是直角三角形,则满足条件的点共有( )A.1个B.2个C.4个D.6个2. 如图,已知点A(a,b),O是原点,OA=OA1,OA⊥OA1,则点A1的坐标是__ __.3. 在平面直角坐标系内,A,B,C三点的坐标分别是A(5,0),B(0,3),C(5,3),O为坐标原点,点E在线段BC上,若△AEO为等腰三角形,求点E的坐标.(画出图象,不需要写计算过程)4.如图,在平面直角坐标系中:(1)写出△ABC各顶点的坐标.(2)求△ABC的面积.5.△ABC三个顶点A,B,C的坐标分别为A(2,-1),B(1,-3),C(4,-5).(1)在平面直角坐标系中画出△ABC.(2)求三角形的三边长,判断三角形的形状.(3)把△A1B1C1向右平移4个单位,再向下平移3个单位,恰好得到△ABC,试写出△A1B1C1三个顶点的坐标,并在平面直角坐标系中描出这些点.(4)求出△A1B1C1的面积.1. 一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( )A.(4,0)B.(5,0)C.(0,5)D.(5,5)2.如图,在平面直角坐标系中,有若干个横、纵坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2 012个点的横坐标为__45__.3. 如图所示,一个机器人从O点出发,向正东方向走3 m到达A1点,再向正北方向走6 m到达A 2点,再向正西方向走9 m到达A3点,再向正南方向走12 m到达A4点,再向正东方向走15 m到达A5点,按此规律走下去,相对于点O,机器人走到A6时的位置是__ __.4. 如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形An Bn-1Bn的顶点Bn的横坐标为__ __.5.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如图所示.(1)填写下列各点的坐标:A1(__ __,__ __),A3(__ __,__ __),A12(__ __,__ __).(2)写出点A4n的坐标(n是正整数).(3)指出蚂蚁从点A100到A101的移动方向.1. 若点P(m,1-2m)的横坐标与纵坐标互为相反数,则点P一定在( )A.第一象限B.第二象限C.第三象限D.第四象限2. 点P(2a-1,a+2)在x轴上,则点P的坐标为__ __.3. 在平面直角坐标系中,点M(2+x,9-x2)在x轴的负半轴上,则点M的坐标是__ __.4. 若点A(a-1,a2-25)在x轴的负半轴上,则a的值为__ __.5.已知:P(4x,x-3)在平面直角坐标系中.(2)若点P在第四象限,且到两坐标轴的距离之和为9,求x的值.6(1)已知点P(2a-6,a+4)在y轴上,求点P的坐标.(2)已知两点A(-3,m-1),B(n+1,4),若AB∥x轴,点B在第一象限,求m的值,并确定n的取值范围.(3)在(1)(2)的条件下,如果线段AB的长度是6,试判断以P,A,B为顶点的三角形的形状,并说明理由.1. 如图,OA=OB,A点坐标是(-,0),OB与x轴正方向夹角为45°,则B点坐标是____;AB与y轴交于点C,若以OC为轴,将△OBC沿OC翻折,B点落在第二象限内B′处,则BB′的长度为__ __.2.已知:A(-2,0),B(2,4),C(5,0).(1)在如图所示的坐标系中描出各点,画出△ABC.(2)求△ABC的面积.(3)点P是y轴负半轴上一动点,连接BP交x轴于点D,是否存在点P使△ADP与△BDC的面积相等?若存在,请直接写出点P的坐标;若不存在,请说明理由.1.在平面直角坐标系中,坐标轴上到点A(3,4)的距离等于5的点有__ __个.2. 如图,在平面直角坐标系中,已知点M在坐标轴上,点B(3,3),若三角形MBO是等腰三角形,则满足条件的M点的个数是__ __个.1. 已知:A(0,1),B(2,0),C(4,3).(1)在坐标系中描出各点,画出△ABC.(2)求△ABC的面积.(3)设点P在y轴上,且△ABP与△ABC的面积相等,求点P的坐标.2. 如图,在平面直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a,b,c满足关系式|a-2|+(b-3)2=0,(c-4)2≤0(1)求a,b,c的值.(2)如果在第二象限内有一点P,,请用含m的式子表示四边形ABOP的面积.(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标,若不存在,请说明理由.1. 已知点P(2,3),则点P关于x轴的对称点的坐标为( )A.(-2,3)B.(2,-3)C.(3,-2)D.(-3,2)2. 点P(1,-2)关于y轴对称的点的坐标是( )A.(1,2)B.(-1,2)C.(-1,-2)D.(-2,1)3. 已知△ABC在平面直角坐标系中的位置如图所示,如果△A′B′C′与△ABC关于y轴对称,则点A的对应点A′的坐标是( )A.(-3,2)B.(3,2)C.(-3,-2)D.(3,-2)4. 如图,在平面直角坐标系xOy中,将线段AB平移得到线段MN,若点A(-1,3)的对应点为M(2,5),则点B(-3,-1)的对应点N的坐标是 ( )A.(1,0)B.(0,1)C.(-6,0)D.(0,-6)5.已知点P(3,2),求点P关于x轴的对称点P1,再求点P1关于y轴的对称点P2的坐标.6.平面直角坐标系中,△ABC的三个顶点坐标分别为A(0,4),B(2,4),C(3,-1).(1)试在平面直角坐标系中,标出A,B,C三点.(2)求△ABC的面积.(3)若△DEF与△ABC关于x轴对称,写出D,E,F的坐标.。

2014年全国各地中考数学模拟试卷精选精练:数量和位置变化,平面直角坐标系(含答案)

2014年全国各地中考数学模拟试卷精选精练:数量和位置变化,平面直角坐标系(含答案)

数量和位置变化,平面直角坐标系一、选择题1、(湖州市中考模拟试卷1)对任意实数x ,点P(x,x 2-2x)一定不在..( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 答案:C2、(安徽芜湖一模)若点 P (a ,a -3)在第四象限,则a 的取值范围是 ( ). A .-3<a <0 B .0<a <3 C .a >3D .a <03、(江苏扬州弘扬中学模拟)小华同学利用假期时间乘坐一大巴去看望在外打工的妈妈,出发时,大巴的油箱装满了油,匀速行驶一段时间后,油箱内的汽油恰剩一半时又加满了油,接着按原速度行驶,到目的地时油箱中还剩有31箱汽油,设油箱中所剩汽油量为V 升,时间为t (分钟),则V 与t 的大致图象是( )答案:D4、(江苏扬州弘扬中学模拟)已知点P (a -1,a +2)在平面直角坐标系的第二象限内,则a 的取值范围在数轴上可表示为(阴影部分)( )答案:C5、(山东省德州一模)小明从家骑车上学,先上坡到达A 地后再下坡到达学校,所用的时间与路程如图所示.如果返回时,上、下坡的速度仍然保持不变,那么他从学校回到家需要的时间是( )A. 8.6分钟B. 9分钟C. 12分钟D.16分钟 答案:C6、(山东省德州一模)如图,在平面直角坐标系中,正方形OACB 的顶点O 、C 的坐标分别是(0, 0),(2, 0),则顶点B 的坐标是A B DCA 1 -2 -3 -1 0 2C 1 --B 1 -2-D 1-2 -3 -1 02第4题第5题( ). A.(1,1) B.(-1,-1)C.(1,-1)D.(-1,1)答案:C7、 (河北省一摸)|如果点P(m ,1-2m)在第四象限,那么m 的取值范围是A .102m <<B .102m -<<C .0m <D .12m > 答案:D8、(河北省一摸)|如图5,三个大小相同的正方形拼成六边形ABCDEF ,一动点P 从点A 出发沿着A →B →C →D →E 方向匀速运动,最后到达点E .运动过程中△PEF 的面积(S )随时间(t )变化的图象大致是答案:B 二、填空题1、(河北模拟)平面直角坐标系中,点A (2,3)关于x 轴的对称点坐标为. 答案:(2,-3)2、(温州一摸)在平面直角坐标系中,点(-3,2)到x 轴的距离是_____. 答案:23、(上海市)在平面直角坐标系中,如果点(1,3)A 与点(,3)B x 之间的距离是5,那么x 的值是 ▲ . 答案:4-或6;4、(山东省德州一模)在直角坐标系中,点P (-3,2)关于X 轴对称的点Q 的坐标是 . 答案:(-3,-2)5、(山东省德州一模)如图, 在已建立直角坐标系的4×4正方形方格纸中,△ABC 是格点三角形(三角形的三个顶点都是小正方形的顶点), 若以格点P 、A 、B 为顶点的三角形与△ABC 相似,则格点P 的坐标是 .A .. BDC图5 A BC DE.F.P.答案:(1,4),(3,4),(3,1)6、(温州市一模)在平面直角坐标系中,点P(-1,4)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限答案:B7、(吉林中考模拟)在函数y=错误!未找到引用源。

2018年中考数学真题分类汇编(第二期)专题10平面直角坐标系与点的坐标试题(含解析)

2018年中考数学真题分类汇编(第二期)专题10平面直角坐标系与点的坐标试题(含解析)

平面直角坐标系与点的坐标一.选择题1.(2018•山东东营市•3分)在平面直角坐标系中,若点P(m﹣2,m+1)在第二象限,则m 的取值范围是()A.m<﹣1 B.m>2 C.﹣1<m<2 D.m>﹣1【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组求解即可.【解答】解:∵点P(m﹣2,m+1)在第二象限,∴,解得﹣1<m<2.故选:C.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.(2018•山东聊城市•3分)如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=3.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC 边上的A1处,则点C的对应点C1的坐标为()A.(﹣,) B.(﹣,) C.(﹣,)D.(﹣,)【分析】直接利用相似三角形的判定与性质得出△ONC1三边关系,再利用勾股定理得出答案.【解答】解:过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,由题意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠3,则△A1OM∽△OC1N,∵OA=5,OC=3,∴OA1=5,A1M=3,∴OM=4,∴设NO=3x,则NC1=4x,OC1=3,则(3x)2+(4x)2=9,解得:x=±(负数舍去),则NO=,NC1=,故点C的对应点C1的坐标为:(﹣,).故选:A.【点评】此题主要考查了矩形的性质以及勾股定理等知识,正确得出△A1OM∽△OC1N是解题关键.3. (2018•乌鲁木齐•4分)在平面直角坐标系xOy中,将点N(﹣1,﹣2)绕点O旋转180°,得到的对应点的坐标是()A.(1,2)B.(﹣1,2)C.(﹣1,﹣2)D.(1,﹣2)【分析】根据题意可知点N旋转以后横纵坐标都互为相反数,从而可以解答本题.【解答】解:在平面直角坐标系xOy中,将点N(﹣1,﹣2)绕点O旋转180°,得到的对应点的坐标是(1,2),故选:A.【点评】本题考查坐标与图形变化﹣旋转,解答本题的关键是明确题意,利用旋转的知识解答.4.(2018•金华、丽水•3分)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x 轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A. (5,30)B. (8,10) C. (9,10) D. (10,10)【解析】【解答】解:因为点P在第一象限,点P到x轴的距离为:40-30=10,即纵坐标为10;点P到y轴的距离为,即横坐标为9,∴点P(9,10),故答案为:C。

中考数学试题分类汇编:坐标变换(含解析)

中考数学试题分类汇编:坐标变换(含解析)

(•广安)将点A(﹣1,2)沿x轴向右平移3个单位长度,再沿y轴向下平移4个长度单位后得到点A′的坐标为(2,﹣2).考点:坐标与图形变化-平移.分析:根据点的平移规律,左右移,横坐标减加,纵坐标不变;上下移,纵坐标加减,横坐标不变即可解的答案.解答:解:∵点A(﹣1,2)沿x轴向右平移3个单位长度,再沿y轴向下平移4个长度单位后得到点A′,∴A′的坐标是(﹣1+3,2﹣4),即:(2,﹣2).故答案为:(2,﹣2).点评:此题主要考查了点的平移规律,正确掌握规律是解题的关键.(•湘西州)如图,在平面直角坐标系中,将点A(﹣2,3)向右平移3个单位长度后,那么平移后对应的点A′的坐标是()A.(﹣2,﹣3)B.(﹣2,6)C.(1,3)D.(﹣2,1)考点:坐标与图形变化-平移.分析:根据平移时,点的坐标变化规律“左减右加”进行计算即可.解答:解:根据题意,从点A平移到点A′,点A′的纵坐标不变,横坐标是﹣2+3=1,故点A′的坐标是(1,3).故选C.点评: 此题考查了点的坐标变化和平移之间的联系,平移时点的坐标变化规律是“上加下减,左减右加”.(•绵阳)如图,把“QQ ”笑脸放在直角坐标系中,已知左眼A 的坐标是(-2,3),嘴唇C 点的坐标为(-1,1),则将此“QQ ”笑脸向右平移3个单位后,右眼B 的坐标是 。

(•遂宁)将点A (3,2)沿x 轴向左平移4个单位长度得到点A′,点A′关于y 轴对称的点的坐标是( )A . (﹣3,2)B . (﹣1,2)C . (1,2)D . (1,﹣2)考点:坐标与图形变化-平移;关于x 轴、y 轴对称的点的坐标. 分析: 先利用平移中点的变化规律求出点A′的坐标,再根据关于y 轴对称的点的坐标特征即可求解.解答: 解:∵将点A (3,2)沿x 轴向左平移4个单位长度得到点A′,∴点A′的坐标为(﹣1,2),∴点A′关于y 轴对称的点的坐标是(1,2).故选C .点评: 本题考查坐标与图形变化﹣平移及对称的性质;用到的知识点为:两点关于y 轴对称,纵坐标不变,横坐标互为相反数;左右平移只改变点的横坐标,右加左减. (•沈阳)在平面直角坐标系中,点M (-3,2)关于原点的对称点的坐标是 _________. (•晋江)如图7,在方格纸中(小正方形的边长为1),ABC ∆的三个顶点均为格点,将ABC ∆沿x 轴向左平移5个单位长度,根据所给的直角坐标系(O 是坐标原点),解答下列问题:(1)画.出平移后的'''C B A ∆,并直接写.出点'A 、'B 、'C 的坐标; (2)求出在整个平移过程中,ABC ∆扫过的面积.解:(1)平移后的'C B A ''∆如图所示;…………………2分15题图点'A 、'B 、'C 的坐标分别为)5,1(-、)0,4(-、)0,1(-;…………………………………………………………5分(2)由平移的性质可知,四边形B B AA ''是平行四边形, ∴ABC ∆扫过的面积ABC B B AA S S ∆+=''四边形 AC BC AC B B ⋅+⋅=21' 265532155=⨯⨯+⨯=. (•漳州)如图,方格纸中的每个小方格是边长为1个单位长度的正方形.(1)画出将Rt△ABC 向右平移5个单位长度后的Rt△A 1B 1C 1;(2)再将Rt△A 1B 1C 1绕点C 1顺时针旋转90°,画出旋转后的Rt△A 2B 2C 1,并求出旋转过程中线段A 1C 1所扫过的面积(结果保留π).(•厦门)在平面直角坐标系中,将线段OA 向左平移2个单位,平移后,点O ,A 的对应点分别为点O 1,A 1.若点O (0,0),A (1,4),则点O 1,A 1的坐标分别是 DA .(0,0),(1,4).B .(0,0),(3,4).C .(-2,0),(1,4).D .(-2,0),(-1,4). (•常州)已知点P (3,2),则点P 关于y 轴的对称点P 1的坐标是 (﹣3,2) ,点P 关于原点O 的对称点P 2的坐标是 (﹣3,﹣2) .考点:关于原点对称的点的坐标;关于x 轴、y 轴对称的点的坐标.分析: 根据关于y 轴对称的点的横坐标互为相反数,纵坐标相同; 关于原点对称的点的横坐标与纵坐标都互为相反数解答.解答: 解:点P (3,2)关于y 轴的对称点P 1的坐标是(﹣3,2),点P 关于原点O 的对称点P 2的坐标是(﹣3,﹣2).故答案为:(﹣3,2);(﹣3,﹣2).点本题考查了关于原点对称点点的坐标,关于y 轴对称的点的坐标,熟记对称点的坐y O x B C A (图7)第20题图评:标特征是解题的关键.(•淮安)点A(﹣3,0)关于y轴的对称点的坐标是(3,0).考点:关于x轴、y轴对称的点的坐标.分析:根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可以直接写出答案.解答:解:点A(﹣3,0)关于y轴的对称点的坐标是(3,0),故答案为:(3,0).点评:此题主要考查了关于y轴对称点的坐标特点,关键是掌握点的坐标的变化规律.(•淮安)如图,在边长为1个单位长度的小正方形组成的两格中,点A、B、C都是格点.(1)将△ABC向左平移6个单位长度得到得到△A1B1C1;(2)将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2,请画出△A2B2C2.考点:作图-旋转变换;作图-平移变换.分析:(1)将点A、B、C分别向左平移6个单位长度,得出对应点,即可得出△A1B1C1;(2)将点A、B、C分别绕点O按逆时针方向旋转180°,得出对应点,即可得出△A2B2C2.解答:解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求.点评:此题主要考查了图形的平移和旋转,根据已知得出对应点坐标是解题关键.(•南通)在平面直角坐标系中,已知线段MN的两个端点的坐标分别是M(-4,-1)、N(0,1),将线段MN平移后得到线段M ′N ′(点M、N分别平移到点M ′、N ′的位置),若点M ′的坐标为(-2,2),则点N ′的坐标为▲.(•钦州)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.考点:作图-旋转变换;作图-轴对称变换.3718684分析:(1)分别找出A、B、C三点关于x轴的对称点,再顺次连接,然后根据图形写出A 点坐标;(2)将△A1B1C1中的各点A1、B1、C1绕原点O旋转180°后,得到相应的对应点A2、B2、C2,连接各对应点即得△A2B2C2.解答:解:(1)如图所示:点A1的坐标(2,﹣4);(2)如图所示,点A2的坐标(﹣2,4).点评:本题考查图形的轴对称变换及旋转变换.解答此类题目的关键是掌握旋转的特点,然后根据题意找到各点的对应点,然后顺次连接即可.(•遵义)已知点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),则a b的值为25 .考点:关于x轴、y轴对称的点的坐标.分析:根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得a+b=﹣3,1﹣b=﹣1,再解方程可得a、b的值,进而算出a b的值.解答:解:∵点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),∴a+b=﹣3,1﹣b=﹣1,解得:b=2,a=﹣5,a b=25,故答案为:25.点评:此题主要考查了关于y轴对称点的坐标特点,关键是掌握点的坐标的变化规律.(泰安)在如图所示的单位正方形网格中,△ABC经过平移后得到△A1B1C1,已知在AC上一点P(2.4,2)平移后的对应点为P1,点P1绕点O逆时针旋转180°,得到对应点P2,则P2点的坐标为()A .(1.4,﹣1)B .(1.5,2)C .(1.6,1)D .(2.4,1)考点:坐标与图形变化-旋转;坐标与图形变化-平移.分析:根据平移的性质得出,△ABC 的平移方向以及平移距离,即可得出P 1坐标,进而利用中心对称图形的性质得出P 2点的坐标.解答:解:∵A 点坐标为:(2,4),A 1(﹣2,1),∴点P (2.4,2)平移后的对应点P 1为:(﹣1.6,﹣1),∵点P 1绕点O 逆时针旋转180°,得到对应点P 2,∴P 2点的坐标为:(1.6,1).故选:C .点评:此题主要考查了旋转的性质以及平移的性质,根据已知得出平移距离是解题关键. (• 台州)设点M (1,2)关于原点的对称点为M ′,则M ′的坐标为(•温州)如图,在平面直角坐标系中,△ABC 的两个顶点A ,B 的坐标分别为(-2,0),(-1,0),BC ⊥x 轴,将△ABC 以y 轴为对称轴作轴对称变换,得到△A ’B ’C ’(A 和A ’,B 和B ’,C 和C ’分别是对应顶点),直线b x y +=经过点A ,C ’,则点C ’的坐标是__________(•珠海)点(3,2)关于x 轴的对称点为( )A.(3,﹣2)B.(﹣3,2)C.(﹣3,﹣2)D.(2,﹣3)考点:关于x轴、y轴对称的点的坐标.分析:根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可直接写出答案.解答:解:点(3,2)关于x轴的对称点为(3,﹣2),故选:A.点评:此题主要考查了关于x轴对称点的坐标特点,关键是掌握点的坐标的变化规律.(•牡丹江)如图,△ABO中,AB⊥OB,OB=,AB=1,把△ABO绕点O旋转150°后得到△A1B1O,则点A1的坐标为()A.(﹣1,)B.(﹣1,)或(﹣2,0)C.(,﹣1)或(0,﹣2)D.(,﹣1)考点:坐标与图形变化-旋转.分析:需要分类讨论:在把△ABO绕点O顺时针旋转150°和逆时针旋转150°后得到△A1B1O时点A1的坐标.解答:解:∵△ABO中,AB⊥OB,OB=,AB=1,∴tan∠AOB==,∴∠AOB=30°.如图1,当△ABO绕点O顺时针旋转150°后得到△A1B1O,则∠A1OC=150°﹣∠AOB﹣∠BOC=150°﹣30°﹣90°=30°,则易求A1(﹣1,﹣);如图2,当△ABO绕点O逆时针旋转150°后得到△A1B1O,则∠A1OC=150°﹣∠AOB﹣∠BOC=150°﹣30°﹣90°=30°,则易求A1(0,﹣2);综上所述,点A1的坐标为(,﹣1)或(﹣2,0);故选B.点评:本题考查了坐标与图形变化﹣﹣旋转.解题时,注意分类讨论,以防错解.(•牡丹江)如图,AC是操场上直立的一个旗杆,从旗杆上的B点到地面C涂着红色的油漆,用测角仪测得地面上的D点到B点的仰角是∠BDC=45°,到A点的仰角是∠ADC=60°(测角仪的高度忽略不计)如果BC=3米,那么旗杆的高度AC= 3米.考点:解直角三角形的应用-仰角俯角问题.专题:应用题.分析:在Rt△BDC中,根据∠BDC=45°,求出DC=BC=3米,在Rt△ADC中,根据∠ADC=60°即可求出AC的高度.解答:解:在Rt△BDC中,∵∠BDC=45°,∴DC=BC=3米,在Rt△ADC中,∵∠ADC=60°,∴AC=DCtan60°=3×=3(米).故答案为:3.点评:本题考查了解直角三角形的应用,解题的关键是根据仰角构造直角三角形,解直角三角形,难度一般.(•铜仁)点P(2, -1)关于x轴对称的点P′的坐标是 .(•红河)在平面直角坐标系中,已知点P的坐标是(-1,-2),则点P关于原点对称的点的坐标是(C)A.(-1,2)B.(1,-2)C.(1,2)D.(2,1)。

平面直角坐标系和函数基础(7大考点)(原卷版)(2022-2024)中考数学真题分类汇编(全国通用)

平面直角坐标系和函数基础(7大考点)(原卷版)(2022-2024)中考数学真题分类汇编(全国通用)

专题09平面直角坐标系和函数基础(7大考点)(原卷版)三年(2022-2024)中考数学真题分类汇编(全国通用)【考点归纳】一、考点01点的坐标 (1)二、考点02点所在的象限 (4)三、考点03坐标与图形 (6)四、考点04点坐标的规律探索 (13)五、考点05函数解析式 (18)六、考点06自变量和函数值 (20)七、考点07函数图像 (26)考点01点的坐标一、考点01点的坐标1.(2024·湖南·中考真题)在平面直角坐标系xOy中,对于点P x,y,若x,y均为整数,则称点P为“整点”.特别地,当y x(其中)的值为整数时,称“整点”P为“超整点”,已知点P2a−4,a+3在第二象限,下列说法正确的是()A.a<−3B.若点P为“整点”,则点P的个数为3个C.若点P为“超整点”,则点P的个数为1个D.若点P为“超整点”,则点P到两坐标轴的距离之和大于102.(2023·山东聊城·中考真题)如图,在直角坐标系中,各点坐标分别为A−2,1,B−1,3,C−4,4.先作关于x轴成轴对称的,再把平移后得到.若B22,1,则点2A坐标为()A.1,5B.1,3C.5,3D.()5,53.(2023·浙江台州·中考真题)如图是中国象棋棋盘的一部分,建立如图所示的平面直角坐标系,已知“车”所在位置的坐标为−2,2,则“炮”所在位置的坐标为().A.3,1B.1,3C.4,1D.3,24.(2022·黑龙江大庆·中考真题)平面直角坐标系中,点M在y轴的非负半轴上运动,点N在x轴上运动,满足OM+ON=8.点Q为线段MN的中点,则点Q运动路径的长为()A.4πB.82C.8蟺D.1625.(2023·浙江衢州·中考真题)在如图所示的方格纸上建立适当的平面直角坐标系,若点A的坐标为()0,1,点B的坐标为2,2,则点C的坐标为.6.(2023·贵州·中考真题)如图,是贵阳市城市轨道交通运营部分示意图,以喷水池为原点,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,若贵阳北站的坐标是−2,7,则龙洞堡机场的坐标是.7.(2023·山东东营·中考真题)如图,一束光线从点A−2,5出发,经过y轴上的点B0,1反射后经过点C m,n,则2m−n的值是.8.(2023·山东枣庄·中考真题)银杏是著名的活化石植物,其叶有细长的叶柄,呈扇形.如图是一片银杏叶标本,叶片上两点B,C的坐标分别为(−3,2),(4,3),将银杏叶绕原点顺时针旋转90?后,叶柄上点A对应点的坐标为.9.(2022·山东德州·中考真题)如图,线段AB,CD端点的坐标分别为A−1,2,B3,−1,C3,2,D−1,5,且,将CD平移至第一象限内,得到C'D'(C',D'均在格点上).若四边形ABC'D'是菱形,则所有满足条件的点D'的坐标为.10.(2022·山东烟台·中考真题)观察如图所示的象棋棋盘,若“兵”所在的位置用(1,3)表示,“炮”所在的位置用(6,4)表示,那么“帅”所在的位置可表示为.考点02点所在的象限二、考点02点所在的象限11.(2024·内蒙古呼伦贝尔·中考真题)点P x,y在直线y=−34x+4上,坐标x,y是二元一次方程5x−6y= 33的解,则点P的位置在()A.第一象限B.第二象限C.第三象限D.第四象限12.(2024·四川广元·中考真题)如果单项式−x2m y3与单项式2x4y2−n的和仍是一个单项式,则在平面直角坐标系中点m,n在()A.第一象限B.第二象限C.第三象限D.第四象限13.(2024·贵州·中考真题)为培养青少年的科学态度和科学思维,某校创建了“科技创新”社团.小红将“科”“技”“创”“新”写在如图所示的方格纸中,若建立平面直角坐标系,使“创”“新”的坐标分别为−2,0,0,0,则“技”所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限14.(2023·内蒙古·中考真题)若实数m,n是一元二次方程x2−2x−3=0的两个根,且m<n,则点m,n 所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限15.(2023·辽宁沈阳·中考真题)二次函数y=−(x+1)2+2图象的顶点所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限16.(2023·贵州·中考真题)已知,二次数y=ax2+bx+c的图象如图所示,则点(),P a b所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限17.(2023·湖南永州·中考真题)已知点M2,a在反比例函数y=k x的图象上,其中a,k为常数,且k>0﹐则点M一定在()A.第一象限B.第二象限C.第三象限D.第四象限18.(2023·浙江·中考真题)在平面直角坐标系中,点P−1,m2+1位于()A.第一象限B.第二象限C.第三象限D.第四象限19.(2023·江苏盐城·中考真题)在平面直角坐标系中,点在()A.第一象限B.第二象限C.第三象限D.第四象限20.(2020·湖南邵阳·中考真题)已知a+b>0,ab>0,则在如图所示的平面直角坐标系中,小手盖住的点的坐标可能是()A.a,b B.−a,b C.−a,−b D.a,−b21.(2022·内蒙古包头·中考真题)在一次函数中,y的值随x值的增大而增大,且ab>0,则点A(a,b)在()A.第四象限B.第三象限C.第二象限D.第一象限22.(2024·四川遂宁·中考真题)反比例函数y=k−1x的图象在第一、三象限,则点k,−3在第象限.23.(2023·湖南·中考真题)在平面直角坐标系中,点P−3,−2所在象限是第象限.24.(2023·新疆·中考真题)在平面直角坐标系中有五个点,分别是A1,2,B−3,4,C−2,−3,D4,3,E2,−3,从中任选一个点恰好在第一象限的概率是.25.(2023·山东日照·中考真题)若点M m+3,m−1在第四象限,则m的取值范围是.26.(2022·四川广安·中考真题)若点P(m+1,m)在第四象限,则点Q(﹣3,m+2)在第象限.27.(2023·山东淄博·中考真题)若实数m,n分别满足下列条件:(1)2m−12−7=−5;(2)n−3>0.试判断点P2m−考点03坐标与图形三、考点03坐标与图形28.(2024·内蒙古包头·中考真题)如图,在平面直角坐标系中,四边形OABC各顶点的坐标分别是O0,0,A1,2,B3,3,C5,0,则四边形OABC的面积为()A.14B.11C.10D.929.(2024·山东威海·中考真题)定义新运算:①在平面直角坐标系中,a,b表示动点从原点出发,沿着x轴正方向()或负方向(a<0).平移a 个单位长度,再沿着y轴正方向()或负方向(b<0)平移b个单位长度.例如,动点从原点出发,沿着x轴负方向平移2个单位长度,再沿着y轴正方向平移1个单位长度,记作−2,1.②加法运算法则:a,b+c,d=a+c,b+d,其中a,b,c,d为实数.若3,5+m,n=−1,2,则下列结论正确的是()A.m=2,n=7B.m=−4,n=−3C.m=4,n=3D.m=−4,n=330.(2024·广西·中考真题)如图,在平面直角坐标系中,点O为坐标原点,点P的坐标为2,1,则点Q 的坐标为()A.3,0B.0,2C.3,2D.1,231.(2024·河北·中考真题)在平面直角坐标系中,我们把一个点的纵坐标与横坐标的比值称为该点的“特征值”.如图,矩形ABCD位于第一象限,其四条边分别与坐标轴平行,则该矩形四个顶点中“特征值”最小的是()A.点A B.点B C.点C D.点D32.(2024·甘肃临夏·中考真题)如图,O是坐标原点,菱形ABOC的顶点B在x轴的负半轴上,顶点C的坐标为3,4,则顶点A的坐标为()A.−4,2B.−3,4C.−2,4D.−4,333.(2023·海南·中考真题)如图,在平面直角坐标系中,点A在y轴上,点B的坐标为6,0,将绕着点B顺时针旋转60掳,得到,则点C的坐标是()A.33,3B.3,33C.6,3D.3,634.(2023·湖南益阳·中考真题)如图,在平面直角坐标系xOy 中,有三点A 0,1,B 4,1,C 5,6,则()A .12BCD 35.(2023·山东泰安·中考真题)如图,在平面直角坐标系中,的一条直角边OB 在x 轴上,点A 的坐标为;中,,连接BC ,点M 是BC 中点,连接AM .将以点O 为旋转中心按顺时针方向旋转,在旋转过程中,线段AM 的最小值是()A .3B .62−4C .213−2D .236.(2023·湖北武汉·中考真题)皮克定理是格点几何学中的一个重要定理,它揭示了以格点为顶点的多边形的面积112=+-S N L ,其中N,L 分别表示这个多边形内部与边界上的格点个数.在平面直角坐标系中,横、纵坐标都是整数的点为格点.已知A 0,30,()()20,10,0,0B O ,则内部的格点个数是()A .266B .270C .271D .28537.(2023·山西·中考真题)蜂巢结构精巧,其巢房横截面的形状均为正六边形.如图是部分巢房的横截面图,图中7个全等的正六边形不重叠且无缝隙,将其放在平面直角坐标系中,点P,Q,M 均为正六边形的顶点.若点P,Q 的坐标分别为()(),0,3--,则点M 的坐标为()A .33,−2B .33,2C .(2,33-D .(2,33--38.(2023·江苏苏州·中考真题)如图,在平面直角坐标系中,点A 的坐标为9,0,点C 的坐标为0,3,以,OA OC 为边作矩形OABC .动点E,F 分别从点,O B 同时出发,以每秒1个单位长度的速度沿,OA BC 向终点A,C 移动.当移动时间为4秒时,的值为()A .10B .910C .15D .3039.(2022·青海·中考真题)如图所示,A 22,0,AB =32,以点A 为圆心,AB 长为半径画弧交x 轴负半轴于点C ,则点C 的坐标为()A .()32,0B .2,0C .−2,0D .−32,040.(2022·江苏苏州·中考真题)如图,点A 的坐标为0,2,点B 是x 轴正半轴上的一点,将线段AB 绕点A 按逆时针方向旋转60°得到线段AC .若点C 的坐标为m,3,则m 的值为()A43B.221C.53D.421341.(2024·河南·中考真题)如图,在平面直角坐标系中,正方形ABCD的边AB在x轴上,点A的坐标为,点E在边CD上.将沿BE折叠,点C落在点F处.若点F的坐标为,则点E的坐标为.42.(2024·黑龙江齐齐哈尔·中考真题)如图,在平面直角坐标系中,以点O为圆心,适当长为半径画弧,交x轴正半轴于点M,交y轴正半轴于点N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧在第一象限交于点H,画射线OH,若H2a−1,a+1,则a=.43.(2024·四川广元·中考真题)若点Q x,y满足1x+1y=1xy,则称点Q为“美好点”,写出一个“美好点”的坐标.44.(2023·内蒙古·中考真题)如图,在平面直角坐标系中,点B坐标8,4,连接OB,将OB绕点O逆时针旋转90掳,得到OB ',则点B '的坐标为.45.(2023·四川甘孜·中考真题)如图,在平面直角坐标系xOy 中,菱形AOBC 的顶点B 在x 轴的正半轴上,点A 的坐标为(1,,则点C 的坐标为.46.(2023·辽宁鞍山·中考真题)如图,在平面直角坐标系中,矩形AOBC 的边OB ,OA 分别在x 轴、y 轴正半轴上,点D 在BC 边上,将矩形AOBC 沿AD 折叠,点C 恰好落在边OB 上的点E 处.若OA =8,OB =10,则点D 的坐标是.47.(2023·山东·中考真题)如图,在平面直角坐标系中,点A,B 在反比例函数(0)k y x x=>的图象上.点A 的坐标为m,2.连接OA,OB,AB .若OA =AB,鈭燨AB =90掳,则k 的值为.48.(2023·四川·中考真题)如图,在平面直角坐标系中,已知点A 1,0,点B 0,−3,点C 在x 轴上,且点C在点A右方,连接AB,BC,若,则点C的坐标为.49.(2024·安徽·中考真题)如图,在由边长为1个单位长度的小正方形组成的网格中建立平面直角坐标系xOy,格点(网格线的交点)A、B,C、D的坐标分别为7,8,2,8,10,4,5,4.(1)以点D为旋转中心,将旋转得到,画出;(2)直接写出以B,C1,B1,C为顶点的四边形的面积;(3)在所给的网格图中确定一个格点E,使得射线AE平分,写出点E的坐标.50.(2024·江西·中考真题)如图,是等腰直角三角形,,双曲线y=>0,x>0经过点B,过点A4,0作x轴的垂线交双曲线于点C,连接BC.(1)点B的坐标为______;(2)求BC所在直线的解析式.51.(2023·江苏镇江·中考真题)已知,在平面直角坐标系xOy中,点A的坐标为3,0,点B的坐标为m,n,点C与点B关于原点对称,直线分别与y轴交于点E,F,点F在点E的上方,EF=2.(1)分别求点E,F的纵坐标(用含m,n的代数式表示),并写出m的取值范围.(2)求点B的横坐标m,纵坐标n之间的数量关系.(用含m的代数式表示n)(3)将线段EF绕点()0,1顺时针旋转90掳,E,F的对应点分别是E',F'.当线段E'F'与点B所在的某个函数图象有公共点时,求m的取值范围.52.(2023·江苏镇江·中考真题)如图,正比例函数y=−3x与反比例函数的图象交于A,B1,m两点,点C在x轴负半轴上,.(1)m=______,k=______,点C的坐标为______.(2)点P在x轴上,若以B,O,P为顶点的三角形与相似,求点P的坐标.考点04点坐标的规律探索四、考点04点坐标的规律探索53.(2024·湖北武汉·中考真题)如图,小好同学用计算机软件绘制函数y=x3−3x2+3x−1的图象,发现它关于点1,0中心对称.若点A10.1,y1,A20.2,y2,A30.3,y3,……,A191.9,y19,A202,y20都在函数图象上,这20个点的横坐标从0.1开始依次增加0.1,则的值是()A .1-B .−0.729C .0D .154.(2024·河北·中考真题)平面直角坐标系中,我们把横、纵坐标都是整数,且横、纵坐标之和大于0的点称为“和点”.将某“和点”平移,每次平移的方向取决于该点横、纵坐标之和除以3所得的余数(当余数为0时,向右平移;当余数为1时,向上平移;当余数为2时,向左平移),每次平移1个单位长度.例:“和点”P 2,1按上述规则连续平移3次后,到达点P 32,2,其平移过程如下:若“和点”Q 按上述规则连续平移16次后,到达点()161,9Q -,则点Q 的坐标为()A .6,1或7,1B .()15,7-或8,0C .6,0或8,0D .5,1或7,155.(2023·山东烟台·中考真题)如图,在直角坐标系中,每个网格小正方形的边长均为1个单位长度,以点P 为位似中心作正方形123PA A A ,正方形456,PA A A ⋯,按此规律作下去,所作正方形的顶点均在格点上,其中正方形123PA A A 的顶点坐标分别为()()()123,0,2,1,1,0P A A ---,A 3−2,−1,则顶点A 100的坐标为()A .()31.34B .()31,34-C .32,35D .32,056.(2023·山东日照·中考真题)数学家高斯推动了数学科学的发展,被数学界誉为“数学王子”,据传,他在计算时,用到了一种方法,将首尾两个数相加,进而得到.人们借助于这样的方法,得到(n 是正整数).有下列问题,如图,在平面直角坐标系中的一系列格点Ai x i ,y i ,其中,且x i ,y i是整数.记n n n a x y =+,如1(0,0)A ,即a 1=0,A 2(1,0),即a 2=1,A 3(1,−1),即,以此类推.则下列结论正确的是()A .a 2023=40B .a 2024=43C .a (2n−1)2=2n −6D .a (2n−1)2=2n −457.(2023·辽宁阜新·中考真题)如图,四边形OABC 1是正方形,曲线叫作“正方形的渐开线”,其中,,,,…的圆心依次按O ,A ,B ,C 1循环.当OA =1时,点C 2023的坐标是()A.B.C.D.58.(2024·山东·中考真题)任取一个正整数,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2.反复进行上述两种运算,经过有限次运算后,必进入循环圈1→4→2→1,这就是“冰雹猜想”.在平面直角坐标系xOy中,将点x,y中的x,y分别按照“冰雹猜想”同步进行运算得到新的点的横、纵坐标,其中x,y均为正整数.例如,点6,3经过第1次运算得到点3,10,经过第2次运算得到点10,5,以此类推.则点1,4经过2024次运算后得到点.59.(2023·湖南怀化·中考真题)在平面直角坐标系中,为等边三角形,点A的坐标为1,0.把按如图所示的方式放置,并将进行变换:第一次变换将绕着原点O顺时针旋转60掳,同时边长扩大为边长的2倍,得到;第二次旋转将绕着原点O顺时针旋转60掳,同时边长扩大为,边长的2倍,得到,….依次类推,得到,则的边长为,点A2023的坐标为.60.(2024·黑龙江绥化·中考真题)如图,已知A11,−3,A23,−3,A34,0,A46,0,A57,3,A69,3,A710,0,A811,−3…,依此规律,则点A2024的坐标为.61.(2024·黑龙江大兴安岭地·中考真题)如图,在平面直角坐标系中,正方形OMNP顶点M的坐标为3,0,是等边三角形,点B坐标是1,0,在正方形OMNP内部紧靠正方形OMNP的边(方向为)做无滑动滚动,第一次滚动后,点A的对应点记为A1,A1的坐标是2,0;第二次滚动后,A 1的对应点记为2A ,2A 的坐标是2,0;第三次滚动后,2A 的对应点记为A 3,A 3的坐标是3−……,则A 2024的坐标是.62.(2023·山东东营·中考真题)如图,在平面直角坐标系中,直线l :y =3x −3与x 轴交于点A 1,以OA 1为边作正方形A 1B 1C 1O 点C 1在y 轴上,延长C 1B 1交直线l 于点2A ,以C 1A 2为边作正方形A 2B 2C 2C 1,点C 2在y轴上,以同样的方式依次作正方形A 3B 3C 3C 2,…,正方形A 2023B 2023C 2023C 2022,则点2023B 的横坐标是.63.(2023·四川广安·中考真题)在平面直角坐标系中,点在x 轴的正半轴上,点在直线y =x??上,若点A 1的坐标为2,0,且112223334A B A A B A A B A △、△、△均为等边三角形.则点2023B 的纵坐标为.64.(2022·江苏南京·中考真题)如图,在平面直角坐标系,横、纵坐标均为整数的点按如下规律依序排列:(0,0),(1,0),(0,1),(2,0),(1,1),(0,2),(3,0),(2,1),(1,2),(0,3),(4,0),(3,1),(2,2),(1,3),…按这个规律,则(6,7)是第个点.考点05函数解析式五、考点05函数解析式65.(2024·甘肃·中考真题)如图1,“燕几”即宴几,是世界上最早的一套组合桌,由北宋进士黄伯思设计.全套“燕几”一共有七张桌子,包括两张长桌、两张中桌和三张小桌,每张桌面的宽都相等.七张桌面分开可组合成不同的图形.如图2给出了《燕几图》中名称为“回文”的桌面拼合方式,若设每张桌面的宽为x尺,长桌的长为y尺,则y与x的关系可以表示为()A.y=3x B.y=4x C.y=3x+1D.y=4x+166.(2024·广西·中考真题)激光测距仪L发出的激光束以的速度射向目标M,ts后测距仪L收到M反射回的激光束.则L到M的距离dkm与时间ts的关系式为()A.B.d=3脳105t C.D.67.(2022·辽宁大连·中考真题)汽车油箱中有汽油30L,如果不再加油,那么油箱中的油量y(单位:L)随行驶路程x(单位:km)的增加而减少,平均耗油量为0.1L/km.当时,y与x的函数解析式是()A.y=0.1x B.y=−0.1x+30C.y=300x D.y=−0.1x2+30x68.(2022·内蒙古呼和浩特·中考真题)某超市糯米的价格为5元/千克,端午节推出促销活动:一次购买的数量不超过2千克时,按原价售出,超过2千克时,超过的部分打8折.若某人付款14元,则他购买了千克糯米;设某人的付款金额为x 元,购买量为y 千克,则购买量y 关于付款金额x(x >10)的函数解析式为.69.(2024·广东深圳·中考真题)背景【缤纷618,优惠送大家】今年618各大电商平台促销火热,线下购物中心也亮出大招,年中大促进入“白热化”.深圳各大购物中心早在5月就开始推出618活动,进入6月更是持续加码,如图,某商场为迎接即将到来的618优惠节,采购了若干辆购物车.素材如图为某商场叠放的购物车,右图为购物车叠放在一起的示意图,若一辆购物车车身长1m ,每增加一辆购物车,车身增加0.2m .问题解决任务1若某商场采购了n 辆购物车,求车身总长L 与购物车辆数n 的表达式;任务2若该商场用直立电梯从一楼运输该批购物车到二楼,已知该商场的直立电梯长为2.6m ,且一次可以运输两列购物车,求直立电梯一次性最多可以运输多少辆购物车?任务3若该商场扶手电梯一次性可以运输24辆购物车,若要运输100辆购物车,且最多只能使用电梯5次,求:共有多少种运输方案?70.(2023·吉林·中考真题)如图,在正方形ABCD中,AB=4cm,点O是对角线AC的中点,动点P,Q 分别从点A,B同时出发,点P以1cm/s的速度沿边AB向终点B匀速运动,点Q以2cm/s的速度沿折线BC−CD向终点D匀速运动.连接PO并延长交边CD于点M,连接QO并延长交折线DA−AB于点N,连接PQ,QM,MN,NP,得到四边形PQMN.设点P的运动时间为x(s)(04x<<),四边形PQMN的面积为y cm)(2(1)BP的长为__________cm,CM的长为_________cm.(用含x的代数式表示)(2)求y关于x的函数解析式,并写出自变量x的取值范围.(3)当四边形PQMN是轴对称图形时,直接写出x的值.考点06自变量和函数值六、考点06自变量和函数值71.(2024·上海·中考真题)函数f(x)=2−x x−3的定义域是()A.2x=B.C.x=3D.72.(2024·四川巴中·中考真题)函数y=x+2自变量的取值范围是()A.x>0B.2x>-C.D.73.(2023·浙江·中考真题)一个球从地面竖直向上弹起时的速度为10米/秒,经过t(秒)时球距离地面的高度h(米)适用公式h=10t−5t2,那么球弹起后又回到地面所花的时间t(秒)是()A.5B.10C.1D.274.(2023·湖北黄石·中考真题)函数y=x的取值范围是()A.B.C.且D.75.(2023·江苏无锡·中考真题)函数y=1x−2中自变量x的取值范围是()A.x>2B.x≥2C.x≠2D.x<276.(2012·浙江衢州·中考真题)函数y=x−1的自变量x的取值范围在数轴上可表示为()A .B .C .D .77.(2024·湖北·中考真题)铁的密度约为7.9kg/cm 3,铁的质量m kg 与体积V cm 3成正比例.一个体积为10cm 3的铁块,它的质量为kg .78.(2024·四川内江·中考真题)在函数y =1x 中,自变量x 的取值范围是;79.(2024·黑龙江大兴安岭地·中考真题)在函数y =x 的取值范围是.80.(2023·黑龙江哈尔滨·中考真题)在函数y =2x−8中,自变量x 的取值范围是.81.(2023·宁夏·中考真题)如图是某种杆秤.在秤杆的点A 处固定提纽,点B 处挂秤盘,点C 为0刻度点.当秤盘不放物品时,提起提纽,秤砣所挂位置移动到点C ,秤杆处于平衡.秤盘放入x 克物品后移动秤砣,当秤砣所挂位置与提扭的距离为y 毫米时秤杆处于平衡.测得x 与y 的几组对应数据如下表:x /克024610y /毫米1014182230由表中数据的规律可知,当x =20克时,y =毫米.82.(2023·上海·中考真题)函数f x =1x−23的定义域为.83.(2023·云南·中考真题)函数110y x =-的自变量x 的取值范围是.84.(2022·上海·中考真题)已知f (x )=3x ,则f (1)=.85.(2024·北京·中考真题)小云有一个圆柱形水杯(记为1号杯),在科技活动中,小云用所学数学知识和人工智能软件设计了一个新水杯,并将其制作出来,新水杯(记为2号杯)示意图如下,当1号杯和2号杯中都有V mL水时,小云分别记录了1号杯的水面高度h1(单位:cm)和2号杯的水面高度h2(单位:cm),部分数据如下:V/mL040100200300400500h1/cm0 2.5 5.07.510.012.5h2/cm0 2.8 4.87.28.910.511.8(1)补全表格(结果保留小数点后一位);(2)通过分析数据,发现可以用函数刻画h1与V,h2与V之间的关系.在给出的平面直角坐标系中,画出这两个函数的图象;(3)根据以上数据与函数图象,解决下列问题:①当1号杯和2号杯中都有320mL水时,2号杯的水面高度与1号杯的水面高度的差约为___________cm (结果保留小数点后一位);②在①的条件下,将2号杯中的一都分水倒入1号杯中,当两个水杯的水面高度相同时,其水面高度约为___________cm(结果保留小数点后一位).86.(2023·辽宁阜新·中考真题)某中学数学兴趣小组的同学们,对函数y=a x−b+c(a,b,c是常数,)的性质进行了初步探究,部分过程如下,请你将其补充完整.(1)当a=1,b=c=0时,即y=x,当时,函数化简为y=x;当x<0时,函数化简为y=______.(2)当a=2,b=1,c=0时,即y=2x−1.①该函数自变量x和函数值y的若干组对应值如下表:…−21 01234……620246…其中m=______.②在图1所示的平面直角坐标系内画出函数y=2x−1的图象.(3)当a=−2,b=1,c=2时,即y=−2x−1+2.①当时,函数化简为y=______.②在图2所示的平面直角坐标系内画出函数y=−2x−1+2的图象.(4)请写出函数y=a x−b+c(a,b,c是常数,)的一条性质:______.(若所列性质多于一条,则仅以第一条为准)87.(2023·湖南郴州·中考真题)在实验课上,小明做了一个试验.如图,在仪器左边托盘A(固定)中放置一个物体,在右边托盘B(可左右移动)中放置一个可以装水的容器,容器的质量为5g.在容器中加入一定质量的水,可以使仪器左右平衡.改变托盘B与点C的距离x(cm)(),记录容器中加入的水的质量,得到下表:托盘B与点C的距离x/cm3025201510容器与水的总质量y1/g1012152030加入的水的质量y2/g5*******把上表中的x与y1各组对应值作为点的坐标,在平面直角坐标系中描出这些点,并用光滑的曲线连接起来,得到如图所示的y1关于x的函数图象.(1)请在该平面直角坐标系中作出y2关于x的函数图象;(2)观察函数图象,并结合表中的数据:①猜测y1与x之间的函数关系,并求y1关于x的函数表达式;②求y2关于x的函数表达式;③当时,y 1随x的增大而___________(填“增大”或“减小”),y2随x的增大而___________(填“增大”或“减小”),y2的图象可以由y1的图象向___________(以“上”或“下”或“左”或“右”)平移得到.(3)若在容器中加入的水的质量y 2(g)满足,求托盘B与点C的距离x(cm)的取值范围.88.(2022·广东深圳·中考真题)二次函数y=12x2,先向上平移6个单位,再向右平移3个单位,用光滑的曲线画在平面直角坐标系上.=122=12−32+60,03,1,124,1322,25,8−1,122,132−2,21,8(1)m 的值为;(2)在坐标系中画出平移后的图象并求出y =−12x 2+5与y =12x 2的交点坐标;(3)点()()1122,,,P x y Q x y 在新的函数图象上,且P,Q 两点均在对称轴的同一侧,若y1>y 2,则x 1x 2(填“>”或“<”或“=”)考点07函数图象七、考点07函数图象89.(2024·安徽·中考真题)如图,在中,,AB=4,BC=2,BD是边AC上的高.点E,F分别在边AB,BC上(不与端点重合),且.设AE=x,四边形DEBF的面积为y,则y关于x的函数图象为()A.B.C.D.90.(2024·湖北武汉·中考真题)如图,一个圆柱体水槽底部叠放两个底面半径不等的实心圆柱体,向水槽匀速注水.下列图象能大致反映水槽中水的深度h与注水时间t的函数关系的是()A.B.C.D.91.(2024·甘肃·中考真题)如图1,动点P从菱形ABCD的点A出发,沿边匀速运动,运动到点C时停止.设点P的运动路程为x,PO的长为y,y与x的函数图象如图2所示,当点P运动到BC中点时,PO的长为()A.2B.3C.5D.2292.(2024·河南·中考真题)把多个用电器连接在同一个插线板上,同时使用一段时间后,插线板的电源线会明显发热,存在安全隐患.数学兴趣小组对这种现象进行研究,得到时长一定时,插线板电源线中的电流I与使用电器的总功率P的函数图象(如图1),插线板电源线产生的热量Q与I的函数图象(如图2).下列结论中错误的是()A.当P=440W时,I=2A B.Q随I的增大而增大C.I每增加1A,Q的增加量相同D.P越大,插线板电源线产生的热量Q越多93.(2024·内蒙古呼伦贝尔·中考真题)已知某同学家、体育场、图书馆在同一条直线上.下面的图象反映的过程是:该同学从家跑步去体育场,在那里锻炼了一阵后又步行回家吃早餐,饭后骑自行车到图书馆.图中用x表示时间,y表示该同学离家的距离.结合图象给出下列结论:(1)体育场离该同学家2.5千米;(2)该同学在体育场锻炼了15分钟;(3)该同学跑步的平均速度是步行平均速度的2倍;(4)若该同学骑行的平均速度是跑步平均速度的1.5倍,则a的值是3.75;其中正确结论的个数是()A.1B.2C.3D.494.(2024·青海·中考真题)化学实验小组查阅资料了解到:某种絮凝剂溶于水后能够吸附水中悬浮物并发生沉降,从而达到净水的目的.实验得出加入絮凝剂的体积与净水率之间的关系如图所示,下列说法正确的是()A.加入絮凝剂的体积越大,净水率越高B.未加入絮凝剂时,净水率为0C.絮凝剂的体积每增加0.1mL,净水率的增加量相等D.加入絮凝剂的体积是0.2mL时,净水率达到76.54%95.(2024·江西·中考真题)将常温中的温度计插入一杯的热水(恒温)中,温度计的读数与时间x min的关系用图象可近似表示为()A.B.C.D.96.(2024·四川广元·中考真题)如图①,在中,,点P从点A出发沿A→C→B以1cm/s 的速度匀速运动至点B,图②是点P运动时,的面积y cm2随时间x(s)变化的函数图象,则该三角形的斜边AB的长为()A.5B.7C.32D.2397.(2024·山东烟台·中考真题)如图,水平放置的矩形ABCD中,AB=6cm,BC=8cm,菱形EFGH的顶点E,G在同一水平线上,点G与AB的中点重合,EF=23cm,,现将菱形EFGH以1cm/s 的速度沿BC方向匀速运动,当点E运动到CD上时停止,在这个运动过程中,菱形EFGH与矩形ABCD重叠部分的面积S cm2与运动时间t s之间的函数关系图象大致是()A.B.C.D.98.(2023·四川攀枝花·中考真题)如图,正方形ABCD的边长为4,动点P从点B出发沿折线BCDA做匀速运动,设点P运动的路程为x,的面积为y,下列图象能表示y与x之间函数关系的是()。

2014年全国中考数学试题汇编《圆》(01)

2014年全国中考数学试题汇编《圆》(01)

全国中考数学试题汇编《圆》(01)选择题1.(2009•咸宁)如图,在平面直角坐标系中,⊙A 与y 轴相切于原点O ,平行于x 轴的直线交⊙A 于M ,N 两点,若点M 的坐标是(﹣4,﹣2),则点N 的坐标为( )2.(2009•绍兴)如图,在平面直角坐标系中,⊙P 与x 轴相切于原点O ,平行于y 轴的直线交⊙P 于M ,N 两点.若点M 的坐标是(2,﹣1),则点N 的坐标是()3.(2009•兰州)如图,A ,B ,C ,D 为⊙O 的四等分点,动点P 从圆心O 出发,沿O ﹣C ﹣D ﹣O 路线作匀速运动,设运动时间为t (s ).∠APB=y (°),则下列图象中表示y 与t 之间函数关系最恰当的是( ). C D .的圆5.(2009•桂林)如图,正方形ABCD 的边长为2,将长为2的线段QR 的两端放在正方形的相邻的两边上同时滑动.如果点Q 从点A 出发,沿图中所示方向按A ⇒B ⇒C ⇒D ⇒A 滑动到A 止,同时点R 从点B 出发,沿图中所示方向按B ⇒C ⇒D ⇒A ⇒B 滑动到B 止,在这个过程中,线段QR 的中点M 所经过的路线围成的图形的面积为( )7.(2009•庆阳)如图,⊙O的半径为5,弦AB=8,M是弦AB上的动点,则OM不可能为()8.(2009•清远)如图,AB是⊙O的直径,弦CD⊥AB于点E,连接OC,若OC=5,CD=8,则tan∠COE=().C D.cm C cm10.(2009•南宁)如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为cm,则弦CD的长为().cm cm11.(2009•恩施州)如图,⊙O的直径AB垂直弦CD于P,且P是半径OB的中点,CD=6cm,则直径AB的长是()cm12.(2009•临夏州)如图,⊙O的弦AB=6,M是AB上任意一点,且OM最小值为4,则⊙O的半径为()13.(2009•安徽)如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD=,BD=,则AB的长为()14.(2009•青岛)一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是()15.(2009•兰州)如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为()17.(2009•台湾)如图,圆上有A,B,C,D四点,其中∠BAD=80度.若,的长度分别为7p,11p,则的长度为何()18.(2009•福州)如图,弧是以等边三角形ABC一边AB为半径的四分之一圆周,P为弧上任意一点,若AC=5,则四边形ACBP周长的最大值是()5+19.(2009•遵义)如图,OA是⊙O的半径,弦BC⊥OA,若∠ABC=20°,则∠AOB的度数是()20.(2009•重庆)如图,⊙O是△ABC的外接圆,AB是直径.若∠BOC=80°,则∠A等于()21.(2009•枣庄)如图,AB是⊙O的直径,C,D为圆上两点,∠AOC=130°,则∠D等于()22.(2011•河池)如图,A、D是⊙O上的两个点,BC是直径,若∠D=35°,则∠OAC的度数是()23.(2009•湘潭)如图,点A、B、C在⊙O上,∠A=50°,则∠BOC的度数为()24.(2009•厦门)如图,AB,BC,CA是⊙O的三条弦,∠OBC=50°,则∠A=()25.(2013•天水)如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD 的值等于()26.(2009•温州)如图,∠AOB是⊙O的圆心角,∠AOB=80°,则弧AB所对圆周角∠ACB的度数是()27.(2009•泰安)如图,⊙O的半径为1,AB是⊙O的一条弦,且AB=,则弦AB所对圆周角的度数为()D.29.(2009•十堰)如图,△ABC内接于⊙O,连接OA、OB,若∠ABO=25°,则∠C的度数为()30.(2009•山西)如图,AB是⊙O的直径,AD是⊙O的切线,点C在⊙O上,BC∥OD,AB=2,OD=3,则BC的长为().C D.2009年全国中考数学试题汇编《圆》(01)参考答案与试题解析选择题1.(2009•咸宁)如图,在平面直角坐标系中,⊙A与y轴相切于原点O,平行于x轴的直线交⊙A于M,N两点,若点M的坐标是(﹣4,﹣2),则点N的坐标为()2.(2009•绍兴)如图,在平面直角坐标系中,⊙P与x轴相切于原点O,平行于y轴的直线交⊙P于M,N两点.若点M的坐标是(2,﹣1),则点N的坐标是(),OP=PM=,﹣,3.(2009•兰州)如图,A,B,C,D为⊙O的四等分点,动点P从圆心O出发,沿O﹣C﹣D﹣O路线作匀速运动,设运动时间为t(s).∠APB=y(°),则下列图象中表示y与t之间函数关系最恰当的是().C D.上运动时,∠的圆÷;、半径为的圆的面积等于×÷55.(2009•桂林)如图,正方形ABCD的边长为2,将长为2的线段QR的两端放在正方形的相邻的两边上同时滑动.如果点Q从点A出发,沿图中所示方向按A⇒B⇒C⇒D⇒A滑动到A止,同时点R从点B出发,沿图中所示方向按B⇒C⇒D⇒A⇒B滑动到B止,在这个过程中,线段QR的中点M所经过的路线围成的图形的面积为()×7.(2009•庆阳)如图,⊙O的半径为5,弦AB=8,M是弦AB上的动点,则OM不可能为()最短为=38.(2009•清远)如图,AB是⊙O的直径,弦CD⊥AB于点E,连接OC,若OC=5,CD=8,则tan∠COE=().C D.CD=4=.cm C cm=3cm10.(2009•南宁)如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为cm,则弦CD的长为().cm cmcm∴CE=cm11.(2009•恩施州)如图,⊙O的直径AB垂直弦CD于P,且P是半径OB的中点,CD=6cm,则直径AB的长是()cmBP=,.12.(2009•临夏州)如图,⊙O的弦AB=6,M是AB上任意一点,且OM最小值为4,则⊙O的半径为()AB=3=513.(2009•安徽)如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD=,BD=,则AB的长为(),由勾股定理得(或由相交弦定理得(14.(2009•青岛)一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是()AB=×15.(2009•兰州)如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为()17.(2009•台湾)如图,圆上有A,B,C,D四点,其中∠BAD=80度.若,的长度分别为7p,11p,则的长度为何(),由于的长度分别为两部分,是优∵,∴的长度为×18.(2009•福州)如图,弧是以等边三角形ABC一边AB为半径的四分之一圆周,P为弧上任意一点,若AC=5,则四边形ACBP周长的最大值是()5+5=15+519.(2009•遵义)如图,OA是⊙O的半径,弦BC⊥OA,若∠ABC=20°,则∠AOB的度数是()=;20.(2009•重庆)如图,⊙O是△ABC的外接圆,AB是直径.若∠BOC=80°,则∠A等于()A=∠21.(2009•枣庄)如图,AB是⊙O的直径,C,D为圆上两点,∠AOC=130°,则∠D等于()∠22.(2011•河池)如图,A、D是⊙O上的两个点,BC是直径,若∠D=35°,则∠OAC的度数是()23.(2009•湘潭)如图,点A、B、C在⊙O上,∠A=50°,则∠BOC的度数为()24.(2009•厦门)如图,AB,BC,CA是⊙O的三条弦,∠OBC=50°,则∠A=()∠25.(2013•天水)如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD 的值等于()=OM26.(2009•温州)如图,∠AOB是⊙O的圆心角,∠AOB=80°,则弧AB所对圆周角∠ACB的度数是()同对着∠27.(2009•泰安)如图,⊙O的半径为1,AB是⊙O的一条弦,且AB=,则弦AB所对圆周角的度数为();∠D.29.(2009•十堰)如图,△ABC内接于⊙O,连接OA、OB,若∠ABO=25°,则∠C的度数为()∠30.(2009•山西)如图,AB是⊙O的直径,AD是⊙O的切线,点C在⊙O上,BC∥OD,AB=2,OD=3,则BC的长为().C D.BC=。

2014年最新中考数学试卷解析汇编:平面直角坐标系与点的坐标

2014年最新中考数学试卷解析汇编:平面直角坐标系与点的坐标

最大最全最精的教育资源网平面直角坐标系与点的坐标一、选择题1.(2014?海南 , 第 8 题 3 分)如图,△ABC 与△DEF 对于 y 轴对称,已知 A (﹣ 4, 6),B(﹣ 6, 2), E( 2,1),则点 D 的坐标为()21教育网A .(﹣ 4,6)B.(4,6)C.(﹣2,1)D.(6,2)考点:对于 x 轴、 y 轴对称的点的坐标.剖析:依据对于 y 轴对称点的坐标特色:横坐标互为相反数,纵坐标不变.即点P( x, y)对于 y 轴的对称点P′的坐标是(﹣x, y),从而得出答案.解答:解:∵△ ABC 与△ DEF 对于 y 轴对称, A (﹣ 4, 6),∴D( 4,6).应选:B.评论:本题主要考察了对于y 轴对称点的性质,正确记忆横纵坐标的关系是解题重点.2.( 2014?四川绵阳 , 第 7 题 3 分)线段EF 是由线段PQ 平移获得的,点P(﹣ 1, 4)的对应点为 E( 4, 7),则点 Q(﹣ 3,1)的对应点 F 的坐标为()A .(﹣8,﹣ 2)B.(﹣2,﹣ 2)C.(2,4)D.(﹣ 6,﹣ 1)考点:坐标与图形变化-平移剖析:第一依据 P 点的对应点为 E 可得点的坐标的变化规律,则点Q的坐标的变化规律与P 点的坐标的变化规律同样即可.解答:解:∵点 P(﹣ 1, 4)的对应点为E( 4, 7),∴ P 点是横坐标 +5,纵坐标 +3 获得的,∴点 Q(﹣ 3, 1)的对应点N 坐标为(﹣ 3+5, 1+3 ),即( 2,4).应选: C.评论:本题主要考察了坐标与图形变化﹣平移,重点是掌握把一个图形平移后,个点的变化规律都同样.3.(2014?黑龙江牡丹江 , 第 6 题 3 分 )如图,把 ABC 经过必定的变换获得△A′B′C′,假如△ABC 上点 P 的坐标为( x, y),那么这个点在△ A′B′C′中的对应点P′的坐标为()新世纪教育网天量课件、教学设计、试卷、教案免费下载 1最大最全最精的教育资源网第 1题图A .(﹣ x, y﹣ 2)B .(﹣ x, y+2)C.(﹣ x+2 ,﹣ y)D.(﹣ x+2, y+2)考点:坐标与图形变化-旋转;坐标与图形变化-平移.专题:几何变换.剖析:先察看△ ABC 和△ A ′B′C′获得把△ABC 向上平移 2 个单位,再对于 y 轴对称可获得△A ′B′C′,而后把点 P( x,y)向上平移 2 个单位,再对于 y 轴对称获得点的坐标为(﹣ x,y+2),即为 P′点的坐标.21·cn·jy·com解答:解:∵把△ABC 向上平移 2 个单位,再对于 y 轴对称可获得△ A ′B′C′,∴点 P( x, y)的对应点 P′的坐标为(﹣ x, y+2 ).应选 B.评论:本题考察了坐标与图形变化﹣旋转:图形或点旋转以后要联合旋转的角度和图形的特别性质来求出旋转后的点的坐标.常有的是旋转特别角度如: 30°,45°,60°,90°,180°.2·1·c·n·j·y4.(2014 年湖北黄石 ) ( 2014?湖北黄石 ,第 9 题 3 分)正方形 ABCD 在直角坐标系中的地点以下列图表示,将正方形ABCD 绕点 A 顺时针方向旋转180°后, C 点的坐标是()第 2题图A .( 2,0)B.(3, 0)C.( 2,﹣ 1)D.(2,1)考点:坐标与图形变化 -旋转.剖析:正方形 ABCD 绕点 A 顺时针方向旋转 180°后,C 点的对应点与 C 必定对于 A 对称,A 是对称点连线的中点,据此即可求解.21·世纪 *教育网解答:解: AC=2 ,则正方形 ABCD 绕点 A 顺时针方向旋转180°后 C 的对应点设是C′,则 AC ′=AC=2 ,则 OC′=3,故 C′的坐标是( 3,0).应选 B.评论:本题考察了旋转的性质,理解 C 点的对应点与 C 必定对于 A 对称, A 是对称点连新世纪教育网天量课件、教学设计、试卷、教案免费下载 2线的中点是重点.5.( 2014?乐山,第 2 题 3 分)如图, OA 是北偏东30°方向的一条射线,若射线OB 与射线 OA 垂直,则OB 的方向角是()www-2-1-cnjy-comA .北偏西 30°B.北偏西 60°C.东偏北 30°D.东偏北 60°考点:方向角. .剖析:依据垂直,可得∠AOB 的度数,依据角的和差,可得答案.解答:解;若射线OB 与射线 OA 垂直,∴∠ AOB=90°,∠1=60°,OB 是北偏西60°,应选: B.评论:本题考察了方向角,方向角的表示方法是北偏东或北偏西,南偏东或南偏西.6.二、填空题1. ( 2014?黑龙江绥化 , 第 10 题 3 分)如图,在平面直角坐标系中,已知点 A (1, 1), B (﹣ 1, 1), C(﹣ 1,﹣ 2), D (1,﹣ 2),把一根长为2014 个单位长度且没有弹性的细线(线的粗细忽视不计)的一端固定在 A 处,并按 A →B→C→D →A 的规律紧绕在四边形ABCD 的边上,则细线的另一端所在地点的点的坐标是(﹣1,﹣1).新世纪教育网天量课件、教学设计、试卷、教案免费下载 3考点 :规律型:点的坐标.剖析:依据点的坐标求出四边形 ABCD 的周长,而后求出另一端是绕第几圈后的第几个单位长度,从而确立答案.解答:解:∵ A ( 1, 1), B (﹣ 1,1), C (﹣ 1,﹣ 2), D ( 1,﹣ 2),∴ AB=1 ﹣(﹣ 1) =2, BC=1 ﹣(﹣ 2) =3, CD=1 ﹣(﹣ 1) =2, DA=1 ﹣(﹣ 2) =3,∴绕四边形 ABCD 一周的细线长度为 2+3+2+3=10 ,2014 ÷10=201 4, ∴细线另一端在绕四边形第 202 圈的第 4 个单位长度的地点,即线段 BC 的中间地点,点的坐标为(﹣ 1,﹣ 1).故答案为:(﹣ 1,﹣ 1).评论:本题主要考察了点的变化规律, 依据点的坐标求出四边形 ABCD 一周的长度, 从而确定 2014 个单位长度的细线的另一端落在第几圈第几个单位长度的地点是解题的重点.2. ( 2014?湖南衡阳 , 第 20 题 3 分)如图,在平面直角坐标系 xOy 中,已知点 M 0 的坐标为(1,0),将线段 OM 0 绕原点 O 逆时针方向旋转45°,再将其延伸到 M 1,使得 M 1M 0⊥ OM0,获得线段 OM 1;又将线段 OM 1 绕原点 O 逆时针方向旋转 45°,再将其延伸到 M 2,使得 M 2M1⊥OM 1,获得线段 OM 2;这样下去,获得线段OM 3, OM 4, OM 5,依据以上规律,请直接写出OM 2014 的长度为21007.考点 : 规律型:点的坐标. 专题 : 规律型.剖析:依据点 M 0 的坐标求出 OM 0,而后判断出△ OM 0M 1 是等腰直角三角形,然后依据等腰直角三角形的性质求出 OM 1,同理求出 OM 2,OM 3,而后依据规律写出 OM2014即可. 解答:解:∵点 M 0 的坐标为( 1, 0),∴OM 0=1,∵线段 OM 0 绕原点 O 逆时针方向旋转 45°, M 1M 0⊥ OM0,∴△ OM 0 M 1 是等腰直角三角形,∴OM 1=OM 0= ,) 2,同理, OM 2= OM 1=( OM 3= 23,OM =(),2014 1007OM 2014=OM 2013=(.)=2故答案为: 21007.评论:本题是对点的坐标变化规律的考察,主要利用了等腰直角三角形的判断与性质,读懂题目信息,判断出等腰直角三角形是解题的重点.新世纪教育网天量课件、教学设计、试卷、教案免费下载 4最大最全最精的教育资源网3. ( 2014?贵州黔西南州 , 第 14 题 3 分)点 P( 2, 3)对于 x 轴的对称点的坐标为( 2,﹣3).2-1-c-n-j-y考点:对于x轴、y轴对称的点的坐标.剖析:依据对于x 轴对称点的坐标特色:横坐标不变,纵坐标互为相反数.即点P( x, y)对于 x 轴的对称点P′的坐标是( x,﹣ y)得出即可.解答:解:∵点 P( 2, 3)∴对于 x 轴的对称点的坐标为:( 2,﹣ 3).故答案为:( 2,﹣ 3).评论:本题主要考察了对于x 轴、 y 轴对称点的性质,正确记忆坐标规律是解题重点.4.( 2014?贵州黔西南州, 第 20 题 3 分)在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换:【根源:21·世纪·教育·网】(1) f( m, n) =( m,﹣ n),如 f( 2,1) =( 2,﹣ 1);(2) g( m, n) =(﹣ m,﹣ n),如 g (2, 1) =(﹣ 2,﹣ 1)依据以上变换有: f[g( 3,4)]=(f﹣ 3,﹣ 4)=(﹣ 3,4),那么 g[f(﹣ 3,2)]= ( 3,2).21*cnjy*com考点:点的坐标.专题:新定义.剖析:由题意应先进行 f 方式的运算,再进行g 方式的运算,注意运算次序及坐标的符号变化.解答:解:∵ f(﹣3,2)=(﹣3,﹣2),∴g[f(﹣ 3, 2) ]= g(﹣ 3,﹣ 2) =( 3,2),故答案为( 3, 2).评论:本题考察了一种新式的运算法例,考察了学生的阅读理解能力,此类题的难点是判断先进行哪个运算,重点是理解两种运算改变了哪个坐标的符号.5. (2014?黑龙江牡丹江 , 第 20 题 3 分 )已知在平面直角坐标系中搁置了 5 个以下图的正方形(用暗影表示),点 B1在 y 轴上且坐标是( 0, 2),点 C1、 E1、 E2、 C2、 E3、 E4、 C3在 x新世纪教育网天量课件、教学设计、试卷、教案免费下载 5最大最全最精的教育资源网轴上, C1的坐标是( 1, 0). B1C1∥B 2C2∥ B 3C3,以此持续下去,则点A 2014到 x 轴的距离是.】【根源: 21cnj*y.co*m第3题图考点:全等三角形的判断与性质;规律型:点的坐标;正方形的性质.剖析:依据勾股定理可得正方形 A 1B1C1D1 的边长为= ,依据相像三角形的性质可得后边正方形的边长挨次是前面正方形边长的,挨次获得第2014 个正方形和第 2014 个正方形的边长,进一步获得点 A 2014到 x 轴的距离.【出处:21教育名师】解答:解:如图,∵点 C1、 E1、E2、 C2、 E3、E4、 C3在 x 轴上, B 1C1∥ B2C2∥B3C3,∴△ B1OC1∽△ B2E2C2∽B 3E4C3,△ B1OC1≌△1CE1D1,,∴B 2E2=1, B3E4= , B 4E6= , B 5E8= ,E = ,∴B 2014 4016作 A 1E⊥ x 轴,延伸 A1D1交 x 轴于 F,则△ C1D1F∽△ C1D1E1,∴=,在 Rt△ OB 1C1中, OB1=2, OC1=1,正方形 A 1B 1C1D 1的边长为为=,∴D 1F=,∴A 1F=,新世纪教育网天量课件、教学设计、试卷、教案免费下载 6最大最全最精的教育资源网∵A 1E∥ D1E1,∴=,∴A 1E=3,∴=,∴点 A 2014到 x 轴的距离是× =评论:本题主要考察了正方形的性质以及解直角三角形的知识,得出正方形各边长是解题重点.6. ( 2014?湖北荆门 ,第 14 题 3 分)如图,正方形 OABC 与正方形 ODEF 是位似图形,点 O 为位似中心,相像比为 1:,点 A 的坐标为( 0,1),则点 E 的坐标是(,).第4题图考点:位似变换;坐标与图形性质.剖析:由题意可得OA : OD=1 :,又由点 A 的坐标为( 1, 0),即可求得OD 的长,又由正方形的性质,即可求得 E 点的坐标.【版权全部:21教育】解答:解:∵正方形OABC 与正方形ODEF 是位似图形, O 为位似中心,相像比为1:,∴OA : OD=1 :,∵点 A 的坐标为( 1, 0),即 OA=1 ,∴OD= ,∵四边形 ODEF 是正方形,∴DE=OD=.∴E 点的坐标为:(,).故答案为:(,).评论:本题考察了位似变换的性质与正方形的性质.本题比较简单,注意理解位似变换与相像比的定义是解本题的重点.21 世纪教育网版权全部7.( 2014?青岛,第11 题 3 分)如图,△ ABC 的极点都在方格线的交点(格点)上,假如将△ ABC 绕 C 点按逆时针方向旋转90°,那么点 B 的对应点B′的坐标是(1,0).新世纪教育网天量课件、教学设计、试卷、教案免费下载7最大最全最精的教育资源网考点:坐标与图形变化-旋转.专题:数形联合.剖析:先画出旋转后的图形,而后写出B′点的坐标.解答:解:如图,将△ABC 绕 C 点按逆时针方向旋转90°,点 B 的对应点B′的坐标为( 1,0).故答案为( 1, 0).评论:本题考察了坐标与图形变化﹣旋转:图形或点旋转以后要联合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常有的是旋转特别角度如:30°, 45°, 60°, 90°,180°.新世纪教育网天量课件、教学设计、试卷、教案免费下载8。

2023~2014北京十年中考数学分类汇编——代数综合(原卷版)

2023~2014北京十年中考数学分类汇编——代数综合(原卷版)

2023~2014北京十年中考数学分类汇编——代数综合1.(2023•北京)在平面直角坐标系xOy中,M(x1,y1),N(x2,y2)是抛物线y=ax2+bx+c (a>0)上任意两点,设抛物线的对称轴为x=t.(1)若对于x1=1,x2=2,有y1=y2,求t的值;(2)若对于0<x1<1,1<x2<2,都有y1<y2,求t的取值范围.2.(2022•北京)在平面直角坐标系xOy中,点(1,m),(3,n)在抛物线y=ax2+bx+c(a >0)上,设抛物线的对称轴为直线x=t.(1)当c=2,m=n时,求抛物线与y轴交点的坐标及t的值;(2)点(x0,m)(x0≠1)在抛物线上.若m<n<c,求t的取值范围及x0的取值范围.3.(2021•北京)在平面直角坐标系xOy中,点(1,m)和点(3,n)在抛物线y=ax2+bx (a>0)上.(1)若m=3,n=15,求该抛物线的对称轴;(2)已知点(﹣1,y1),(2,y2),(4,y3)在该抛物线上.若mn<0,比较y1,y2,y3的大小,并说明理由.4.(2020•北京)在平面直角坐标系xOy中,M(x1,y1),N(x2,y2)为抛物线y=ax2+bx+c (a>0)上任意两点,其中x1<x2.(1)若抛物线的对称轴为x=1,当x1,x2为何值时,y1=y2=c;(2)设抛物线的对称轴为x=t,若对于x1+x2>3,都有y1<y2,求t的取值范围.向右平移2个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点P(,﹣),Q(2,2).若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.6.(2018•北京)在平面直角坐标系xOy中,直线y=4x+4与x轴,y轴分别交于点A,B,抛物线y=ax2+bx﹣3a经过点A,将点B向右平移5个单位长度,得到点C.(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.在点B的左侧),与y轴交于点C.(1)求直线BC的表达式;(2)垂直于y轴的直线l与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N (x3,y3),若x1<x2<x3,结合函数的图象,求x1+x2+x3的取值范围.8.(2016•北京)在平面直角坐标系xOy中,抛物线y=mx2﹣2mx+m﹣1(m>0)与x轴的交点为A,B.(1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫做整点.①当m=1时,求线段AB上整点的个数;②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.9.(2015•北京)在平面直角坐标系xOy中,过点(0,2)且平行于x轴的直线,与直线y =x﹣1交于点A,点A关于直线x=1的对称点为B,抛物线C1:y=x2+bx+c经过点A,B.(1)求点A,B的坐标;(2)求抛物线C1的表达式及顶点坐标;(3)若抛物线C2:y=ax2(a≠0)与线段AB恰有一个公共点,结合函数的图象,求a 的取值范围.10.(2014•北京)在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,﹣2),B (3,4).(1)求抛物线的表达式及对称轴;(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,且点D纵坐标为t,记抛物线在A,B之间的部分为图象G(包含A,B两点).若直线CD与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面直角坐标系与点的坐标
一、选择题
1.(2014•孝感,第9题3分)如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是()
2.(2014·台湾,第9题3分)如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?()
A .2
B .3
C .4
D .5
分析:如图,作AH 、CK 、FP 分别垂直BC 、AB 、DE 于H 、K 、P .由AB =BC ,△ABC ≌△DEF ,就可以得出△AKC ≌△CHA ≌△DPF ,就可以得出结论.
解:如图,作AH 、CK 、FP 分别垂直BC 、AB 、DE 于H 、K 、P .
∴∠DPF =∠AKC =∠CHA =90°.
∵AB =BC ,
∴∠BAC =∠BCA .
在△AKC 和△CHA 中。

⎩⎪⎨⎪⎧∠AKC =∠CHA ,
AC =CA ,∠BAC =∠BCA .
∴△AKC ≌△CHA (ASA ),
∴KC =HA .
∵B 、C 两点在方程式y =﹣3的图形上,且A 点的坐标为(﹣3,1),
∴AH =4.
∴KC =4.
∵△ABC ≌△DEF ,
∴∠BAC =∠EDF ,AC =DF .
在△AKC 和△DPF 中,

⎪⎨⎪⎧∠AKC =∠DPF ,
∠BAC =∠EDF , AC =DF . ∴△AKC ≌△DPF (AAS ),
∴KC =PF =4.
故选C .
点评:本题考查了坐标与图象的性质的运用,垂直的性质的运用,全等三角形的判定及性质的运用,等腰三角形的性质的运用,解答时证明三角形全等是关键.
3.(2014·台湾,第13题3分)如图为小杰使用手机内的通讯软件跟小智对话的纪录.
根据图中两人的对话纪录,若下列有一种走法能从邮局出发走到小杰家,则此走法为何?()
A.向北直走700公尺,再向西直走100公尺
B.向北直走100公尺,再向东直走700公尺
C.向北直走300公尺,再向西直走400公尺
D.向北直走400公尺,再向东直走300公尺
分析:根据题意先画出图形,可得出AE=400,AB=CD=300,再得出DE=100,即可得出邮局出发走到小杰家的路径为:向北直走AB+AE=700公尺,再向西直走DE=100公尺.解:依题意,OA=OC=400=AE,AB=CD=300,
DE=400﹣300=100,所以邮局出发走到小杰家的路径为,
向北直走AB+AE=700公尺,再向西直走DE=100公尺.
故选A.
点评:本题考查了坐标确定位置,根据题意画出图形是解题的关键.
4. (2014•益阳,第8题,4分)如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为()
(第1题图)
5. (2014•株洲,第8题,3分)在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()
6.(2014•呼和浩特,第3题3分)已知线段CD是由线段AB平移得到的,点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D的坐标为()
7.(2014•菏泽,第7题3分)若点M(x,y)满足(x+y)2=x2+y2﹣2,则点M所在象限是
()
A.第一象限或第三象限B.第二象限或第四象限
C.第一象限或第二象限D.不能确定
8.(2014•济宁,第9题3分)如图,将△ABC绕点C(0,1)旋转180°得到△A′B′C,设点A的坐标为(a,b),则点A′的坐标为()
=0=1
二.填空题
1. (2014•广西玉林市、防城港市,第14题3分)在平面直角坐标系中,点(﹣4,4)在第二象限.
2.(2014•邵阳,第16题3分)如图,在平面直角坐标系xOy中,已知点A(3,4),将OA 绕坐标原点O逆时针旋转90°至OA′,则点A′的坐标是(﹣4,3).
3.(2014·云南昆明,第12题3分)如图,在平面直角坐标系中,点A坐标为(1,3),将线段OA向左平移2个单位长度,得到线段O′A′,则点A的对应点A′的坐标为.
4. (2014•泰州,第8题,3分)点A(﹣2,3)关于x轴的对称点A′的坐标为(﹣2,﹣3).
三.解答题
1. (2014•湘潭,第17题)在边长为1的小正方形网格中,△AOB的顶点均在格点上,(1)B点关于y轴的对称点坐标为(﹣3,2);
(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;
(3)在(2)的条件下,A1的坐标为(﹣2,3).
(第1题图)
2.(2014·浙江金华,第19题6分)在棋盘中建立如图所示的直角坐标系,三颗棋子A ,O ,B 的位置如图,它们的坐标分别是()1,1- ,(0,0),(1,0).
(1)如图2,添加棋C 子,使四颗棋子A ,O ,B ,C 成为一个轴对称图形,请在图中画出该图形的对称轴;
(2)在其他格点位置添加一颗棋子P ,使四颗棋子A ,O ,B ,P 成为轴对称图形,请直接写出棋子P 的位置的坐标. (写出2个即可)
- 11 -。

相关文档
最新文档