人教版八年级上册数学第12章《全等三角形》测试题【含答案】
完整版人教版八年级上册数学第十二章 全等三角形含答案

人教版八年级上册数学第十二章全等三角形含答案一、单选题(共15题,共计45分)1、如图,在中,点是内一点,且点到三边的距离相等.若,则的度数为()A. B. C. D.2、如图,正方形ABCD中,点E是AD边中点,BD、CE交于点H,BE、AH交于点G,则下列结论:①AG⊥BE;②BG=4GE;③S△BHE =S△CHD;④∠AHB=∠EHD.其中正确的个数是()A.1B.2C.3D.43、如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画圆弧,分别交AB、AC于点D、E,再分别以点D、E为圆心,大于DE长为半径画圆弧,两弧交于点F,作射线AF交边BC于点G.若CG=3,AB=10,则△ABG的面积是()A.3B.10C.15D.304、下列四个图形中,属于全等图形的是()A.①和②B.②和③C.①和③D.②和④5、如图,△ABC≌△DEF,点A与D,B与E分别是对应顶点,且测得BC=5cm,BF=7cm,则EC长为()A.1cmB.2cmC.3cmD.4cm6、如图,Rt△ABC中,∠CAB=90°,在斜边CB上取点M,N(不包含C、B两点),且tanB=tanC=tan∠MAN=1,设MN=x,BM=n,CN=m,则以下结论能成立的是()A.m=nB.x=m+nC.x>m+nD.x 2=m 2+n 27、如图,△ABC的中线BE、CF交于点O,直线AD∥BC,与CF的延长线交于点D,则S△AFD :S四边形AFOE为()A.1:2B.2:1C.2:3D.3:28、在ΔABC和ΔDEF中,AB=DE,∠A=∠D,若证ΔABC≌ΔDEF还要从下列条件中补选一个,错误的选法是()A.∠B=∠EB.∠C=∠FC.BC=EFD.AC=DF9、全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC和△A1B1C1是全等(合同)三角形,点A与点A1对应,点B与点B1对应,点C与点C1对应,当沿周界A→B→C→A,及A 1→B1→C1→A1环绕时,若运动方向相同,则称它们是真正合同三角形如图,若运动方向相反,则称它们是镜面合同三角形如图,两个真正合同三角形都可以在平面内通过平移或旋转使它们重合,两个镜面合同三角形要重合,则必须将其中一个翻转180° 如图,下列各组合同三角形中,是镜面合同三角形的是()A. B. C. D.10、如图四边形ABCD是菱形,且∠ABC=60°,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM,则下列五个结论中正确的是()①若菱形ABCD的边长为1,则AM+CM的最小值1;②△AMB≌△ENB;③S四边形AMBE =S四边形ADCM;④连接AN,则AN⊥BE;⑤当AM+BM+CM的最小值为2时,菱形ABCD的边长为2A.①②③B.②④⑤C.①②⑤D.②③⑤11、如图,∠B=∠D=90°,CB=CD,∠1=40°,则∠2=()A.40°B.45°C.50°D.60°12、直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3,把一块含有45°角的直角三角形如图放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为( )A. B. C. D.13、如图,在ABCD中,AB=4,AD=7,∠ABC的平分线BE交AD于点E,则DE的长是()A.4B.3C.3.5D.214、如图,在中,,,,平分,则点到的距离等于()A.3B.4C.5D.915、如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E, S△ABC=32,DE=4,AB=6,则AC的长是( )A.8B.9C.10D.12二、填空题(共10题,共计30分)16、如图,Rt△ABC中,∠BAC=90°,AB=AC,BD⊥直线L于D,CE⊥直线L于E,若BD=5cm,CE=4cm,则DE=________.17、如图,用直尺和圆规画∠AOB的平分线OE,其理论依据是________ .18、如图,直线,且相邻两条平行线的距离都相等,若等腰的三个顶点都在直线上,则________.19、如图,直线l上有三个正方形a,b,c,若a,c的边长分别为5和12,则b的面积为________.20、如图,在ΔABC与ΔDEF中,如果AB=DE,BE=CF,只要加上 ________条件(写一个就可以),就可证明ΔABC≌ΔDEF;并用你所选择的条件加以证明。
人教版八年级数学上册第十二章《全等三角形》测试卷(含答案)

人教版八年级数学上册第十二章《全等三角形》测试卷(含答案)班级_______________姓名_________________分数________________一、选择题(每小题5分,共25分)1.如图,已知AC =BD ,AD =BC ,则△ABC ≌△BAD 的依据是( ) A .SAS B .ASA C .AAS D .SSS2.如图,AC 和BD 相交于点O, AO =CO ,BO =DO ,若∠A =25°,则∠C =( )A.25°B.35°C.45°D.55°3. 如图所示,∠ACB =∠DFE ,BC =EF ,如果要使得△ABC ≌△DEF ,则还须补充的一个条件 可以是( )A .∠ABC =∠DEFB .∠ACE =∠DFBC .BF =ECD .AB =DE4.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与 书上完全重合的三角形,那么这两个三角形完全重合的依据是( ) A.SSS B.SAS C. ASA D. AAS5.如图,已知在△ABC 中,∠A=90°,AB=AC ,CD 平分∠ACB ,DE ⊥BC 于E ,若BC=18cm , 则△DEB 的周长为( )A.16cmB.17cmC.18cmD.19cm二、填空题(每小题5分,共25分)6.已知:△ABC ≌△A ′B ′C ′,∠A=∠A ′,∠B=∠B ′,∠C=70°,AB=15cm ,则 ∠C ′=_________,A ′B ′=__________。
7.在△ABC 中,AB=AC ,AD ⊥BC 于D 点,E 、F 分别为DB 、DC 的中点,则图中共有全等三角形___对.D O CBA 第1题 第4题ACBDO第2题ADBCEF第3题第5题8.如图,△ABC ≌△ADE ,若∠BAE =120°,∠BAD =42°,则∠D AC 的度数为 .9.如图,在Rt △ABC 中,∠C=90°, AD 是△ABC 的角平分线,AB=6cm, CD=2cm,则△ABD 的面积是____. 10. 如图,6个边长相等的正方形的组合图形,则∠1+∠2+∠3= .三、解答题(每小题10分,共50分) 11.如图,AB ,CD 相交于点O ,OA =OC ,OB =OD.求证:∠A=∠C.12.如图,AC ⊥CB ,DB ⊥CB ,垂足分别为C,B,AB=DC.求证:∠ABD=∠ACD.第10题图CBAED第8题A BCD第9题第7题13.如图,点B,C,D,E在同一直线上,AB∥EF,∠A=∠F, BD=CE.求证:(1)△ABC ≌△FED;(2)AC∥DF14.如图,在△ABC中,D是BC的中点,DE⊥AB, DF⊥AC, 垂足分别为E,F,BE=CF. 求证:AD平分∠BAC.AE F15.如图,已知△ABC中,∠ABC=∠BAC, D是BC边上的一点。
人教版八年级数学上册第十二章《全等三角形》测试题(含答案)

人教版八年级数学上册第十二章《全等三角形》测试题(含答案)一、选择题:1、如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC2、如图,点C在∠DAB的内部,CD⊥AD于D,CB⊥AB于B,CD=CB那么Rt△ADC ≌Rt△ABC的理由是()A.SSS B. ASA C. SAS D. HL3、下列说法正确的有()①角平分线上任意一点到角两边的距离相等②到一个角两边的距离相等的点在这个角的平分线上③三角形三个角平分线的交点到三个顶点的距离相等④三角形三条角平分线的交点到三边的距离相等A、1个B、2个C、3个D、4个4、在△ABC中和△DEF中,已知BC=EF,∠C=∠F,增加下列条件后还不能判定△ABC≌△DEF的是()A.AC=DF B.∠B=∠E C.∠A=∠D D.AB=DE5、如图,D、E分别为△ABC的AC,BC边的中点,将此三角形沿DE折叠,使点C落在AB边上的点P处.若∠CDE=48度,则∠ADP等于()度。
A.42 B.48 C .52 D.586、如图,△AEC≌△BED,点D在AC边上,∠1=∠2,AE和BD相交于点O.下列说法:(1)若∠B=∠A,则BE∥AC;(2)若BE=AC,则BE∥AC;(3)若△ECD≌△EOD,∠1=36°,则BE∥AC.其中正确的有()个.A.3个B.2个C.1个D.0个7、如图,△ABC≌△ADE,∠DAC=60°,∠BAE=100°,BC、DE相交于点F,则∠DFB的度数是()A.15°B.20°C.25°D.30°8、如图所示,AD、BC相交于点O,已知∠A=∠C,要根据“ASA”证明△AOB≌△COD,还要添加一个条件是()A. AB=CDB. AO=COC.BO=DOD.∠ABO=∠CDO9、如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD 的面积为()A.15 B.12.5 C.14.5 D.1710、如图,△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF的度数是()A.75°B.70°C.65°D.60°11、如图所示,在Rt△ABC中,AD是斜边上的高,∠ABC的平分线分别交AD、AC于点F、E,EG⊥BC于G,下列结论正确的是()A.∠C=∠ABC B.BA=BGC.AE=CE D. AF=FD12、如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,PR=PS,则这四个结论中正确的有()①PA平分∠BAC;②AS=AR;③QP∥AR;④△BRP≌△CSP.A.4个B.3个C.2个D.1个二、填空题:13、点O是△ABC内一点,且点O到三边的距离相等,∠BAC=60°,则∠BOC的度数为 .14、如图:在△ABC中,∠B=∠C=50°,D是BC的中点,DE⊥AB,DF⊥AC,则∠BAD= 。
人教版八年级数学上册《第十二章 全等三角形》测试卷-带参考答案

人教版八年级数学上册《第十二章全等三角形》测试卷-带参考答案一、选择题1.如图,已知△ABC≌△CDE,下列结论中不正确的()A.AC=CE B.∠BAC=∠DCE C.∠ACB=∠ECD D.∠B=∠D2.下列命题属于假命题的是()A.全等三角形的对应边相等B.全等三角形的对应角相等C.三个角分别相等的两个三角形全等D.三条边分别相等的两个三角形全等3.如图,在△ABE和△ACD中,点D,E分别在AB,AC边上,且CD与BE相交于点O,AB=AC若要判定△ABE≌△ACD,则添加的条件不可能是()A.∠ABE=∠ACD B.AD=AE C.∠ADC=∠AEB D.BE=CD4.老师上课用磁力小棒设计了一个平分角的仪器,用它可以平分一个已知角.其中AB=AD,BC=DC,将点A放在一个角的顶点,AB和AD沿着这个角的两边放下,利用全等三角形的性质就能说明射线AC是这个角的平分线.这里判定△ABC和△ADC是全等三角形的依据是()A.SSS B.ASA C.SAS D.AAS5.已知,如图所示,AD=AC,BD=BC,O为AB上一点,那么,图中共有()对全等三角形A.1 B.2 C.3 D.46.如图,在Rt△ABC中,∠ACB=90°,AD平分∠CAB,若CD=10,则点D到AB的距离是()A.8 B.9 C.10 D.117.如图,EB交AC于点M,交CF于点D,AB交FC于点N,∠E=∠F=90°,∠B=∠C,AE=AF.下列结论:①∠1=∠2②CD=BD③△AFN≌△BDN④AM=AN.其中所以正确结论的序号是()A.①②③B.①②④C.①③④D.②③④8.如图,在△ABC中,AB=3,AC=4,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC分别交AB、AC 于M、N,则△AMN的周长为()A.4 B.6 C.7 D.8二、填空题9.已知图中的两个三角形全等,则∠1等于度.10.如图,已知∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE垂足点分别是D,E,AD=5,BE=2,则DE的长为.11.如图,在△ACB中∠ACB=90°,AC=BC点C的坐标为(−2,0),点A的坐标为(−8,3),点B的坐标是.12.如图,四边形ABCD中,∠BCD=90°,∠ABD=∠DBC,AB=5,DC=6,则△ABD的面积为.13.如图,在△ABC中,∠ACB=90°,AC=BC,D为AB的中点,点M、N分别在AC、CB的延长线上,且MD⊥DN,连MN.若∠DMC=15°,BN=1,则MN的长是.三、解答题14.如图,∠1=∠2,AB=AE,AC=AD.求证:BC=ED.15.如图,AD是∠BAC的平分线,DE⊥AE,DF⊥AC,垂足为F,且BD=CD,求证:AB+CF=AE。
人教版八年级数学上册《第十二章 全等三角形》测试题-附含答案

人教版八年级数学上册《第十二章全等三角形》测试题-附含答案班级:姓名:得分:总分:150分时间:120分钟一.选择题(共12小题)1.下列各图形中不是全等形的是()A.B.C.D.【解答】解:观察发现B、C、D选项的两个图形都可以完全重合∴是全等图形A选项中两组图画不可能完全重合∴不是全等形.故选:A.2.下列说法正确的是()A.所有的等边三角形都是全等三角形B.全等三角形是指面积相等的三角形C.周长相等的三角形是全等三角形D.全等三角形是指形状相同大小相等的三角形【解答】解:A、所有的等边三角形都是全等三角形错误;B、全等三角形是指面积相等的三角形错误;C、周长相等的三角形是全等三角形错误;D、全等三角形是指形状相同大小相等的三角形正确.故选:D.3.如图AB与CD交于点O已知△AOD≌△COB∠A=40°∠COB=115°则∠B的度数为()A.25°B.30°C.35°D.40°【解答】解:∵△AOD≌△COB∴∠C=∠A=40°由三角形内角和定理可知∠B=180°﹣∠BOC﹣∠C=25°故选:A.4.已知△ABC的六个元素如图所示则甲、乙、丙三个三角形中与△ABC全等的是()A.甲、乙B.乙、丙C.只有乙D.只有丙【解答】解:已知△ABC中∠B=50°∠C=58°∠A=72°BC=a AB=c AC=b∠C=58°图甲:只有一条边和AB相等没有其它条件不符合三角形全等的判定定理即和△ABC不全等;图乙:只有两个角对应相等还有一条边对应相等符合三角形全等的判定定理(AAS)即和△ABC全等;图丙:符合SAS定理能推出两三角形全等;故选:B.5.如图已知MB=ND∠MBA=∠NDC下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠N B.AB=CD C.AM=CN D.AM∥CN【解答】解:A、∠M=∠N符合ASA能判定△ABM≌△CDN故A选项不符合题意;B、AB=CD符合SAS能判定△ABM≌△CDN故B选项不符合题意;C、根据条件AM=CN MB=ND∠MBA=∠NDC不能判定△ABM≌△CDN故C选项符合题意;D、AM∥CN得出∠MAB=∠NCD符合AAS能判定△ABM≌△CDN故D选项不符合题意.故选:C.6.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4)你认为将其中的哪一块带去就能配一块与原来大小一样的三角形玻璃?应该带()去.A .第1块B .第2块C .第3块D .第4块【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素 所以不能带它们去 只有第2块有完整的两角及夹边 符合ASA 满足题目要求的条件 是符合题意的.故选:B .7.如图是一个平分角的仪器 其中AB =AD BC =DC 将点A 放在角的顶点 AB 和AD 沿着角的两边放下 沿AC 画一条射线 这条射线就是角的平分线 在这个操作过程中 运用了三角形全等的判定方法是( )A .SSSB .SASC .ASAD .AAS【解答】解:在△ADC 和△ABC 中{AD =AB DC =BC AC =AC∴△ADC ≌△ABC (SSS )∴∠DAC =∠BAC∴AC 就是∠DAB 的平分线.故选:A .8.如图 点A 、D 、C 、E 在同一条直线上 AB ∥EF AB =EF ∠B =∠F AE =10 AC =7 则CD 的长为( )A .5.5B .4C .4.5D .3 【解答】解:∵AB ∥EF∴∠A =∠E在△ABC 和△EFD 中{∠A =∠E AB =EF ∠B =∠F∴△ABC ≌△EFD (ASA )∴AC =ED =7∴AD =AE ﹣ED =10﹣7=3∴CD =AC ﹣AD =7﹣3=4.故选:B .9.如图 ∠B =∠C =90° M 是BC 的中点 DM 平分∠ADC且∠ADC =110° 则∠MAB =( )A .30°B .35°C .45°D .60° 【解答】解:作MN ⊥AD 于N∵∠B =∠C =90°∴AB ∥CD∴∠DAB =180°﹣∠ADC =70°∵DM 平分∠ADC MN ⊥AD MC ⊥CD∴MN =MC∵M 是BC 的中点∴MC=MB∴MN=MB又MN⊥AD MB⊥AB∴∠MAB=12∠DAB=35°故选:B.10.如图AB=AD AE平分∠BAD点C在AE上则图中全等三角形有()A.2对B.3对C.4对D.5对【解答】解:∵AE平分∠BAD∴∠BAE=∠CAE在△ABC和△ADC中{AB=AD∠BAC=∠DAC AC=AC∴△DAC≌△BAC(SAS)∴BC=CD;在△ABE和△ADE中{AB=AD∠BAE=∠DAE AE=AE∴△DAE≌△BAE(SAS)∴BE=ED;在△BEC和△DEC中{BC=DC EC=EC EB=ED∴△BEC≌△DEC(SSS)故选:B.11.如图直线a、b、c表示三条公路现要建一个货物中转站要求它到三条公路的距离相等则可供选择的地址有()A.一处B.两处C.三处D.四处【解答】解:∵△ABC内角平分线的交点到三角形三边的距离相等∴△ABC内角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点过点P作PE⊥AB PD⊥BC PF⊥AC∴PE=PF PF=PD∴PE=PF=PD∴点P到△ABC的三边的距离相等∴△ABC两条外角平分线的交点到其三边的距离也相等满足这条件的点有3个;综上到三条公路的距离相等的点有4个∴可供选择的地址有4个.故选:D.12.如图AD是△ABC的角平分线DF⊥AB垂足为F DE=DG△ADG和△AED的面积分别为60和35 则△EDF的面积为()A .25B .5.5C .7.5D .12.5【解答】解:如图 过点D 作DH ⊥AC 于H∵AD 是△ABC 的角平分线 DF ⊥AB∴DF =DH在Rt △ADF 和Rt △ADH 中 {AD =AD DF =DH∴Rt △ADF ≌Rt △ADH (HL )∴S Rt △ADF =S Rt △ADH在Rt △DEF 和Rt △DGH 中 {DE =DG DF =DH∴Rt △DEF ≌Rt △DGH (HL )∴S Rt △DEF =S Rt △DGH∵△ADG 和△AED 的面积分别为60和35∴35+S Rt △DEF =60﹣S Rt △DGH∴S Rt △DEF =252.故选:D .二.填空题(共4小题)13.已知△ABC ≌△DEF ∠A =60° ∠F =50° 点B 的对应顶点是点E则∠B 的度数是 70° .【解答】解:∵△ABC ≌△DEF ∠A =60° ∠F =50°∴∠D =∠A =60° ∠C =∠F =50°∴∠B =∠E =70°.故答案为:70°.14.如图BD=CF FD⊥BC于点D DE⊥AB于点E BE=CD若∠AFD=145°则∠EDF=55°.【解答】解:∵FD⊥BC于点D DE⊥AB于点E∴∠BED=∠FDC=90°∵BE=CD BD=CF∴Rt△BED≌Rt△CDF(HL)∴∠BDE=∠CFD∵∠AFD=145°∴∠DFC=35°∴∠BDE=35°∴∠EDF=90°﹣35°=55°故答案为55°.15.如图△ABC中∠C=90°AD平分∠BAC AB=5 CD=2 则△ABD的面积是5.【解答】解:∵∠C=90°AD平分∠BAC∴点D到AB的距离=CD=2∴△ABD的面积是5×2÷2=5.故答案为:5.16.如图四边形ABCD中AB=AD AC=6 ∠DAB=∠DCB=90°则四边形ABCD的面积为18.【解答】解:∵AD=AD且∠DAB=90°∴将△ACD绕点A逆时针旋转90°AD与AB重合得到△ABE.∴∠ABE=∠D AC=AE.根据四边形内角和360°可得∠D+∠ABC=180°∴∠ABE+∠ABC=180°.∴C、B、E三点共线.∴△ACE是等腰直角三角形.∵四边形ABCD面积=△ACE面积=12×AC2=12×62=18;故答案为:18.三.解答题(共20小题)17.如图所示△ABE≌△ACD∠B=70°∠AEB=75°求∠CAE的度数.解:∵△ABE≌△ACD∴∠C=∠B=70°∴∠CAE=∠AEB﹣∠C=5°.18.如图已知∠1=∠2 ∠3=∠4 求证:BC=BD.证明:∵∠ABD+∠4=180°∠ABC+∠3=180°且∠3=∠4∴∠ABD=∠ABC在△ADB和△ACB中∴△ADB≌△ACB(ASA)∴BD=BC.19.如图AB=AD AC=AE∠CAE=∠BAD.求证:∠B=∠D.证明:∵∠CAE=∠BAD∴∠CAE+∠EAB=∠BAD+∠EAB∴∠BAC=∠DAE在△ABC和△ADE中∴△ABC≌△ADE(SAS)∴∠B=∠D.20.如图点B、F、C、E在直线l上(F、C之间不能直接测量)点A、D在l异侧测得AB=DE AB ∥DE∠A=∠D.(1)求证:△ABC≌△DEF;(2)若BE=10m BF=3m求FC的长度.(1)证明:∵AB∥DE∴∠ABC=∠DEF在△ABC与△DEF中∴△ABC≌△DEF;(2)∵△ABC≌△DEF∴BC=EF∴BF+FC=EC+FC∴BF=EC∵BE=10m BF=3m∴FC=10﹣3﹣3=4m.21.某段河流的两岸是平行的数学兴趣小组在老师带领下不用涉水过河就测得河的宽度他们是这样做的:①在河流的一条岸边B点选对岸正对的一棵树A;②沿河岸直走20m有一树C继续前行20m到达D处;③从D处沿河岸垂直的方向行走当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长为5米.求:(1)河的宽度是多少米?(2)请你证明他们做法的正确性.(1)解:河的宽度是5m;(2)证明:由作法知BC=DC∠ABC=∠EDC=90°在Rt△ABC和Rt△EDC中∴Rt△ABC≌Rt△EDC(ASA)∴AB=ED即他们的做法是正确的.22.如图AD为△ABC的高E为AC上一点BE交AD于F且有BF =AC FD=CD.求证:(1)△BFD≌△ACD;(2)BE⊥AC.证明:(1)∵AD为△ABC的边BC上的高∴△BDF和△ADC为直角三角形.∴∠BDF=∠ADC=90°.在Rt△BFD和Rt△ACD中∴Rt△△BFD≌Rt△ACD(HL);(2)∵△BDF≌△ADC∴∠DBF=∠DAC.∵∠AFE与∠BFD是对顶角∴∠BDF=∠AEF=90°∴BE⊥AC.23.如图①点A E F C在同一条直线上且AE=CF过点E F分别作DE⊥AC BF⊥AC垂足分别为E F AB=CD.(1)若EF与BD相交于点G则EG与FG相等吗?请说明理由;(2)若将图①中△DEC沿AC移动到如图②所示的位置其余条件不变则(1)中的结论是否仍成立?不必说明理由.解:(1)EG=FG理由如下:∵AE=CF∴AE+EF=CF+EF即AF=CE∵DE⊥AC BF⊥AC∴∠AFB=∠CED=90°在Rt△ABF和Rt△CDE中∴Rt△ABF≌Rt△CDE(HL)∴BF=DE在△DEG和△BFG中∴△DEG≌△BFG(AAS)∴EG=FG;(2)(1)中的结论仍成立理由如下:同(1)得:Rt△ABF≌Rt△CDE(HL)∴BF=DE在△DEG和△BFG中∴△DEG≌△BFG(AAS)∴EG=FG.24.【阅读理解】课外兴趣小组活动时老师提出了如下问题:如图1 △ABC中若AB=8 AC=6 求BC边上的中线AD的取值范围.小明在组内经过合作交流得到了如下的解决方法:延长AD到点E使DE=AD请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是A.SSS B.SAS C.AAS D.HL(2)求得AD的取值范围是CA.6<AD<8 B.6≤AD≤8 C.1<AD<7 D.1≤AD≤7【方法感悟】解题时条件中若出现“中点”“中线”字样可以考虑延长中线构造全等三角形把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2 已知:CD=AB∠BDA=∠BAD AE是△ABD的中线求证:∠C=∠BAE.(1)解:∵在△ADC和△EDB中∴△ADC≌△EDB(SAS)故答案为:B;(2)解:∵由(1)知:△ADC≌△EDB∴BE=AC=6 AE=2AD∵在△ABE中AB=8 由三角形三边关系定理得:8﹣6<2AD<8+6∴1<AD<7故答案为:C.(3)证明:如图延长AE到F使EF=AE连接DF∵AE是△ABD的中线∴BE=ED在△ABE与△FDE中∴△ABE≌△FDE(SAS)∴AB=DF∠BAE=∠EFD∵∠ADB是△ADC的外角∴∠DAC+∠ACD=∠ADB=∠BAD∴∠BAE+∠EAD=∠BAD∠BAE=∠EFD ∴∠EFD+∠EAD=∠DAC+∠ACD∴∠ADF=∠ADC∵AB=DC∴DF=DC在△ADF与△ADC中∴△ADF≌△ADC(SAS)∴∠C=∠AFD=∠BAE.。
人教版数学八年级上册第十二章《全等三角形》测试题含答案

人教版数学八年级上册第十二章《全等三角形》测试题一、选择题1.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm2.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1) B.(﹣1,) C.(,1)D.(﹣,﹣1)3.在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A 地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.4.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?()A.2 B.3 C.4 D.55.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF7.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣8.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()A.B.C.D.﹣29.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A. a2B. a2C. a2D. a2二、解答题(共21小题)10.如图,已知AB∥DE,AB=DE,AF=CD,∠CEF=90°.(1)若∠ECF=30°,CF=8,求CE的长;(2)求证:△ABF≌△DEC;(3)求证:四边形BCEF是矩形.11.已知△ABC为等边三角形,D为AB边所在的直线上的动点,连接DC,以DC为边在DC两侧作等边△DCE和等边△DCF(点E在DC的右侧或上侧,点F在DC左侧或下侧),连接AE、BF(1)如图1,若点D在AB边上,请你通过观察,测量,猜想线段AE、BF和AB有怎样的数量关系?并证明你的结论;(2)如图2,若点D在AB的延长线上,其他条件不变,线段AE、BF和AB有怎样的数量关系?请直接写出结论(不需要证明);(3)若点D在AB的反向延长线上,其他条件不变,请在图3中画出图形,探究线段AE、BF和AB 有怎样的数量关系,并直接写出结论(不需要证明)12.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?13.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.14.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.15.已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.求证:AB=CD.16.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.17.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.18.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.19.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.20.已知△ABC为等腰直角三角形,∠ACB=90°,点P在BC边上(P不与B、C重合)或点P在△ABC 内部,连接CP、BP,将CP绕点C逆时针旋转90°,得到线段CE;将BP绕点B顺时针旋转90°,得到线段BD,连接ED交AB于点O.(1)如图a,当点P在BC边上时,求证:OA=OB;(2)如图b,当点P在△ABC内部时,①OA=OB是否成立?请说明理由;②直接写出∠BPC为多少度时,AB=DE.21.(1)如图1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.(2)如图2,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,求AC的长.22.(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?23.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.24.【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据______,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若______,则△ABC≌△DEF.25.问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是______;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.26.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.27.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.28.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.29.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.30.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.参考答案及试题解析一、选择题(共9小题)1.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm【解答】解:∵F是高AD和BE的交点,∴∠ADC=∠ADB=∠AEF=90°,∴∠CAD+∠AFE=90°,∠DBF+∠BFD=90°,∵∠AFE=∠BFD,∴∠CAD=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABD,∴AD=BD,在△DBF和△DAC中∴△DBF≌△DAC(ASA),∴BF=AC=8cm,故选C.2.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1) B.(﹣1,) C.(,1)D.(﹣,﹣1)【解答】解:如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=,CE=OD=1,∵点C在第二象限,∴点C的坐标为(﹣,1).故选:A.3.(2014•湖州)在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.【解答】解:A、延长AC、BE交于S,∵∠CAB=∠EDB=45°,∴AS∥ED,则SC∥DE.同理SE∥CD,∴四边形SCDE是平行四边形,∴SE=CD,DE=CS,即走的路线长是:AC+CD+DE+EB=AC+CS+SE+EB=AS+BS;B、延长AF、BH交于S1,作FK∥GH与BH的延长线交于点K,∵∠SAB=∠S1AB=45°,∠SBA=∠S1BA=70°,AB=AB,∴△SAB≌△S1AB,∴AS=AS1,BS=BS1,∵∠FGH=180°﹣70°﹣43°=67°=∠GHB,∴FG∥KH,∵FK∥GH,∴四边形FGHK是平行四边形,∴FK=GH,FG=KH,∴AF+FG+GH+HB=AF+FK+KH+HB,∵FS1+S1K>FK,∴AS+BS>AF+FK+KH+HB,即AC+CD+DE+EB>AF+FG+GH+HB,C、D、同理可证得AI+IK+KM+MB<AS2+BS2<AN+NQ+QP+PB.综上所述,D选项的所走的线路最长.故选:D.4.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?()A.2 B.3 C.4 D.5【解答】解:如图,作AH、CK、FP分别垂直BC、AB、DE于H、K、P.∴∠DPF=∠AKC=∠CHA=90°.∵AB=BC,∴∠BAC=∠BCA.在△AKC和△CHA中,∴△AKC≌△CHA(ASA),∴KC=HA.∵B、C两点在方程式y=﹣3的图形上,且A点的坐标为(﹣3,1),∴AH=4.∴KC=4.∵△ABC≌△DEF,∴∠BAC=∠EDF,AC=DF.在△AKC和△DPF中,,∴△AKC≌△DPF(AAS),∴KC=PF=4.故选:C.5.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°【解答】解:在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠A=∠B,∠BCE=∠ACD,∴∠BCA=∠ECD,∵∠ACE=55°,∠BCD=155°,∴∠BCA+∠ECD=100°,∴∠BCA=∠ECD=50°,∵∠ACE=55°,∴∠ACD=105°∴∠A+∠D=75°,∴∠B+∠D=75°,∵∠BCD=155°,∴∠BPD=360°﹣75°﹣155°=130°,故选:C.6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF【解答】解:在△ABC和△DEB中,,∴△ABC≌△DEB (SSS),∴∠ACB=∠DBE.∵∠AFB是△BFC的外角,∴∠ACB+∠DBE=∠AFB,∠ACB=∠AFB,故选:C.7.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣【解答】解:作FG⊥BC于G,∵∠DEB+∠FEC=90°,∠DEB+∠BDE=90°;∴∠BDE=∠FEG,在△DBE与△EGF中∴△DBE≌△EGF,∴EG=DB,FG=BE=x,∴EG=DB=2BE=2x,∴GC=y﹣3x,∵FG⊥BC,AB⊥BC,∴FG∥AB,CG:BC=FG:AB,即=,∴y=﹣.故选:A.8.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()A.B.C.D.﹣2【解答】解:∵AB=AD=6,AM:MB=AN:ND=1:2,∴AM=AN=2,BM=DN=4,连接MN,连接AC,∵AB⊥BC,AD⊥CD,∠BAD=60°在Rt△ABC与Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL)∴∠BAC=∠DAC=∠BAD=30°,MC=NC,∴BC=AC,∴AC2=BC2+AB2,即(2BC)2=BC2+AB2,3BC2=AB2,∴BC=2,在Rt△BMC中,CM===2.∵AN=AM,∠MAN=60°,∴△MAN是等边三角形,∴MN=AM=AN=2,过M点作ME⊥CN于E,设NE=x,则CE=2﹣x,∴MN2﹣NE2=MC2﹣EC2,即4﹣x2=(2)2﹣(2﹣x)2,解得:x=,∴EC=2﹣=,∴ME==,∴tan∠MCN==故选:A.9.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A. a2B. a2C. a2D. a2【解答】解:过E作EP⊥BC于点P,EQ⊥CD于点Q,∵四边形ABCD 是正方形,∴∠BCD=90°,又∵∠EPM=∠EQN=90°,∴∠PEQ=90°,∴∠PEM+∠MEQ=90°,∵三角形FEG 是直角三角形,∴∠NEF=∠NEQ+∠MEQ=90°,∴∠PEM=∠NEQ ,∵AC 是∠BCD 的角平分线,∠EPC=∠EQC=90°, ∴EP=EQ ,四边形PCQE 是正方形,在△EPM 和△EQN 中,,∴△EPM ≌△EQN (ASA )∴S △EQN =S △EPM ,∴四边形EMCN 的面积等于正方形PCQE 的面积, ∵正方形ABCD 的边长为a ,∴AC=a ,∵EC=2AE ,∴EC=a ,∴EP=PC=a ,∴正方形PCQE 的面积=a ×a=a 2, ∴四边形EMCN 的面积=a 2,故选:D.二、解答题(共21小题)10.如图,已知AB∥DE,AB=DE,AF=CD,∠CEF=90°.(1)若∠ECF=30°,CF=8,求CE的长;(2)求证:△ABF≌△DEC;(3)求证:四边形BCEF是矩形.【解答】(1)解:∵∠CEF=90°.∴cos∠ECF=.∵∠ECF=30°,CF=8.∴CF=CF•cos30°=8×=4;(2)证明:∵AB∥DE,∴∠A=∠D,∵在△ABF和△DEC中∴△ABF≌△DEC (SAS);(3)证明:由(2)可知:△ABF≌△DEC,∴BF=CE,∠AFB=∠DCE,∵∠AFB+∠BFC=180°,∠DCE+∠ECF=180°,∴∠BFC=∠ECF,∴BF∥EC,∴四边形BCEF是平行四边形,∵∠CEF=90°,∴四边形BCEF是矩形.11.已知△ABC为等边三角形,D为AB边所在的直线上的动点,连接DC,以DC为边在DC两侧作等边△DCE和等边△DCF(点E在DC的右侧或上侧,点F在DC左侧或下侧),连接AE、BF(1)如图1,若点D在AB边上,请你通过观察,测量,猜想线段AE、BF和AB有怎样的数量关系?并证明你的结论;(2)如图2,若点D在AB的延长线上,其他条件不变,线段AE、BF和AB有怎样的数量关系?请直接写出结论(不需要证明);(3)若点D在AB的反向延长线上,其他条件不变,请在图3中画出图形,探究线段AE、BF和AB 有怎样的数量关系,并直接写出结论(不需要证明)【解答】解:(1)AE+BF=AB,如图1,∵△ABC和△DCF是等边三角形,∴CA=CB,CD=CF,∠ACB=∠DCF=60°.∴∠ACD=∠BCF,在△ACD和△BCF中∴△ACD≌△BCF(SAS)∴AD=BF同理:△CBD≌△CAE(SAS)∴BD=AE∴AE+BF=BD+AD=AB;(2)BF﹣AE=AB,如图2,易证△CBF≌△CAD和△CBD≌△CAE,∴AD=BF,BD=AE,∴BF﹣AE=AD﹣BD=AB;(3)AE﹣BF=AB,如图3,易证△CBF≌△CAD和△CBD≌△CAE,∴AD=BF,BD=AE,∴BF﹣AE=AD﹣BD=AB.12.(2013•舟山)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?【解答】(1)证明:∵在△ABE和△DCE中∴△ABE≌△DCE(AAS);(2)解:∵△ABE≌△DCE,∴BE=EC,∴∠EBC=∠ECB,∵∠EBC+∠ECB=∠AEB=50°,∴∠EB C=25°.13.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.【解答】(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°,∵在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△AED(HL);(2)解:∵DC=DE=1,DE⊥AB,∴∠DEB=90°,∵∠B=30°,∴BD=2DE=2.14.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.【解答】证明:∵AB=AC,∴∠B=∠C,在△ABD与△ACE中,∵,∴△ABD≌△ACE(SAS),∴AD=AE.15.已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.求证:AB=CD.【解答】证明:∵AB∥CD,∴∠B=∠C,∠A=∠D,∵在△AOB和△DOC中,,∴△AOB≌△DOC(AAS),∴AB=CD.16.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.【解答】(1)证明:∵在△CBF和△DBG中,,∴△CBF≌△DBG(SAS),∴CF=DG;(2)解:∵△CBF≌△DBG,∴∠BCF=∠BDG,又∵∠CFB=∠DFH,又∵△BCF中,∠CBF=180°﹣∠BCF﹣∠CFB,△DHF中,∠DHF=180°﹣∠BDG﹣∠DFH,∴∠DHF=∠CBF=60°,∴∠FHG=180°﹣∠DHF=180°﹣60°=120°.17.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.【解答】证明:∵FB=CE,∴FB+FC=CE+FC,∴BC=EF,∵AB∥ED,AC∥FD,∴∠B=∠E,∠ACB=∠DFE,∵在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AC=DF.18.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.【解答】证明:∵△ABC和△ADE都是等腰直角三角形∴AD=AE,AB=AC,又∵∠EAC=90°+∠CAD,∠DAB=90°+∠CAD,∴∠DAB=∠EAC,∵在△ADB和△AEC中∴△ADB≌△AEC(SAS),∴BD=CE.19.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.【解答】证明:∵BE=CF,∴BC=EF.∵AB∥DE,∴∠B=∠DEF.在△ABC与△DEF中,,∴△ABC≌△DEF(AAS),∴AB=DE.20.已知△ABC为等腰直角三角形,∠ACB=90°,点P在BC边上(P不与B、C重合)或点P在△ABC 内部,连接CP、BP,将CP绕点C逆时针旋转90°,得到线段CE;将BP绕点B顺时针旋转90°,得到线段BD,连接ED交AB于点O.(1)如图a,当点P在BC边上时,求证:OA=OB;(2)如图b,当点P在△ABC内部时,①OA=OB是否成立?请说明理由;②直接写出∠BPC为多少度时,AB=DE.【解答】(1)证明:∵△ABC为等腰直角三角形,∴CA=CB,∠A=∠ABC=45°,由旋转可知:CP=CE,BP=BD,∴CA﹣CE=CB﹣CP,即AE=BP,∴AE=BD.又∵∠CBD=90°,∴∠OBD=45°,在△AEO和△BDO中,,∴△AEO≌△BDO(AAS),∴OA=OB;(2)成立,理由如下:连接AE,则△AEC≌△BCP,∴AE=BP,∠CAE=∠BPC,∵BP=BD,∴BD=AE,∵∠OAE=45°+∠CAE,∠OBD=90°﹣∠OBP=90°﹣(45°﹣∠BPC)=45°+∠PBC,∴∠OAE=∠OBD,在△AEO和△BDO中,,∴△AEO≌△BDO(AAS),∴OA=OB,②当∠BPC=135°时,AB=DE.理由如下:解法一:当AB=DE时,由①知OA=OB,∴OA=OB=OE=OD.设∠PCB=α,由旋转可知,∠ACE=α.连接OC,则OC=OA=OB,∴OC=OE,∴∠DEC=∠OCE=45°+α.设∠PBC=β,则∠ABP=45°﹣β,∠OBD=90°﹣∠ABP=45°+β.∵OB=OD,∴∠D=∠OBD=45°+β.在四边形BCED中,∠DEC+∠D+∠DBC+∠BCE=360°,即:(45°+α)+(45°+β)+(90°+β)+(90°+α)=360°,解得:α+β=45°,∴∠BPC=180°﹣(α+β)=135°.解法二(本溪赵老师提供,更为简洁):当AB=DE时,四边形AEBD为矩形则∠DBE=90°=∠DBP,∴点P落在线段BE上.∵△ECP为等腰直角三角形,∴∠EPC=45°,∴∠BPC=180°﹣∠EPC=135°.21.(1)如图1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.(2)如图2,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,求AC的长.【解答】(1)证明:∵AB∥DC,∴∠B=∠DCE,在△ABC和△DCE中,∴△ABC≌△DCE(SAS),∴∠A=∠D;(2)解:∵四边形ABCD是矩形,∴AO=BO=CO=DO,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AO=AB=4,∴AC=2AO=8.22.(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?【解答】(1)证明:∵AB平分∠CAD,∴∠CAB=∠DAB,在△ABC和△ABD中∴△ABC≌△ABD(SAS),∴BC=BD.(2)解:设这个班有x名学生,根据题意得:3x+20=4x﹣25,解得:x=45,答:这个班有45名学生.23.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.【解答】证明:∵DE∥AB,∴∠CAB=∠ADE,∵在△ABC和△DAE中,,∴△ABC≌△DAE(ASA),∴BC=AE.24.【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B 进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据HL ,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若∠B≥∠A ,则△ABC≌△DEF.【解答】(1)解:HL;(2)证明:如图,过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,∵∠ABC=∠DEF,且∠ABC、∠DEF都是钝角,∴180°﹣∠ABC=180°﹣∠DEF,即∠CBG=∠FEH,在△CBG和△FEH中,,∴△CBG≌△FEH(AAS),∴CG=FH,在Rt△ACG和Rt△DFH中,,∴Rt△ACG≌Rt△DFH(HL),∴∠A=∠D,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);(3)解:如图,△DEF和△ABC不全等;(4)解:若∠B≥∠A,则△ABC≌△DEF.故答案为:(1)HL;(4)∠B≥∠A.25.(2014•德州)问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是EF=BE+DF ;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.【解答】解:问题背景:EF=BE+DF;探索延伸:EF=BE+DF仍然成立.证明如下:如图,延长FD到G,使DG=BE,连接AG,∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,∴∠B=∠ADG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△GAF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;实际应用:如图,连接EF,延长AE、BF相交于点C,∵∠AOB=30°+90°+(90°﹣70°)=140°,∠EOF=70°,∴∠EOF=∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°,∴符合探索延伸中的条件,∴结论EF=AE+BF成立,即EF=1.5×(60+80)=210海里.答:此时两舰艇之间的距离是210海里.26.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.【解答】(1)证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BCA=∠DCA,在△CBF和△CDF中,,∴△CBF≌△CDF(SAS),(2)解:∵△ABC≌△ADC,∴△ABC和△ADC是轴对称图形,∴OB=OD,BD⊥AC,∵OA=OC,∴四边形ABCD是菱形,∴AB=BC=CD=DA,∵AC=2,BD=2,∴OA=,OB=1,∴AB===2,∴四边形ABCD的周长=4AB=4×2=8.(3)当EB⊥CD时,即E为过B且和CD垂直时垂线的垂足,∠EFD=∠BCD,理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF,∠BCD=∠BAD,∵△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠BCD+∠CBF=90°,∠EFD+∠CDF=90°,∴∠EFD=∠BAD.27.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABD=∠CDB,∴180°﹣∠ABD=180°﹣∠CDB,即∠ABE=∠CDF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴AE=CF.28.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.【解答】(1)证明:在正方形ABCD中,∠ABE=∠ADG,AD=AB,在△ABE和△ADG中,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∴∠EAG=90°,在△FAE和△GAF中,,∴△FAE≌△GAF(SAS),∴EF=FG;(2)解:如图,过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°.∵CE⊥BC,∴∠ACE=∠B=45°.在△ABM和△ACE中,∴△ABM≌△ACE(SAS).∴AM=AE,∠BAM=∠CAE.∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.在△MAN和△EAN中,∴△MAN≌△EAN(SAS).∴MN=EN.在Rt△ENC中,由勾股定理,得EN2=EC2+NC2.∴MN2=BM2+NC2.∵BM=1,CN=3,∴MN2=12+32,∴MN=29.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.【解答】证明:(1)∵∠ACB=90°,CG平分∠ACB,∴∠ACG=∠BCG=45°,又∵∠ACB=90°,AC=BC,∴∠CAF=∠CBF=45°,∴∠CAF=∠BCG,在△AFC与△CGB中,,∴△AFC≌△CBG(ASA),∴AF=CG;(2)延长CG交AB于H,∵CG平分∠ACB,AC=BC,∴CH⊥AB,CH平分AB,∵AD⊥AB,∴AD∥CG,∴∠D=∠EGC,在△ADE与△CGE中,,∴△ADE≌△CGE(AAS),∴DE=GE,即DG=2DE,∵AD∥CG,CH平分AB,∴DG=BG,∵△AFC≌△CBG,∴CF=BG,∴CF=2DE.30.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.【解答】(1)证明:如图①,∵∠BAC+∠EAD=180°,∠BAE=90°,∴∠DAC=90°,在△ABE与△ACD中∴△ABE≌△ACD(SAS),∴CD=BE,∵在Rt△ABE中,F为BE的中点,∴BE=2AF,∴CD=2AF.(2)成立,证明:如图②,延长EA交BC于G,在AG上截取AH=AD,∵∠BAC+∠EAD=180°,∴∠EAB+∠DAC=180°,∵∠EAB+∠BAH=180°,∴∠DAC=∠BAH,在△ABH与△ACD中,∴△ABH≌△ACD(SAS)∴BH=DC,∵AD=AE,AH=AD,∴AE=AH,∵EF=FB,∴BH=2AF,∴CD=2AF.。
人教版初中八年级数学上册第十二章《全等三角形》测试卷(含答案解析)

一、选择题1.如图,AB ∥CD ,BE 和CE 分别平分∠ABC 和∠BCD ,AD 过点E ,且AD ⊥AB ,点P 为线段BC 上一动点,连接PE .若AD =14,则PE 的最小值为( )A .7B .10C .6D .5A解析:A【分析】 当EP ⊥BC 时,EP 最短,根据角平分线的性质,可知EP=EA=ED=12AD ,由AD =14,求出即可.【详解】解:当EP ⊥BC 时,EP 最短,∵AB ∥CD ,AD ⊥AB ,∴AD ⊥CD ,∵BE 平分∠ABC ,AE ⊥AB ,EP ⊥BC ,∴EP=EA ,同理,EP=ED ,此时,EP=12AD=12×14=7, 故选A .【点睛】 本题考查了角平分线的性质和垂线段最短,熟练找到P 点位置并应用角平分线性质求EP 是解题关键.2.如图,在ABC 和DEF 中,,B DEF AB DE ∠=∠=,添加下列一个条件后,仍然不能证明ABC DEF ≌,这个条件是( )A .A D ∠=∠B .BC EF = C .ACB F ∠=∠D .AC DF = D解析:D【分析】根据全等三角形的判定,利用ASA、SAS、AAS即可得答案.【详解】解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;添加BC=EF,利用SAS可得△ABC≌△DEF;添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;添加AC DF,不符合任何一个全等判定定理,不能证明△ABC≌△DEF;故选:D.【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS和HL 是解题的关键.3.如图,点O是△ABC中∠BCA,∠ABC的平分线的交点,已知△ABC的面积是12,周长是8,则点O到边BC的距离是()A.1 B.2C.3 D.4C解析:C【分析】过点O作OE⊥AB于E,OF⊥AC于F,连接OA,根据角平分线的性质得:OE=OF=OD然后根据△ABC的面积是12,周长是8,即可得出点O到边BC的距离.【详解】如图,过点O作OE⊥AB于E,OF⊥AC于F,连接OA.∵点O是∠ABC,∠ACB平分线的交点,∴OE=OD,OF=OD,即OE=OF=OD∴S△ABC=S△ABO+S△BCO+S△ACO=12AB·OE+12BC·OD+12AC·OF=12×OD×(AB+BC+AC)=12×OD×8=12 OD=3故选:C【点睛】此题主要考查了角平分线的性质以及三角形面积求法,角的平分线上的点到角的两边的距离相等,正确表示出三角形面积是解题关键.4.如图,AD 平分BAC ∠交BC 于点D ,DE AB ⊥于点E ,DF AC ⊥于点F ,若ABC S 12=,DF 2=,AC 3=,则AB 的长是 ( )A .2B .4C .7D .9D解析:D【分析】 求出DE 的值,代入面积公式得出关于AB 的方程,求出即可.【详解】解:∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,∴DE=DF=2,∵S △ABC =S △ABD +S △ACD ,∴12=12×AB×DE+12×AC×DF , ∴24=AB×2+3×2,∴AB=9,故选:D .【点睛】本题考查了角平分线性质,三角形的面积的应用,注意:角平分线上的点到角两边的距离相等.5.如图,BD 是四边形ABCD 的对角线, AD//BC ,AB AD <,分别过点A ,C 作AE BD ⊥,CF BD ⊥,垂足分别为点E ,F ,若BE DF =,则图中全等的三角形有( )A .1对B .2对C .3对D .4对C解析:C【分析】根据AD //BC 证得ADB CBD ∠=∠,由BE DF =得到BF=DE ,由此证明△ADE ≌△CBF ,得到AE=CF ,AD=CB ,由此证得△ABE ≌△CDF ,得到AB=CD ,由此利用SSS 证明△ABD ≌△CDB.【详解】解:∵AD //BC ,∴ADB CBD ∠=∠,BE DF =,BF DE ∴=,AE BD ⊥,CF BD ⊥,AED CFB ∠∠∴=90=,()ADE CBF ASA ∴≅,AE CF ∴=,AD CB =,∵∠AEB=∠CFD 90=,BE=DF ,()ABE CDF SAS ∴≅,AB CD ∴=,BD DB =,AB=CD ,AD CB =,()ABD CDB SSS ∴≅,则图中全等的三角形有:3对,故选:C .【点睛】此题考查三角形全等的判定定理:SSS 、SAS 、ASA 、AAS 、HL ,根据已知条件找到对应的边或角是解题的关键.6.如图所示,下面甲、乙、丙三个三角形和ABC 全等的图形是( )A .甲和乙B .乙和丙C .只有丙D .只有乙B解析:B【分析】 甲只有2个已知条件,缺少判定依据;乙可根据SAS 判定与△ABC 全等;丙可根据AAS 判定与△ABC 全等,可得答案.【详解】解:甲三角形只知道两条边长无法判断是否与△ABC 全等;乙三角形夹50°内角的两边分别与已知三角形对应相等,故乙与△ABC 全等;丙三角形72°内角及所对边与△ABC 对应相等且均有50°内角,可根据AAS 判定乙与△ABC 全等;则与△ABC 全等的有乙和丙,故选:B .【点睛】本题主要考查全等三角形的判定定理,熟练掌握并充分理解三角形全等的判定定理,注意对应二字的理解很重要.7.下列各命题中,假命题是( )A .有两边及其中一边上的中线对应相等的两个三角形全等B .有两边及第三边上高对应相等的两个三角形全等C .有两角及其中一角的平分线对应相等的两三角形全等D .有两边及第三边上的中线对应相等的两三角形全等B解析:B【分析】根据全等三角形的判定定理进行证明并依次判断.【详解】解:A 、有两边及其中一边上的中线对应相等的两个三角形全等,可利用证两步全等的方法求得,是真命题;B 、高有可能在内部,也有可能在外部,是不确定的,不符合全等的条件,原命题是假命题;C 、有两角及其中一角的平分线对应相等的两三角形全等,可利用证两步全等的方法求得,是真命题;D 、有两边及第三边上的中线对应相等的两三角形全等,可利用证两步全等的方法求得,是真命题;故选:B .【点睛】此题考查全等三角形的判定定理:SSS 、SAS 、ASA 、AAS 、HL ,灵活判定命题真假,熟记定理并灵活应用解决问题是解题的关键.8.如图,点D 在线段BC 上,若1802ACE ABC x ∠=︒-∠-︒,且BC DE =,AC DC =,AB EC =,则下列角中,大小为x ︒的角是( )A .EFC ∠B .ABC ∠ C .FDC ∠D .DFC ∠ C解析:C【分析】先证明()ABC CED SSS ∆≅∆得到B E ∠=∠、FCD FDC ∠=∠,再根据1802ACE ABC x ∠=︒-∠-︒可得2CFE x ∠=︒;然后根据外角的性质可得2EFC FDC FCD FDC ∠=∠+∠=∠即可解答.【详解】解:在ABC ∆和CED ∆中,AC CD AB CE BC ED =⎧⎪=⎨⎪=⎩,()ABC CED SSS ∴∆≅∆,B E ∴∠=∠,FCD FDC ∠=∠1802180ACE ABC x E CFE ∠=︒-∠-︒=︒-∠-∠,2CFE x ∴∠=︒,2EFC FDC FCD FDC ∠=∠+∠=∠=2x ︒,FDC x ∴∠=︒.故答案为C .【点睛】本题主要考查全等三角形的判定和性质、三角形的外角的性质等知识,弄清题意、理清角之间的关系是解答本题的关键.9.对于ABC 与DEF ,已知∠A=∠D ,∠B=∠E ,则下列条件:①AB=DE ;②AC=DF ;③BC=DF ;④AB=EF 中,能判定它们全等的有( )A .①②B .①③C .②③D .③④A解析:A【分析】根据已知条件,已知两角对应相等,所以要证两三角形全等,可以根据角边角、角角边、边角边判定定理添加条件,再根据选项选取答案即可;【详解】题意已知:∠A=∠D ,∠B=∠E ,∴①根据“ASA”可添加AB=DE ,故①正确;②根据“AAS” 可添加AC=DF ,故②正确;③根据“AAS” 可添加BC=EF ,故③错误;④根据“ASA”可添加AB=DE ,故④错误;所以补充①②可判定两三角形全等;故选:A .【点睛】本题主要考查了三角形全等的判定,根据不同的判定方法可选择不同的条件,所以对三角形全等的判定定理要熟练掌握并归纳总结;10.如图所示,已知∠A =∠C ,∠AFD =∠CEB ,那么给出的条件不能得到ADF CBE △≌△是( )A .∠B =∠DB .EB=DFC .AD=BCD .AE=CF A解析:A【分析】 直接利用全等三角形的判定方法进行判断即可;三角形全等的证明方法有:SSS 、SAS 、AAS 、ASA ;【详解】A ∵∠A=∠C ,∠AFD=∠CEB ,∠B=∠D ,三个角相等,不能判定三角形全等,该选项不符合题意;B ∵∠A=∠C ,∠AFD=∠CEB ,EB=DF ,符合AAS 的判定,该选项符合题意;C ∵∠A=∠C ,∠AFD=∠CEB ,AD=BC ,符合AAS 的判定,该选项符合题意;D ∵∠A=∠C ,∠AFD=∠CEB ,AE=CF ,∴AF=CE ,符合ASA 的判定,该选项符合题意; 故选:A .【点睛】本题考查了全等三角形的判定方法,正确掌握判定方法是解题的关键;二、填空题11.如图,四边形ABCD 中,180B D ∠+∠=︒,AC 平分DAB ∠,CM AB ⊥于点M ,若4cm AM =, 2.5cm BC =,则四边形ABCD 的周长为______cm .13【分析】过点C 作CN ⊥AD 交AD 延长线于点N 由角平分线的性质得到CN=CM 然后证明△CDN ≌△CBM 得到DN=BMCD=CB=25然后求出AN=AM=4则AD=4DN 即可求出四边形的周长【详解】解析:13【分析】过点C 作CN ⊥AD ,交AD 延长线于点N ,由角平分线的性质,得到CN=CM ,然后证明△CDN ≌△CBM ,得到DN=BM ,CD=CB=2.5,然后求出AN=AM=4,则AD=4-DN ,即可求出四边形的周长.【详解】解:根据题意,过点C 作CN ⊥AD ,交AD 延长线于点N ,如图:∵CM AB ⊥,CN ⊥AD ,∴∠N=∠CMB=90°,∵180B ADC ∠+∠=︒,180CDN ADC ∠+∠=︒,∴B CDN ∠=∠,∵AC 平分DAB ∠,∴CN=CM ,∴△CDN ≌△CBM ,∴DN=BM ,CD=CB=2.5,∵AC=AC ,∠N=∠CMA=90°,∴△ACN ≌△ACM (HL ),∴AN=AM=4,∴AD=4-DN ,∴AB=4+BM=4+DN ,∴四边形ABCD 的周长为:4 2.5 2.5413AD DC CB AB DN DN +++=-++++=;故答案为:13.【点睛】本题考查了角平分线的性质,全等三角形的判定和性质,解题的关键是利用所学的知识,正确得到AD=4-DN ,AB=4+DN .12.如图,四边形ABCD 中,AC BC =,90ACB ADC ∠=∠=︒,10CD =,则BCD ∆的面积为______.50【分析】过点B 作BE ⊥DC 交DC 的延长线于点E 先证明∠CBE=∠ACD 从而证明∆ACD ≅∆CBE 进而即可求解【详解】过点B 作BE ⊥DC 交DC 的延长线于点E ∵BE ⊥CE ∴∠BEC=∠CDA=90°解析:50【分析】过点B 作BE ⊥DC 交DC 的延长线于点E ,先证明∠CBE=∠ACD ,从而证明∆ ACD ≅∆ CBE ,进而即可求解.【详解】过点B 作BE ⊥DC 交DC 的延长线于点E ,∵BE ⊥CE ,∴∠BEC=∠CDA=90°,∴∠CBE+∠BCE=90°,又∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠CBE=∠ACD ,在∆ ACD 与∆ CBE 中,∵CBE ACD CEB ADC BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴∆ ACD ≅∆ CBE (AAS ),∴BE=CD=10,∴BCD ∆的面积=12CD∙BE=12×10×10=50, 故答案是50.【点睛】本题主要考查全等三角形的判定和性质,等腰直角三角形的性质,添加辅助线,构造“一线三垂直”模型,是解题的关键.13.如图,∠ABC=∠DCB ,要使△ABC ≌△DCB ,还需要补充一个条件:___.(一个即可) AB=CD (或∠A=∠D 或∠ACB=∠DBC )【分析】根据已知条件:两个三角形已经具备∠ABC=∠DCB 及公共边BC 再添加任意一组角或是AB=CD 即可【详解】∵∠ABC=∠DCBBC=CB ∴当AB=解析:AB=CD (或∠A=∠D 或∠ACB=∠DBC )【分析】根据已知条件:两个三角形已经具备∠ABC=∠DCB 及公共边BC ,再添加任意一组角,或是AB=CD 即可.【详解】∵∠ABC=∠DCB ,BC=CB ,∴当AB=CD 时,利用SAS 证明△ABC ≌△DCB ;当∠A=∠D 时,利用AAS 证明△ABC ≌△DCB ;当∠ACB=∠DBC 时,利用ASA 证明△ABC ≌△DCB ,故答案为:AB=CD (或∠A=∠D 或∠ACB=∠DBC ).【点睛】此题考查添加一个条件证明两个三角形全等,熟记全等三角形的判定定理是解题的关键. 14.如图,AB =4cm ,AC =BD =3cm ,∠CAB =∠DBA ,点P 在线段AB 上以1cm/s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.设运动时间为t (s ),则当△ACP 与△BPQ 全等时,点Q 的运动速度为__cm/s .1或15【分析】分两种情况讨论:当△ACP ≌△BPQ 时从而可得点的运动速度;当△ACP ≌△BQP 时可得:从而可得点的运动速度从而可得答案【详解】解:当△ACP ≌△BPQ 时则AC =BPAP =BQ ∵AC解析:1或1.5【分析】分两种情况讨论:当△ACP ≌△BPQ 时,1AP BQ ==, 从而可得Q 点的运动速度;当△ACP ≌△BQP 时,可得:23AP BP BQ ===,, 从而可得Q 点的运动速度,从而可得答案.【详解】解:当△ACP ≌△BPQ 时,则AC =BP ,AP =BQ ,∵AC =3cm ,∴BP =3cm ,∵AB =4cm ,∴AP =1cm ,∴BQ =1cm ,∴点Q 的速度为:1÷(1÷1)=1(cm/s );当△ACP ≌△BQP 时,则AC =BQ ,AP =BP ,∵AB =4cm ,AC =BD =3cm ,∴AP =BP =2cm ,BQ =3cm ,∴点Q 的速度为:3÷(2÷1)=1.5(cm/s );故答案为:1或1.5.【点睛】本题考查的是全等三角形的判定与性质,分类讨论的数学思想,掌握利用分类讨论解决全等三角形问题是解题的关键.15.如图,AC AE =,AD AB =,90ACB DAB ∠=∠=︒,33BAE ∠=︒,//CB AE ,AC 与DE 相交于点F .(1)DAC ∠=______.(2)当1AF =时,BC 的长为______.33°2【分析】(1)作DG ⊥AC 的延长线于G 然后根据平行线的性质可以推出结论;(2)证明△ADG ≌△BAC (AAS )由全等三角形的性质得出DG =AC =AE ;AG =BC 证明△AEF ≌△GDF (AAS 解析:33° 2【分析】(1)作DG ⊥AC 的延长线于G ,然后根据平行线的性质可以推出结论;(2)证明△ADG ≌△BAC (AAS ),由全等三角形的性质得出DG =AC =AE ;AG =BC ,证明△AEF ≌△GDF (AAS ),得出1122AF GF AG BC ===,则可得出答案. 【详解】解:(1)∵90ACB ∠=︒,//AE BC ,∴18090CAE ACB ∠=︒-∠=︒.∵90DAB CAE ∠=∠=︒,∴DAC CAB BAE CAB ∠+∠=∠+∠,∴33DAC BAE ∠=∠=︒.故答案为:33.(2)如图,过点D 作DG AC ⊥,交AC 的延长线于点G ,∴90AGD ACB ∠=∠=︒.∵//AE CB ,∴DAG BAE B ∠=∠=∠. 在ADG 和BAC 中,,,,AGO BCA DAG B AD BA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS ADG BAC ≅△△,∴DG AC AE ==,AG BC =.在AEF 和GDF 中,,,,EFA DFG EAF DGF AE DG ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS AEF GDF ≅△△, ∴1122AF GF AG BC ===, ∴22BC AF ==.故答案为:2.【点睛】此题考查了全等三角形的判定与性质,用到的知识点是平行线的性质和全等三角形的判定与性质,解题的关键是熟练掌握全等的三角形的判定与性质.16.在Rt △ABC 中,∠C =90°,AC =15cm ,BC =8cm ,AX ⊥AC 于A ,P 、Q 两点分别在边AC 和射线AX 上移动.当PQ =AB ,AP =_____时,△ABC 和△APQ 全等.8cm 或15cm 【分析】分情况讨论:①AP =BC =8cm 时Rt △ABC ≌Rt △QPA (HL );②当P 运动到与C 点重合时Rt △ABC ≌Rt △PQA (HL )此时AP =AC =15cm 【详解】解:①当P 运动解析:8cm 或15cm【分析】分情况讨论:①AP =BC =8cm 时,Rt △ABC ≌Rt △QPA (HL );②当P 运动到与C 点重合时,Rt △ABC ≌Rt △PQA (HL ),此时AP =AC =15cm .【详解】解:①当P 运动到AP =BC 时,如图1所示:在Rt △ABC 和Rt △QPA 中,AB QP BC PA=⎧⎨=⎩, ∴Rt △ABC ≌Rt △QPA (HL ),即AP =B =8cm ;②当P 运动到与C 点重合时,如图2所示:在Rt △ABC 和Rt △PQA 中,AB PQ AC PA=⎧⎨=⎩, ∴Rt △ABC ≌Rt △PQA (HL ),即AP =AC =15cm .综上所述,AP 的长度是8cm 或15cm .故答案为:8cm 或15cm .【点睛】本题考查了三角形全等的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键,注意分类讨论,以免漏解.17.如图,9cm AB =,3cm AC =,点P 在线段AB 上以1cm/s 的速度由点B 向点A 运动,同时点Q 在射线BD 上以x cm/s 的速度由点B 沿射线BD 的方向运动,它们运动的时间为t (s )(1)如图①,若AC AB ⊥,BD AB ⊥,当ACP BPQ △≌△,x =________;CPQ ∠=________.(2)如图②,CAB DBA ∠=∠,当ACP △与BPQ 全等,x =________;90°2或【分析】(1)根据全等找出对应边利用BP 边求得时间再在BQ 边上求速度再运用全等三角形的性质即可证明角度;(2)结合条件对与全等时的情况进行分析分类讨论即可【详解】(1)当时又;(2)①当时解析:90° 2或23【分析】(1)根据全等找出对应边,利用BP 边求得时间,再在BQ 边上求速度,再运用全等三角形的性质,即可证明角度;(2)结合条件,对ACP △与BPQ 全等时的情况进行分析,分类讨论即可.【详解】(1)当ACP BPQ △≌△时,3AC PB ==,936AP BQ cm ==-=, 331cm t s cm /s ∴==,623cm x cm /s s==, 又CPA PQB ∠=∠,90PQB QPB ∠+∠=︒,90CPA QPB ∴∠+∠=︒,18090CPQ ∴∠=︒-︒=90︒;(2)①当ACP BPQ △≌△时,3AC BP ==,936AP BQ ==-=, 此时,331cm t s cm /s ==,623cm x cm /s s==; ②当ACP BQP △≌△时, 3AC BQ ==,92AP BP ==,此时,99212cm t s cm /s ==,32932cm x cm /s s ==; 综上:当ACP △与BPQ 全等,2x cm /s =或23cm /s . 【点睛】本题考查了全等三角形的性质及判定,熟练掌握全等三角形的性质是解题关键. 18.如图,在直角坐标系中,AD 是Rt △OAB 的角平分线,已知点D 的坐标是(0,-3),AB 的长为12,则△ABD 的面积是_____ 18【分析】过点D 作DE ⊥AB 于点E 由角平分线的性质可得出DE 的长再根据三角形的面积公式即可得出结论【详解】解:过点D 作DE ⊥AB 于点E ∵D (0-3)∴OD=3∵AD 是Rt △OAB 的角平分线OD ⊥O解析:18【分析】过点D 作DE ⊥AB 于点E ,由角平分线的性质可得出DE 的长,再根据三角形的面积公式即可得出结论.【详解】解:过点D 作DE ⊥AB 于点E ,∵D (0,-3)∴OD=3,∵AD 是Rt △OAB 的角平分线,OD ⊥OA ,DE ⊥AB ,∴DE=OD=3,∴S △ABD =12AB•DE=12×12×3=18.故答案为:18.【点睛】本题考查了坐标与图形的性质,角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.19.如图所示,已知点A 、D 、B 、F 在一条直线上,∠A=∠F ,AC=FE ,要使△ABC ≌△FDE ,还需添加一个条件,这个条件可以是___________________ .(只需填一个即可)∠C ∠E 或ABFD(ADFB)或∠ABC ∠FDE 或DE ∥BC 【分析】要判定△ABC ≌△FDE 已知∠A=∠FAC=FE 具备了一组角和一组边对应相等故可以添加∠C ∠E 利用ASA 可证全等(也可添加其它条件解析:∠C =∠E 或AB =FD(AD =FB)或∠ABC =∠FDE 或DE ∥BC【分析】要判定△ABC ≌△FDE ,已知∠A=∠F ,AC=FE ,具备了一组角和一组边对应相等,故可以添加∠C =∠E ,利用ASA 可证全等.(也可添加其它条件).【详解】增加一个条件:∠C =∠E ,在△ABC 和△FDE 中,C E AC FE A F ∠∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△FDE(ASA);或添加AB =FD(AD =FB) 利用SAS 证明全等;或添加∠ABC =∠FDE 或DE ∥BC 利用AAS 证明全等.故答案为:∠C =∠E 或AB =FD(AD =FB)或∠ABC =∠FDE 或DE ∥BC (答案不唯一).【点睛】本题考查了全等三角形的判定;判定方法有ASA 、AAS 、SAS 、SSS 等,在选择时要结合其它已知在图形上的位置进行选取.20.如图,ABC 中,90C ∠=,AD 平分BAC ∠,若2DC =,则点D 到线段AB 的距离等于________.【分析】过D 作DE ⊥AB 于E 根据角平分线的性质得出DE=DC即可求出答案【详解】解:过D作DE⊥AB于E∵∠C=90°AD平分∠BACDC=2∴DE=DC=2即点D到线段AB的距离等于2故答案为:2解析:【分析】过D作DE⊥AB于E,根据角平分线的性质得出DE=DC,即可求出答案.【详解】解:过D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,DC=2,∴DE=DC=2,即点D到线段AB的距离等于2,故答案为:2.【点睛】本题考查了考查了角平分线的性质,能根据角平分线的性质得出DE=DC是解此题的关键.三、解答题21.如图,在△ABC中,AC=BC,∠ACB=90°,点D在边BC上(不与点B,C重合),过点C作CE⊥AD,垂足为点E,交AB于点F,连接DF.(1)请直接写出∠CAD与∠BCF的数量关系;(2)若点D是BC中点,在图2中画出图形,猜想线段AD,CF,FD之间的数量关系,并证明你的猜想.解析:(1)∠BCF=∠CAD;(2)AD=CF+DF,证明见解析【分析】(1)由余角的性质可求解;(2)过点B作BG∥AC交CF的延长线于G,由“ASA”可证△ACD≌△CBG,可得CD=BG,AD=CG,由“SAS”可证△BDF≌△BGF,可得DF=GF,可得结论.【详解】解:(1)∠BCF=∠CAD,理由如下:∵CE⊥AD,∴∠CED=∠ACD=90°,∴∠CAD+∠ADC=90°=∠ADC+∠BCF,∴∠CAD =∠BCF ;(2)如图所示:猜想:AD =CF +DF ,理由如下:过点B 作BG ∥AC 交CF 的延长线于G ,则∠ACB +∠CBG =180°,∴∠CBG =∠ACD =90°,在△ACD 和△CBG 中,∵CAD BCF AC BC ACD CBG ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ACD ≌△CBG (ASA ),∴CD =BG ,AD =CG ,∵D 是BC 的中点,∴CD =BG =BD ,∵AC =BC ,∠ACB =90°,∴∠CBA =∠CAB ,∴∠CBA =45°,∴∠FBG =∠CBG ﹣∠CBA =90°﹣45°=45°,∴∠FBG =∠FBD ,在△BDF 和△BGF 中,BF BF FBD FBG BD BG =⎧⎪∠=∠⎨⎪=⎩∴△BDF ≌△BGF (SAS ),∴DF =GF ,∵AD =CG =CF +FG ,∴AD =CF +DF .【点睛】本题主要考查余角的性质,全等三角形的判定和性质,添加合适的辅助线,构造全等三角形,是解题的关键.22.作图题:已知∠α,线段m 、n ,请按下列步骤完成作图(不需要写作法,保留作图痕迹)(1)作∠MON=∠α(2)在边OM上截取OA=m,在边ON上截取OB=n.(3)作直线AB.解析:(1)见解析;(2)见解析;(3)见解析【分析】(1)先画一条射线ON,以∠α的顶点为圆心,任意长度为半径画弧,交∠α的两个边于两个点,这两个点的距离记为a,接着以点O为圆心,同样的长度为半径画弧,交ON于一个点,以这个点为圆心,a为半径画弧,与刚刚画的弧有一个交点,连接这个点和点O,得到射线OM,即可得到∠MON=∠α;(2)以点O为圆心,m为半径画弧,交OM于点A,以点O为圆心,n为半径画弧,交ON于点B;(3)连接AB,线段AB所在的直线即直线AB.【详解】解:(1)如图所示,(2)如图所示,(3)如图所示,【点睛】本题考查尺规作图,解题的关键是掌握作已知角度的方法,截取线段和画直线的方法. 23.如图,点A 、D 、B 、E 在一条直线上,BC 与DF 交于点G ,AD BE =,//BC EF ,BC EF =.求证:ABC DEF △≌△.解析:见解析【分析】由AD BE =,得AB=DE ,由//BC EF ,得ABC E ∠=∠,根据SAS 可证.【详解】证明:∵AD BE =,∴AD BD BE BD +=+,∴AB DE =,∵//BC EF ,∴ABC E ∠=∠,在ABC 和DEF 中,AB DE ABC E BC EF =⎧⎪∠=∠⎨⎪=⎩,∴()ABC DEF SAS ≌.【点睛】本题考查了用“边角边”定理判断两个三角形全等,解题关键是挖掘题目隐含的全等条件,根据判定定理证明.24.已知ACE △和DBF 中,AE FD =,//AE FD ,AB DC =,请判断CE 与BF 的位置关系,并说明理由.解析:见详解【分析】先证明ACE △≅DBF ,从而得∠DBF=∠ACE ,进而即可得到结论.【详解】∵AB DC =,∴+AB BC DC BC =+,即:AC=DB ,∵//AE FD ,∴∠A=∠D ,又∵AE FD =,∴ACE △≅DBF (SAS ),∴∠DBF=∠ACE ,∴CE ∥BF .【点睛】本题主要考查全等三角形的判定和性质定理以及平行线的判定和性质定理,熟练掌握SAS 证明三角形全等,是解题的关键.25.如图,AB ⊥CB ,DC ⊥CB , E 、F 在 BC 上,AF=DE ,BE=CF ,求证:AB =DC .解析:见解析【分析】由BE =CF 得BF =CE ,由AB ⊥CB ,DC ⊥CB 得到∠ABF =∠DCE =90°,然后根据“HL ”可判断Rt ABF ≌Rt DCE ,则AB =DC 即可.【详解】证明:∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE ,∵AB ⊥CB ,DC ⊥CB ,∴∠ABF =∠DCE =90°,∵在Rt ABF 和Rt DCE 中,AF DE BF CE =⎧⎨=⎩, ∴Rt ABF ≌Rt DCE (HL ),∴AB =DC .【点睛】本题考查了直角三角形的判定与性质:有一组直角边和斜边对应相等的两直角三角形全等;全等三角形的对应角相等,对应边相等.26.如图,点P 是锐角∠ABC 内一点,BP 平分∠ABC ,点M 在边BA 上,点N 在边BC 上,且PM =PN .求证:∠BMP +∠BNP =180°.解析:见解析【分析】过点P 作PE ⊥BA 于点E, 作PF ⊥BC 于点F ,根据角平分线性质定理可得PE =PF ,再由HL 可证Rt △MEP ≌Rt △NFP ,进而证得∠PME =∠PNF ,从而证得∠BMP +∠BNP =180°.【详解】证明:如图所示,过点P 作PE ⊥BA 于点E, 作PF ⊥BC 于点F ,∴∠MEP =∠NFP =90°.∵BP 平分∠ABC ,∴PE =PF .在Rt △MEP 与Rt △NFP 中,PE PF PM PN =⎧⎨=⎩, ∴Rt △MEP ≌Rt △NFP (HL ).∴∠PME =∠PNF .∵∠BMP+∠PME=180°,∴∠BMP+∠BNP=180°.【点睛】本题主要考查了全等三角形的判定与性质,通过证明三角形全等得出对应角相等是解决问题的关键.27.小敏在学习了几何知识后,对角的知识产生了兴趣,进行了如下探究:(1)如图1,∠AOB=90°,在图中动手画图(不用写画法).在∠AOB内部任意画一条射线OC;画∠AOC的平分线OM,画∠BOC的平分线ON;用量角器量得∠MON=______.(2)如图2,∠AOB=90°,将OC向下旋转,使∠BOC=30°,仍然分别作∠AOC,∠BOC 的平分线OM,ON,能否求出∠MON的度数,若能,求出其值,若不能,试说明理由.解析:(1)作图见解析,45;(2)能,45【分析】(1)以点O为圆心,任意长为半径,画圆弧,并分别交OA、OC于点H、点G;再分别以点H、点G为圆心,以大于12HG的长度为半径画圆弧并相较于点P,过点P作射线OM即为∠AOC的平分线;同理得∠BOC的平分线ON;通过量角器测量即可得到∠MON;(2)根据题意,得114522COM AOC BOC∠=∠=+∠,12CON BOC∠=∠,结合MON COM CON∠=∠-∠,经计算即可得到答案.【详解】(1)作图如下用量角器量得:∠MON=45故答案为:45;(2)∵∠AOC ,∠BOC 的平分线OM ,ON ,且∠AOB =90° ∴()11145222COM AOC AOB BOC BOC ∠=∠=∠+∠=+∠ 12CON BOC ∠=∠ ∴11454522MON COM CON BOC BOC ∠=∠-∠=+∠-∠=. 【点睛】本题考查了角平分线、射线的知识;解题的关键是熟练掌握角平分线、角的运算的性质,从而完成求解.28.如图,在平面直角坐标系中,已知点()1,A a a b -+,(),0B a ,且()2320a b a b +-+-=,C 为x 轴上点B 右侧的动点,以AC 为腰作等腰三角形ACD ,使AD AC =,CAD OAB ∠=∠,直线DB 交y 轴于点P .(1)求证:AO AB =;(2)求证:AOC ABD ∆∆≌;(3)当点C 运动时,点P 在y 轴上的位置是否发生改变,为什么?解析:(1)证明见解析;(2)证明见解析;(3)不变,理由见解析.【分析】(1)先根据非负数的性质求出a 、b 的值,作AE ⊥OB 于点E ,由SAS 定理得出△AEO ≌△AEB ,根据全等三角形的性质即可得出结论;(2)先根据∠CAD=∠OAB ,得出∠OAC=∠BAD ,再由SAS 定理即可得出结论; (3)设∠AOB=∠ABO=α,由全等三角形的性质可得出∠ABD=∠AOB=α,故∠OBP=180°-∠ABO-∠ABD=180°-2α为定值,再由OB=2,∠POB=90°可知OP 的长度不变,故可得出结论.【详解】(1)证明:∵()2320a b a b +-+-=,∴30,20,a b a b +-=⎧⎨-=⎩解得2,1.a b =⎧⎨=⎩∴()1,3A ,()2,0B .作AE OB ⊥于点E ,∵()1,3A ,()2,0B ,∴1OE =,211BE =-=,在AEO ∆与AEB ∆中,∵,90,,AE AE AEO AEB OE BE =⎧⎪∠=∠=︒⎨⎪=⎩∴AEO AEB ∆∆≌,∴OA AB =.(2)证明:∵CAD OAB ∠=∠,∴CAD BAC OAB BAC ∠+=∠+∠∠,即OAC BAD ∠=∠.在AOC ∆与ABD ∆中,∵,,,OA AB OAC BAD AC AD =⎧⎪∠=∠⎨⎪=⎩∴AOC ABD ∆∆≌.(3)解:点P 在y 轴上的位置不发生改变.理由:设AOB α∠=. ∵OA AB =,∴AOB ABO α∠=∠=.由(2)知,AOC ABD ∆∆≌,∴ABD AOB α∠=∠=.∵2OB =,1801802OBP ABO ABD α∠=︒-∠-∠=︒-为定值,90POB ∠=︒,易知POB ∆形状、大小确定,∴OP 长度不变,∴点P 在y 轴上的位置不发生改变.【点睛】本题考查了全等三角形的判定与性质,熟知全等三角形的判定定理是解题的关键.。
人教版八年级数学上册《第十二章全等三角形》单元测试卷及答案

人教版八年级数学上册《第十二章全等三角形》单元测试卷及答案一.选择题(共8小题,满分24分)1.根据下列条件,能画出唯一确定的三角形的是()A.AB=2,BC=5,AC=2B.AB=6,∠B=30°,AC=4C.AB=4,∠B=60°,∠C=75°D.BC=8,∠C=90°2.下列各组图形、是全等图形的是()A.B.C.D.3.在△ABC中,∠A=50°,∠B=60°,若△ABC≌△DEF,则∠E与∠F的关系为()A.∠E<∠F B.∠E=∠F C.∠E>∠F D.无法确定4.如图,CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD相交于点O.如果AB=AC,那么图中全等的直角三角形的对数是()A.1B.2C.3D.45.如图,已知点A、D、C、F在同一条直线上,∠B=90°,AB=DE,AD=CF,BC=EF,则∠E=()A.90°B.45°C.50°D.40°6.如图是雨伞在开合过程中某时刻的截面图,伞骨AB=AC,点D,E分别是AB,AC的中点,DM,EM 是连接弹簧和伞骨的支架,且DM=EM,已知弹簧M在向上滑动的过程中,总有△ADM≌△AEM,其判定依据是()A.ASA B.AAS C.SSS D.HL7.下列作图属于尺规作图的是()A.用量角器画出∠AOB,使∠AOB=60°B.借助没有刻度的直尺和圆规作∠AOB,使∠AOB=2∠αC.用三角尺画MN=1.5cmD.用三角尺过点P作AB的垂线8.两把相同的长方形直尺按如图所示方式摆放,记两把直尺的接触点为P,其中一把直尺边缘和射线OA 重合,另把直尺的下边缘与射线OB重合,连,接OP并延长.若∠BOP=25°,则∠AOP的度数为()A.12.5°B.25°C.37.5°D.50°二.填空题(共8小题,满分24分)9.长方体的直观图有很多种画法,通常我们采用画法.10.如图,AB=AC,点D,E分别在AB与AC上,CD与BE相交于点F.只填一个条件使得△ABE≌△ACD,添加的条件是:.11.如图,在△ABC中,AD平分∠BAC,DE⊥AB,若AC=9,DE=4,则S=.△ACD12.某中学计划在一块长16m,宽6m的矩形空地上修建三块全等的矩形草坪,如图所示,余下空地修建成同样宽为a的小路.(1)若a=1.5m,则草坪总面积为平方米.(2)若草坪总面积恰好等于小路总面积,那么,此时的路宽a是米.13.如图所示,点A、B、C、D均在正方形网格格点上,则∠ABC+∠ADC=.14.如图,小红要测量池塘A、B两端的距离,他设计了一个测量方案,先在平地上取可以直接到达A点和B点的C,D两点,AC与BD相交于点O,且测得AC=BD=55m,OA=OD=17m,△COD的周长为103m,则A,B两端的距离为m.15.如图,点E,C在BF上,BE=CF,∠A=∠D=90°,请添加一个条件,使Rt△ABC≌Rt△DFE.16.我们把一条对角线是另一条对角线2倍的四边形叫“奇异四边形”.现有两个全等的直角三角形,一条直角边长是1,如果它们可以拼成对角线互相垂直的“奇异四边形”,那么直角三角形另一条直角边长是.三.解答题(共6小题,满分52分)17.如图,AD与BC相交于点O,连接AC、BD,AC=BD,∠C=∠D,求证:△OAC≌△OBD.18.如图,在△ABC中,点E是BC边上的一点.连接AE,BD垂直平分AE,垂足为F,交AC于点D.连接DE.(1)若△ABC的周长为19,AB为6,求△DEC的周长;(2)若∠ABC=35°,∠C=50°,求∠CDE的度数.19.在下列3个6×6的网格中,画有正方形ABCD,沿网格线把正方形分ABCD分割成两个全等图形,请用三种不同的方法分割,画出分割线.20.如图,△ABC≌△DEF,点B,F,C,E在同一条直线上,BC=5,FC=4.(1)猜想AB与DE之间的位置关系,并说明理由.(2)求BE的长.21.如图,在△ABC中,∠B=90°,点O是∠CAB、∠ACB平分线的交点.(1)连接BO,求证:BO平分∠ABC;(不能利用“三角形三条角平分线相交于一点”直接来证明)(2)若BC=4cm,AC=5cm,求点O到边AB的距离.22.如图,若两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等.试说明两个滑梯的倾斜角∠ABC和∠DFE互余.参考答案与解析一.选择题(共8小题,满分24分)1.【答案】C【解答】解:A、∵2+2<5,即AB+AC<BC∴此时三条线段不能构成三角形,不符合题意;B、AB=6,∠B=30°,AC=4,根据边边角不能确定唯一三角形,不符合题意;C、AB=4,∠B=60°,∠C=75°,根据角角边可以确定唯一三角形,符合题意;D、BC=8,∠C=90°,只有一角和一边,不能确定唯一三角形,不符合题意;故选:C.2.【答案】D【解答】解:A、两个图形不能完全重合,不是全等图形,不符合题意;B、两个图形不能完全重合,不是全等图形,不符合题意;C、两个图形不能完全重合,不是全等图形,不符合题意;D、两个图形能够完全重合,是全等图形,符合题意;故选:D.3.【答案】A【解答】解:∵在△ABC中,∠A=50°,∠B=60°∴∠C=180°﹣∠A﹣∠B=70°∵△ABC≌△DEF∴∠A=∠D=50°,∠B=∠E=60°,∠C=∠F=70°∴∠E<∠F故选:A.4.【答案】C【解答】解:∵CD⊥AB,BE⊥AC∴∠ADC=∠AEB=90°在△ADC和△AEB中∴△ADC≌△AEB(AAS);∴AD=AE,∠C=∠B∵AB=AC∴BD=CE在△BOD和△COE中∴△BOD≌△COE(AAS);∴OB=OC,OD=OE在Rt△ADO和Rt△AEO中∴Rt△ADO≌Rt△AEO(HL);∴共有3对全等直角三角形故选:C.5.【答案】A【解答】证明:∵AD=CF∴AD+DC=CF+DC即AC=DF在△ABC和△DEF中∴△ABC≌△DEF(SSS)∴∠E=∠B=90°故选:A.6.【答案】C【解答】解:∵AB=AC,点D,E分别是AB,AC的中点∴AD=AE在△ADM和△AEM中.∴△ADM≌△AEM(SSS)故选:C.7.【答案】B【解答】解:尺规作图是指:只利用没有刻度的直尺和圆规进行作图故选:B.8.【答案】B【解答】解:∵两把相同的长方形直尺的宽度一致∴点P到射线OA,OB的距离相等∴OP是∠AOB的角平分线∵∠BOP=25°∴∠AOP=∠BOP=25°故选:B.二.填空题(共8小题,满分24分)9.【答案】斜二侧.【解答】解:长方体的直观图有很多种画法,通常我们采用斜二侧画法.故答案为:斜二侧.10.【答案】∠B=∠C(答案不唯一).【解答】解:∵∠B=∠C,AB=AC,∠A=∠A∴△ABE≌△ACD(ASA)故答案为:∠B=∠C(答案不唯一).11.【答案】18.【解答】解:过点D作DF⊥AC,交AC于点F∵AD平分∠ABC,DE⊥AB,DF⊥AC∴DF=DE=4∵AC=9=AC•DF=×94=18∴S△ACD故答案为:18.12.【答案】(1)30;(2)1.【解答】解:(1)由图可得草坪的总面积是(16﹣4a)(6﹣2a)=8a2﹣56a+96当a=1.5时8a2﹣56a+96=8×1.52﹣56×1.5+96=8×2.25﹣56×1.5+96=18﹣84+96=30即a=1.5m时,草坪总面积为30平方米故答案为:30;(2)由图可得草坪的总面积是(16﹣4a)(6﹣2a)=8a2﹣56a+96 路的总面积是16×6﹣(8a2﹣56a+96)=56a﹣8a2 ∵草坪总面积恰好等于小路总面积∴8a2﹣56a+96=56a﹣8a2解得a1=1,a2=6(舍去)即此时的路宽a为1米故答案为:1.13.【答案】45°.【解答】解:如图所示在△ACB和△AED中∴△ACB≌△AED(SAS)∴∠ABC=∠ADE∴∠ABC+∠ADC=∠ADE+∠ADC=∠CDE=45°.故答案为:45°.14.【答案】48.【解答】解:∵AC=BD,OA=OD∴AC﹣OA=BD﹣OD即OC=OB在△COD和△BOA中∴△COD≌△BOA(SAS)∴CD=AB∵△COD的周长为103m∴OC+OD+CD=OC+OA+CD=103m即AC+CD=103m.∵AC=55m.∴CD=48m.∴AB=48m.故答案为:48.15.【答案】DE=AC(答案不唯一).【解答】解:添加DE=AC∵BE=CF∴BE+EC=CF+EC即EF=CB在Rt△ABC与Rt△DFE中∴Rt△ABC≌Rt△DFE(HL).故答案为:DE=AC(答案不唯一).16.【答案】见试题解答内容【解答】解:(1)当CD=1时,设DO=m,且0<m<1 BD>1,如图1所示:∵Rt△ABC≌Rt△DBC∴∠BAC=∠BDC=90°,BA=BD,CA=CD ∴△ABD是等腰三角形∴AO=DO=m又∵BC=2AD∴BC=4m又∵AD⊥BC∴=2m2又∵CD⊥BD∴=BD∴2m2=BD解得:BD=4m2在Rt△DBC中,由勾股定理得:BD==∴4m2=解得:m2=或m2=∴4m2=2+或4m2=2﹣(舍去)∵BD>1∴BD=2+;(2)当BD=1时,设DO=x,且0<x<1CD<1,如图1所示:同理可求得:或∴4x2=2+(舍去),或4x2=2﹣∵CD<1∴CD=2﹣;综合所述,另一条直角边的长为2+或2﹣故答案为2+或2﹣.三.解答题(共6小题,满分52分)17.【答案】证明见解析.【解答】证明:在△OAC与△OBD中∴△OAC≌△OBD(AAS).18.【答案】(1)7.(2)45°.【解答】解:(1)∵BD垂直平分AE,AB=6∴BA=BE=6,DA=DE∵△ABC的周长为19∴AB+BC+AC=19∴AB+BE+EC+AD+DC=2AB+EC+DE+CD=19∴CE+ED+DC=19﹣2AB=19﹣2×6=7∴△DEC的周长为7;(2)∵∠ABC=35°,∠C=50°∴∠BAD=180°﹣∠ABC﹣∠C=180°﹣35°﹣50°=95°∵BD垂直平分AE∴BA=BE,DA=DE在△BAD和△BED中∴△BAD≌△BED(SSS)∴∠BAD=∠BED=95°∴∠DEC=180°﹣∠BED=180°﹣95°=85°∴∠CDE=180°﹣∠DEC﹣∠C=180°﹣85°﹣50°=45°.19.【答案】见解析.【解答】解:如图所示:20.【答案】(1)AB∥DE,理由见解析;(2)6.【解答】解:(1)AB∥DE,理由如下:∵△ABC≌△DEF∴∠B=∠F∴AB∥DE;(2)∵△ABC≌△DEF∴EF=BC=5∵FC=4∴CE=EF﹣FC=1∴BE=BC+CE=6.21.【答案】(1)证明见解析;(2)1.【解答】(1)证明:过O作OD⊥BC于D,OE⊥AB于E,OF⊥AC于F ∵点O是∠CAB、∠ACB平分线的交点∴OD=OF,OE=OF∴OE=OD∵OD⊥BC,OE⊥AB∴BO平分∠ABC;(2)解:∵BC=4cm,AC=5cm,∠ABC=90°∴AB==3∵△ABC的面积=△OBC的面积+△AOB的面积+△AOC的面积∴BC•AB=BC•OD+AB•OE+AC•OF∴3×4=(3+4+5)×OE∴OE=1∴点O到边AB的距离是1.22.【答案】见解析.【解答】解:∵两个滑梯长度相同∴BC=EF∵AC=DF,∠CAB=∠FDE=90°在Rt△CAB和Rt△FDE中∴Rt△CAB≌Rt△FDE(HL)∴∠ABC=∠DEF∵∠DFE+∠DEF=90°∴∠DFE+∠ABC=90°即:两个滑梯的倾斜角∠ABC和∠DFE互余.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题(每小题3分,共24分)
1.如图1,AP平分∠BAF,PD⊥AB于点D,PE⊥AF于点E,则△APD与△APE全等的理由是()
A.SSS B.SAS
C.SSA D.AAS
2.装修工人在搬运中发现有一块三角形的陶瓷片不慎摔成了四块(如图2),他要拿哪一块回公司才能更换到相匹配的陶瓷片()
A.①B.②
C.③D.④
3.有下列条件:①两条直角边对应相等;②斜边和一锐角对应相等;③斜边和一直角边对应相等;④直角边和一锐角对应相等.其中能判定两直角三角形全等的有()A.1个B.2个
C.3个D.4个
4.用直尺和圆规作一个角等于已知角的示意图如图3,则说明∠A′O′B′=∠AOB 的依据是()
A.SSS B.SAS
C.ASA D.AAS
5.如图4,已知AB∥CD,AB=CD,AE=FD,则图中的全等三角形共有()A.1对B.2对
C.3对D.4对
6.如图5,点P是AB上任意一点,∠ABC=∠ABD,补充下列条件中的一个,不能得出△APC≌△APD的是()
A.BC=BD B.AC=AD
C.∠ACB=∠ADB D.∠CAB=∠DAB
7.如图6,△ABC≌△EFD,那么()
A.AB=DE,AC=EF,BC=DF
B.AB=DF,AC=DE,BC=EF
C.AB=EF,AC=DE,BC=DF
D.AB=EF,AC=DF,BC=DE
8.如图7,用“AAS”直接判定△ACD≌△ABE,需要添加的条件是()
A.∠ADC=∠AEB,∠C=∠B
B.∠ADC=∠AEB,CD=BE
C.AC=AB,AD=AE
D.AC=AB,∠C=∠B
二、填空题(每小题4分,共32分)
9.已知△ABC≌△DEF,BC=EF=6厘米,△ABC的面积为9平方厘米,则EF边上的高是__________厘米.
10.如图8,已知AB=CD,∠ABD=∠CDB,则图中共有__________对全等三角形.
11.在Rt△ABC和Rt△DEF中,AB=DE,∠A=∠D=90°,再补充一个条件__________,便可得Rt△ABC≌Rt△DEF.
12. 如图9,如果△ABC≌△DEF,△DEF的周长是32 cm,DE=12 cm,EF=13 cm,则AC=__________.
13.如图10,在△ABC中,∠C=90°,CB=4,延长CB至点D,使BD=AC,作
∠BDE=90°,∠DBE=∠A,两角的另一边相交于点E,则DE的长为__________.14.如图11,点P到∠AOB两边的距离相等,若∠POB=30°,则∠AOB=__________.
15.如图12,点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB =AC,若∠B=20°,则∠C=__________.
16.如图13,已知△ABC,且点A(0,1),点C(4,3),如果要使△ABD与△ABC 全等,那么点D的坐标是__________.
三、解答题(共64分)
17.(10分)如图14,已知AB=AE,∠1=∠2,∠B=∠E,BC与ED相等吗?说明理由.
18.(10分)如图15,若BE=CD,∠1=∠2,则BD与
CE相等吗?为什么?
19.(10分)如图16,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD ⊥CE于点D.△BEC与△CDA全等吗?请说明理由.
20.(10分)如图17,CF⊥AB于点F,BE⊥AC于点E,且CF,BE交于点D,BD =CD.求证:AD平分∠BAC.
21.(12分)如图18,已知△ABC≌△ADE,BC与DE相交于点F,连接CD,EB.请你找出图中其他的全等三角形,并说明理由.
22.(12分)如图19,∠BAC=∠ABD=90°,AC=BD,点O是AD,BC的交点,点E是AB的中点.试判断OE和AB的位置关系,并说明理由.
第十二章全等三角形测试题
一、1.D 2.A 3.D 4.A 5.C 6.B 7.C 8.B
二、9.3 10.3
11.答案不唯一,如AC=DF等
12.7 cm 13.414.60°15.20°
16.(4,-1)或(-1,3)或(-1,-1)
三、17.解:BC=ED.
理由:因为∠1=∠2,所以∠1+∠BAD=∠2+∠BAD,即∠BAC=∠EAD.
在△BAC与△EAD中,∠B=∠E,AB=AE,∠BAC=∠EAD,所以△BAC≌△EAD.所以BC=ED.
18.解:相等.
理由:因为∠1=∠2,所以180°-∠1=180°-∠2,即∠ADC=∠AEB.
又BE=CD,∠A=∠A,所以△ABE≌△ACD.
所以AB=AC,AE=AD.
所以AB-AD=AC-AE,即BD=CE.
19.解:△BEC≌△CDA.
理由:因为BE⊥CE,AD⊥CE,所以∠BEC=∠CDA=90°.
因为∠BCE+∠CBE=90°,∠BCE+∠ACD=90°,所以∠CBE=∠ACD.
在△BEC和△CDA中,∠BEC=∠CDA,∠CBE=∠ACD,CB=AC,所以△BEC≌△CDA.
20.解:因为CF⊥AB,BE⊥AC,所以∠CED=∠BFD=90°.
又∠CDE=∠BDF,CD=BD,所以△ECD≌△FBD.所以DE=DF.
又DF⊥AB,DE⊥AC,所以AD平分∠BAC.
21.解:△ACD≌△AEB,△DCF≌△BEF.
理由:因为△ABC≌△ADE,所以AC=AE,AB=AD,∠CAB=∠EAD.
所以∠CAB-∠BAD=∠EAD-∠BAD,即∠CAD=∠EAB.
所以△ACD≌△AEB(SAS).
所以∠ACD=∠AEB,CD=EB.
因为△ABC≌△ADE,所以∠ACB=∠AED.
所以∠ACB-∠ACD=∠AED-∠AEB,即∠DCF=∠BEF.
又∠DFC=∠BFE,所以△DCF≌△BEF(AAS).
22.解:OE⊥AB.
理由:在△ABC和△BAD中,AC=BD,∠BAC=∠ABD,AB=BA,所以△ABC≌
△BAD.
精选文本
所以∠CBA=∠DAB,∠C=∠D.
在△AOC和△BOD中,∠AOC=∠BOD,∠C=∠D,AC=BD,所以△AOC≌△BOD.
所以OA=OB.
在△AOE和△BOE中,OA=OB,∠OAE=∠OBE,AE=BE,所以△AOE≌△BOE.
所以∠OEA=∠OEB=90°,即OE⊥AB.
感谢您的支持与配合,我们会努力把内容做得更好!
.。