NE555PWM脉宽调制电路

合集下载

NE555原理及应用

NE555原理及应用

NE555原理及应用
NE555的原理是基于RC时间常数(R是电阻,C是电容)的变化来实
现定时功能。

在NE555中,有三个外部引脚,1号引脚(GND,接地引脚)、8号引脚(Vcc,正电源引脚)和4号引脚(RESET,复位引脚)。

通过控制这些引脚与外部电路的连接,可以实现不同的工作模式。

1.单稳态多谐振荡器:单稳态多谐振荡器可以输出一段固定宽度的方
波脉冲。

在此应用中,通过连接电容和电阻来控制输出脉冲的宽度。

当触
发引脚接收到一个负脉冲时,输出引脚产生一个高电平,持续时间由电容
电压充放电时间决定。

这种应用常用于电子钟、计时器等。

2.方波发生器:通过连接电容和电阻,可以使NE555工作在方波发生
器模式。

当输出引脚处于高电平时,电容开始充电,当电压达到高阈值时,输出引脚将变为低电平,电容开始放电,当电压达到低阈值时,输出引脚
再次变为高电平,重复这个过程。

这种应用常用于音频设备、脉冲调制等。

3.频率分频器:通过改变电阻和电容的数值,可以实现NE555的频率
分频功能。

频率分频器可以将输入信号的频率分频为较低的输出频率。


种应用常用于计数器、频率计等。

4.PWM调制器:NE555也可以作为PWM(脉冲宽度调制)调制器,通
过改变电阻和电容的数值可以控制输出脉冲的占空比。

这种应用广泛用于
电机控制、逆变器、电源管理等领域。

NE555简易直流电机PWM驱动电路的实现

NE555简易直流电机PWM驱动电路的实现

NE555简易直流电机PWM驱动电路的实现NE555是一种常用的集成电路,可以实现各种定时和脉冲宽度调制(PWM)应用。

在直流电机驱动中,使用NE555可以实现简易的PWM调速效果。

本文将详细介绍如何使用NE555实现直流电机的PWM驱动电路,并对其原理进行解释。

一般来说,直流电机通常需要调节电压或者频率来改变其转速。

而PWM调速就是通过调节脉冲的高电平时间与低电平时间的比例来实现对电机的速度控制。

接下来,我们将详细分析NE555的工作原理及其在直流电机PWM驱动中的应用。

首先,我们来了解一下NE555的基本工作原理。

NE555是一种8引脚的集成电路,主要由比较器、RS触发器、输出驱动器以及电源电压稳压器等组成。

在PWM调速应用中,NE555的输入电压Vcc连接至电源正极,引脚2和引脚6接地,引脚5连接电源负极,引脚4连接至电位器PI,辅助引脚1和7置空或者接地。

NE555的主要工作模式有两种:单稳态触发和多谐振荡器。

在直流电机PWM驱动中,我们将使用NE555的多谐振荡器模式来实现PWM调速功能。

多谐振荡器模式下,NE555输出方波信号,其周期和占空比可以通过引脚2和引脚6之间的电压比例来控制。

当引脚2电压高于引脚6时,输出高电平;当引脚2电压低于引脚6时,输出低电平。

接下来,我们将详细讲解如何使用NE555来实现直流电机的PWM驱动电路。

首先,我们需要连接一个电位器来调节占空比。

将电位器PI的中间脚连接至引脚6,一边脚连接至引脚5,另一边脚连接至电源负极。

通过调节电位器的旋钮,可以改变引脚6的电压,从而控制占空比。

同时,为了保护NE555和直流电机,我们还需要连接一个MOS管或者晶体管来作为输出驱动器。

将驱动器的基极或者门极连接至NE555的输出引脚3,将驱动器的集电极或者漏极连接至直流电机的正极,将驱动器的发射极或者源极连接至电源负极。

在NE555的多谐振荡器模式下,我们需要选择一个合适的电容和电阻来设置输出的频率和占空比。

NE555原理及其应用

NE555原理及其应用

NE555原理及其应用
在单稳态模式下,当触发引脚(TRIG)的电压低于第2/3Vcc时,输
出引脚(OUT)将输出高电平脉冲,其宽度由外部电容和电阻决定。

当触
发引脚上升到第1/3Vcc时,输出脉冲结束。

在车距模式下,当控制引脚(CTRL)低于第1/3Vcc时,NE555的输
出引脚保持低电平,当控制引脚高于第2/3Vcc时,输出引脚保持高电平。

在连续性模式下,NE555的输出引脚会根据触发引脚和放大器比较输
入电压决定输出状态。

1.时钟电路:NE555可以用来产生精确的时钟脉冲,用于驱动显示器、计数器等电路。

2.脉冲宽度调制(PWM):通过改变外部电容和电阻,可以实现不同
脉冲宽度的PWM波形,用于控制电机、调光等应用。

3.电压控制振荡器(VCO):通过改变外部电容和电阻,可以调整
NE555的频率范围,用于实现可变频率的振荡器。

4.模拟转数字转换器(ADC):通过使用NE555的单稳态模式,可以
将一个输入电压转换为一个宽度可调的脉冲,再通过计数器等电路将其转
换为数字信号。

5.闪光灯电路:NE555可以用来控制LED或氙气灯的闪烁频率,用于
警示灯、摄影灯等应用。

总结起来,NE555是一款功能强大且灵活的定时器集成电路,可以广
泛应用于各种定时和脉冲控制应用中。

同时,它的设计简单,部件成本低廉,因此仍然被广泛应用在各种电子设备中。

ne555脉冲发生器原理

ne555脉冲发生器原理

ne555脉冲发生器原理NE555脉冲发生器原理引言:NE555是一种经典的集成电路,被广泛应用于各种电子设备中。

作为一种多功能计时器,NE555不仅可以用于产生精确的脉冲信号,还可以用作稳压电源、频率测量器等。

本文将介绍NE555脉冲发生器的原理及其工作过程。

一、NE555脉冲发生器的基本原理NE555脉冲发生器基于NE555内部的比较器和RS触发器电路。

NE555内部包含有一个比较器、RS触发器、稳压电源、电压比较器和输出级等组成。

其中比较器负责将电压比较结果传送给RS触发器,RS触发器根据比较器的输出状态决定输出脉冲的频率和占空比。

二、NE555脉冲发生器的工作原理NE555脉冲发生器的工作原理可以分为充电、放电和比较三个阶段。

1. 充电阶段:当电源接通时,稳压电源向NE555提供电源电压,电容C开始充电。

NE555的第二比较器将电容电压与一个内部参考电压进行比较。

当电容电压低于参考电压时,比较器输出高电平,RS触发器的S端置高,R端置低,输出为高电平。

此时,输出的高电平将截断外部电路,使电容继续充电,直到电容电压达到参考电压。

2. 放电阶段:当电容电压达到参考电压时,比较器输出低电平,RS触发器的S端置低,R端置高,输出变为低电平。

此时,输出的低电平将使电容开始放电,电容电压开始下降。

3. 比较阶段:当电容电压降到一个较低的阈值时,比较器输出高电平,RS触发器的S端置高,R端置低,输出变为高电平。

如此循环,形成周期性的高低电平输出,从而产生脉冲信号。

三、NE555脉冲发生器的参数调节NE555脉冲发生器的输出脉冲频率和占空比可以通过调节电阻和电容的数值来实现。

1. 调节频率:输出脉冲的频率与电阻R和电容C的数值有关。

频率可通过调节电阻R的大小来实现,电容C的数值保持不变。

当电阻R增大时,电容C充电时间增加,频率减小;当电阻R减小时,电容C充电时间减少,频率增大。

2. 调节占空比:输出脉冲的占空比与电阻R和电容C的数值也有关。

ne555施密特触发器 (3)

ne555施密特触发器 (3)

NE555施密特触发器1. 引言NE555是一种常用的集成电路,用于实现多种定时和脉冲生成功能。

其中的施密特触发器是一种常见的应用,它能够根据输入信号的电压水平快速切换输出信号的状态。

本文将详细介绍NE555施密特触发器的原理、工作方式和应用场景。

2. NE555概述NE555是一种双稳态脉冲宽度调制(PWM)可控的定时器芯片,由Signetics公司(后被飞利浦公司收购)于1971年研发。

它由电压比较器、RS触发器、RS锁存器和输出驱动器等功能模块组成,可实现多种定时、延时和脉冲生成功能。

NE555工作稳定可靠,应用广泛,在电子设计和制作中扮演着重要角色。

3. 施密特触发器原理施密特触发器是一种基于正反馈原理的触发器。

它通过电压比较器和RS触发器实现。

施密特触发器中的比较器使用了两个参考电压,分别称为上限电压V VV和下限电压V VV。

当输入信号上升到V VV时,输出从低电平切换到高电平。

当输入信号下降到V VV时,输出从高电平切换到低电平。

这样的比较器能够消除输入信号的噪声和抖动,并实现快速切换的输出信号。

4. NE555施密特触发器电路图和工作方式下面是NE555施密特触发器的电路图:+---+---++---|1 8|---+| | | |---+---|2 7|---|---| | NE555 |---+---|3 6|---|---| | | |+---|4 5|---++---+---+NE555的引脚功能说明如下: - 引脚1(GND):接地引脚 - 引脚2(TRIG):施密特触发器的输入引脚,通过施密特触发器的输出状态来改变 - 引脚3(OUT):输出引脚,输出施密特触发器的状态 - 引脚4(RESET):复位引脚 - 引脚5(CTRL):电压控制引脚,通过改变引脚电压可以改变施密特触发器的状态 - 引脚6(THR):上限电压参考引脚 - 引脚7(DIS):输出禁用引脚 - 引脚8(VCC):电源引脚NE555施密特触发器的工作方式如下: 1. 初始状态下,引脚2(TRIG)为低电平,引脚3(OUT)由电源引脚提供高电平输出,引脚6(THR)接地。

脉宽调制控制电路

脉宽调制控制电路

脉宽调制控制电路学生姓名:胡真 学号:20085042054工业现场控制当中,经常要用到一些可变的直流电压,而一般的直流电源其值是固定不变的,为了得到可变的直流电压,我们一般采用脉宽调制控制电路,也就是我们通常所说的PWM 控制电路。

该电路是利用半导体功率晶体管或晶闸管等开关器件的导通和关断,把直流电压变成电压脉冲列,控制电压脉冲的宽度或周期达到变压目的,或者控制电压脉冲宽度和脉冲列的周期以达到变压变频的目的的一种变换电路,多用在开关稳压电源、不间断电源(UPS)以及交直流电机调速等控制电路中。

1. 脉宽调制控制电路的工作原理图1 PWM 控制电路原理基本的脉宽调制控制电路包括电压-脉宽变换器和开关式功率放大器两部分,如图1所示。

运算放大器N 工作在开环状态,实现把连续电压信号变成脉冲电压信号。

二极管VD 在V1关断时为感性负载RL 提供释放电感储能形成续流回路。

N 的反相端输入三个信号:一个是锯齿波或三角波调制信号up ,其频率是主电路所需的开关调制频率,一般为1~4kHz ;另一个是控制电压uk ,其极性与大U u 0 u cD小随时可变; 再一个是负偏置电压u0,其作用是在Uc =0时通过Rp 的调节使比较器的输出电压Ub 为宽度相等的正负方波。

当Uc>0时,锯齿波过零的时间提前,结果在输出端得到正半波比负半波窄的调制方波。

当Uc<0时,锯齿波过零的时间后移,结果在输出端得到正半波比负半波宽的调制方波。

图2 PWM 控制负载的波形图PWM 信号加到主控电路的开关管V 的基极时,负载RL 两端电压uL 的波形如图2所示。

显然,通过PWM 控制改变开关管在一个开关周期T 内的导通时间τ的长短,就可实现对RL 两端平均电压UL 大小的控制。

2. 典型脉宽调制电路2.1. 对脉宽调制器的基本要求(1)死区要小,调宽脉冲的前后沿的斜率要大,也就是比较器的灵敏度要足够高。

(2)在设计实际电路时,应使其简单、可靠,且不受外界干扰。

说明ne555集成电路的功能和结构

说明ne555集成电路的功能和结构

一、概述NE555是一种经典的集成电路元件,具有多种应用功能。

本文将介绍NE555集成电路的功能和结构,以便更好地理解其在电子领域中的应用。

二、NE555集成电路的功能1. 定时功能:NE555集成电路可以作为计时器或脉冲发生器使用,通过外部电路调节电子脉冲的频率和占空比。

2. 方波发生器:NE555集成电路可利用其内部的比较器和触发器实现方波信号的产生,并通过外接元器件调节方波的频率和占空比。

3. 脉冲宽度调制:NE555集成电路可以通过改变控制电压,实现对输出脉冲宽度的调制,在通信和遥控系统中有重要应用。

4. 脉冲测距:NE555集成电路结合超声波传感器,可实现简单的脉冲测距功能,广泛应用于测距仪器和避障装置中。

三、NE555集成电路的结构1. 基本结构:NE555集成电路由电压比较器、触发器、输出级、时基电路等部分组成。

2. 电压比较器:NE555集成电路内置一对比较器,用于将控制电压与内部参考电压进行比较,决定输出高低电平。

3. 触发器:NE555集成电路内置RS触发器,用于控制输出电平的变化,具有稳定的触发电平和复位电平。

4. 输出级:NE555集成电路通过输出晶体管控制输出端口的电平,可直接驱动负载电路。

5. 时基电路:NE555集成电路内置RC时基电路,通过外接电阻和电容器调节脉冲频率和占空比。

四、NE555集成电路的应用案例1. 方波信号发生器:将NE555作为方波信号发生器,通过外接电路调节输出信号频率和占空比,广泛应用于数字电路实验和信号调试。

2. 蜂鸣器驱动器:NE555集成电路与功放电路结合,可驱动蜂鸣器发出特定频率的脉冲信号,用于警报和提醒。

3. 脉冲测距仪:NE555集成电路与超声波传感器组合,构成简单的脉冲测距仪,用于测量距离并输出相应信号。

4. 脉冲宽度调制器:通过改变控制电压,NE555集成电路可以实现PWM信号的调制,用于马达控制等应用领域。

五、结论NE555集成电路作为一种通用的定时和脉冲控制元件,在电子领域具有广泛的应用。

常用pwm控制芯片及电路工作原理

常用pwm控制芯片及电路工作原理

常用pwm控制芯片及电路工作原理常用PWM控制芯片及电路工作原理一、引言脉宽调制(PWM)是一种常用的电子技术,用于控制电子设备的输出信号的占空比。

常见的PWM控制芯片和电路广泛应用于各个领域,如电机驱动、LED亮度控制、音频放大等。

本文将介绍几种常用的PWM控制芯片及其工作原理。

二、常用PWM控制芯片和电路1. NE555NE555是一种经典的PWM控制芯片,被广泛应用于各种电子设备。

其工作原理基于一个比较器和一个RS触发器构成的控制电路。

NE555通过调节电阻和电容的值,可以实现不同的调制周期和占空比。

2. ArduinoArduino是一种开源的单片机平台,它内置了PWM功能,可以通过编程来控制输出的PWM信号。

Arduino的PWM输出信号是通过改变数字输出引脚的电平和占空比来实现的。

通过编写代码,可以轻松地控制PWM信号的频率和占空比。

3. 555定时器与MOS管这种PWM控制电路的原理是利用NE555定时器和MOS管组成的开关电路。

NE555定时器负责产生固定频率的方波信号,而MOS管则根据方波信号的占空比进行开关控制。

通过调节NE555的电阻和电容值,可以实现不同的PWM频率和占空比。

4. 软件PWM软件PWM是通过编程实现的一种PWM控制方式,主要用于一些资源有限的单片机系统。

它通过周期性地改变输出引脚的电平和占空比来模拟PWM信号。

软件PWM的实现原理是使用定时器中断来触发状态改变,并通过软件计数器来控制占空比。

三、PWM控制原理PWM控制的基本原理是通过改变信号的占空比来控制输出的平均功率。

占空比是指PWM信号高电平的时间与一个周期的比值。

例如,如果一个PWM信号周期为1ms,高电平时间为0.5ms,则占空比为50%。

占空比越大,输出信号的平均功率越大。

PWM控制的工作原理是利用开关的方式,将输入电压分成若干个短时间段的高电平和低电平。

通过不同的高低电平时间比例,可以调节输出信号的平均功率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

NE555PWM脉宽调制电路
PWM称之为脉冲宽度调制信号,利用脉冲的宽度来调整亮度,也可用来控制DC马达。

PWM脉冲宽度调制信号的基本频率至少约400HZ-10KHZ,当调整LED的明或暗时,这个基本的频率不可变动,而是改变这个频率上方波的宽度,宽度越宽则越亮、宽度越窄则越暗。

PWM是控制LED的点亮时间,而不是改变输出的电压来控制亮度。

图1-5 PWM脉宽调制图片
以下为PWM工作原理:
reset接脚被连接到+V,因此它对电路没有作用。

当电路通电时,Pin 2 (触发点)接脚是低电位,因为电容器C1开始放电。

这开始振荡器的周期,造成第3接脚到高电位。

当第3接脚到高电位时,电容器C1开始通过R1和对二极管D2充电。

当在C1的电压到达+V的2/3时启动接脚6,造成输出接脚(Pin3)跟放电接脚(Pin7)成低电位。

当第3接脚到低电位,电容器C1起动通过R1和D1的放电。

当在C1的电压下跌到+V的1/3以下,输出接脚(Pin3)和放电接脚(Pin7)接脚到高电位并使电路周期重复。

Pin 5并没有被外在电压作输入使用,因此它与0.01uF电容器相接。

电容器C1通过R1及二极管,二极管一边为放电一边为充电。

充电和放电电阻总和是相同的,因此输出信号的周期是恒定的。

工作区间仅随R1做变化。

PWM信号的整体频率在这电路上取决于R1和C1的数值。

公式:频率(Hz)= 1.44/(R1 * C1)
利用555定时器实现宽范围脉宽调制器(PWM)
脉宽调制器(PWM)常常用在开关电源(稳压)中,要使开关电源稳压范围宽(即输入电压范围大),可利用555定时器构成宽范围PWM。

仅需把一个二极管和电位计添加到异步模式运转的555定时器上,就产生了一个带有可调效率系数为1%到99%的脉宽调制器(图1)。

它的应用包括高功率开关驱动的电动机速度控制。

图1:在555定时器电路中增加一个二极管和电位计可构成一个宽范围PWM。

/TD>
这个电路的输出可以驱动MOSFET去控制通过电动机的电流,达到平滑控制电动机速度9 0%左右。

这也应用于灯光的控制,灯光的强度可得以有效控制。

另一个应用是在开关式电源。

PWM调整允许一个可变的输出电压。

可通过555定时器(5个引脚)VC终端的反馈来调节电压。

一个超过调节阈值限制的输出电压将提前结束基于周期循环的PWM信号,以维持输出电压的稳定。

微处理器可以通过数字电位计直接调节PWM 去控制电动机速度、灯光强度或者电源输出电压。

对于周期因子(DF):
其中,
而a是终端2和终端1之间电阻与终端3和终端1之间电阻的比值。

选R3=R1,R2=100×R1,这时DF为1%至99%。

如上所述,数字电位计可以代替R2。

通过的电流有限是在该应用中使用数字电位计的主要约束。

对于一个100kΩ的数字电位计,R1和R3可以达到1 kΩ,则峰值电流为5mA。

标准二极管可在递减线性下当作D来使用。

对于理想的二极管,k=0.693,则有:DF和α之间为线性关系。

图2显示了当α变化时V OUT的波形。

图2:这三个波形显示了V OUT如何随α变化而变化。

作者:Henry Santana,Kavlico Corp.
由555芯片组成的脉宽调制(PWM)电路。

相关文档
最新文档