数值分析-第二章-学习小结
数值分析第二章小结

第二章小结对于n 元线性方程组b A =x (*),其中A 为非奇异矩阵,当0det ≠A 时,方程组有唯一的解向量。
求解线性方程组的方法可分为两类:直接法(如克莱姆法则,高斯消去法等)和迭代法(Jacobi 迭代法和GS 迭代法等)。
一 、直接法1、Gauss 消去法:(1) 顺序Gauss 消去法:将矩阵化为上三角矩阵(2) 列主元素Gauss 消去法:将增广矩阵],[)()(k k b A 中绝对值最大的元素交换到底k 行的主对角线上。
比较:顺序Gauss 消去法的计算结果数值稳定性没有列主元素Gauss 消去法的好。
2、直接三角分解法:(1)定义 Doolittle 分解法和Crout 分解法:如果方程组b A =x 的系数矩阵A 可以分解为A=LU,其中L 是下三角矩阵U 是上三角矩阵,这样方程组b A =x 就化为两个容易求解的三角方程组:y U b Ly ==x ,。
定理3 Doolittle 分解法的充要条件是矩阵A 的前n-1阶顺序主子式0≠K D (k 取1,2,3,4...,n-1)推论 矩阵A 有唯一Crout 分解的充要条件是A 的前n-1阶顺序主子式0≠K D (k 取1,2,3,4...,n-1)Doolittle 分解计算公式为:对于k=1,2,3...,n),...,1,(11n k k j u l a u k t tj kt kj kj +=-=∑-=);,...,2,1(/)(11n k n k k i u u l a l kk k t tk it kj ik <++=-=∑-=则求解下三角方程组y U b Ly ==x 和上三角方程组的计算方程式: ⎪⎪⎪⎩⎪⎪⎪⎨⎧--=-===-==∑∑+=-=1,,2,1,/)(u /),,3,2(11111 n n i u x u y x y x n i y l b y b y ii n i t t it i i nnn n t i t it i i Crout 分解计算公式为:对于k=1,2,3...,n),...,1,(11n k k j u l a l k t tk it ik ik +=-=∑-=);,...,2,1(/)(11n k n k k j l u l a u kk k t tj kt kj kj <++=-=∑-=则求解下三角方程组y b y U L ==x ~~和上三角方程组的计算方程式: ⎪⎪⎪⎩⎪⎪⎪⎨⎧--=-===-==∑∑+=-=1,,2,1,),,3,2()(/1111111 n n i x u y x y x n i l y l b y l b y n i t t it i i n nii t i t it i i (2)选主元的Doolittle 分解法优点:对A 的要求低,只要矩阵A 可逆即可,即只要矩阵A 非奇异便可通过对A 做适当变换就可以了.二、迭代法1、思想:通过构造一个无限的向量序列,使它的极限是方程组b A =x 的解向量,通过求迭代矩阵,再通过迭代公式使解向量逐步逼近精确解。
数值分析知识点总结

数值分析知识点总结数值分析知识点总结:本文提供了数值分析中的一些重要知识点和例题,但更多的例题可以参考老师布置的作业题和课件相关例题。
第1章数值分析与科学计算引论:绝对误差和相对误差是衡量近似值精度的指标,有效数字则是描述近似值精度的一种方式。
其中,相对误差限是绝对误差的上界。
有效数字的计算方法为:如果近似值x的误差限是某一位的半个单位,该位到x的第一位非零数字共有n位,就说x*共有n位有效数字。
一个比较好用的公式是f(x)的误差限:f(x)f'(x)(x)。
第2章插值法:插值多项式的余项表达式可以用来估计截断误差。
三次样条插值与三次分段埃尔米特插值有所不同,但哪一个更优越需要根据实际情况而定。
确定n+1个节点的三次样条插值函数需要多少个参数?为确定这些参数,需加上什么条件?三弯矩法可以用来求解三次样条表达式。
第3章函数逼近与快速傅里叶变换:带权(x)的正交多项式是在特定区间上满足一定条件的多项式,其中[-1,1]上的勒让德多项式具有重要性质。
切比雪夫多项式也有其独特的性质。
用切比雪夫多项式零点做插值点得到的插值多项式与拉格朗日插值有所不同。
最小二乘拟合的法方程可以用来拟合曲线,但当次数n较大时,不直接求解法方程。
第4章数值积分与数值微分:XXX让德求积公式和XXX-XXX求积公式是数值积分中的两种方法,其中高斯求积公式可以用来计算定积分。
勒让德多项式的零点就是高斯点,这种形式的高斯公式被称为XXX让德求积公式。
中点方法是一种数值积分方法,其公式如下:插值型的求导公式有两点公式和三点公式。
第5章介绍了解线性方程组的直接方法,其中包括LU矩阵的推导过程。
相关例题可以在教材第4章作业题和课件中找到。
第6章介绍了解线性方程组的迭代法,判断迭代法是否收敛的条件如下:第7章介绍了非线性方程与方程组的数值解法,其中牛顿法是一种常见的方法。
对于单根且光滑的f(x)=0,牛顿法是局部二阶收敛的。
简化牛顿法和牛顿下山法都是非线性方程组的求解方法。
数值分析实验报告心得(3篇)

第1篇在数值分析这门课程的学习过程中,我深刻体会到了理论知识与实践操作相结合的重要性。
通过一系列的实验,我对数值分析的基本概念、方法和应用有了更加深入的理解。
以下是我对数值分析实验的心得体会。
一、实验目的与意义1. 巩固数值分析理论知识:通过实验,将课堂上学到的理论知识应用到实际问题中,加深对数值分析概念和方法的理解。
2. 培养实际操作能力:实验过程中,我学会了使用Matlab等软件进行数值计算,提高了编程能力。
3. 增强解决实际问题的能力:实验项目涉及多个领域,通过解决实际问题,提高了我的问题分析和解决能力。
4. 培养团队协作精神:实验过程中,我与同学们分工合作,共同完成任务,培养了团队协作精神。
二、实验内容及方法1. 实验一:拉格朗日插值法与牛顿插值法(1)实验目的:掌握拉格朗日插值法和牛顿插值法的原理,能够运用这两种方法进行函数逼近。
(2)实验方法:首先,我们选择一组数据点,然后利用拉格朗日插值法和牛顿插值法构造插值多项式。
最后,我们将插值多项式与原始函数进行比较,分析误差。
2. 实验二:方程求根(1)实验目的:掌握二分法、Newton法、不动点迭代法、弦截法等方程求根方法,能够运用这些方法求解非线性方程的根。
(2)实验方法:首先,我们选择一个非线性方程,然后运用二分法、Newton法、不动点迭代法、弦截法等方法求解方程的根。
最后,比较不同方法的收敛速度和精度。
3. 实验三:线性方程组求解(1)实验目的:掌握高斯消元法、矩阵分解法等线性方程组求解方法,能够运用这些方法求解线性方程组。
(2)实验方法:首先,我们构造一个线性方程组,然后运用高斯消元法、矩阵分解法等方法求解方程组。
最后,比较不同方法的计算量和精度。
4. 实验四:多元统计分析(1)实验目的:掌握多元统计分析的基本方法,能够运用这些方法对数据进行分析。
(2)实验方法:首先,我们收集一组多元数据,然后运用主成分分析、因子分析等方法对数据进行降维。
数值分析学习总结感想

数值分析学习总结感想在数值分析学习的过程中,我深刻体会到了这门学科的重要性和广泛应用的范围。
通过学习数值分析,我不仅加深了对数学理论的理解,还掌握了一些重要的数值计算方法和算法。
在此过程中,我收获了很多,也产生了许多感想。
首先,数值分析教给我了科学问题解决的方法。
在数值计算中,我们通常无法通过简单的代数运算来求解问题,而是需要借助计算机和数值算法来逼近解。
这种方法可以应用于很多实际问题,例如求解线性方程组、积分、微分方程等。
通过数值分析课程的学习,我掌握了很多常见的数值计算方法,例如高斯消元法、插值方法、数值积分等。
这些方法在实际问题中的应用非常广泛,能够帮助我们解决许多实际问题,提高计算效率和精度。
其次,数值分析也教会了我如何分析和估计误差。
在数值计算中,误差是无法避免的,而且可能会在计算过程中不断累积。
因此,我们需要了解误差的来源,能够进行误差估计和控制。
通过学习数值分析,我学会了如何使用泰勒展开式、理解截断误差和舍入误差等概念,同时也学会了如何使用残差计算和误差估计方法。
这对于判断数值结果的可靠性和计算效果的好坏非常重要,能够帮助我们找到优化方法和改进方案。
另外,数值分析还教会了我如何进行数值模拟和数据处理。
在实际工程和科学研究中,常常需要通过数值模拟来研究分析问题。
通过数值分析的学习,我学会了如何建立数学模型、选择合适的数值方法和算法来模拟求解问题,并能够对模拟结果进行合理的处理和分析。
这对于科学研究和工程设计都非常有价值,能够提高研究效率和解决复杂问题的能力。
最后,数值分析还培养了我一种严谨的科学态度和问题解决的能力。
在数值计算中,一个细微的误差可能会导致完全不同的结果,因此需要我们对问题进行仔细的分析,并保持谨慎的态度。
通过编程实现数值算法,我学会了如何调试代码和检查问题,发现解决bug的方法。
这培养了我的逻辑思维和问题解决能力,也增强了我对科学研究和工程实践的兴趣和热情。
综上所述,通过数值分析的学习,我不仅掌握了一些重要的数值计算方法和算法,还学会了科学问题解决的方法和误差估计的技巧。
数值分析总结

第一章绪论1.数值运算的误差估计2.绝对误差、相对误差与有效数字3.避免误差的相关问题病态问题与条件数算法的数值稳定性数值运算中的若干原则第二章非线性方程求根1.不动点迭代格式不动点迭代格式的构造、计算全局收敛性判断局部收敛性与收敛阶判断(两个方法)2.Newton迭代格式、计算及几何意义局部收敛性及收敛阶(单、重根)非局部收敛性判断(两个方法)3.Steffensen迭代格式及计算(具有)二阶的局部收敛性4.Newton迭代的变形求重根的迭代法(三种方法)避免导数计算的弦割法(两种方法)Newton下山法*5.二分法计算预先估计对分次数第三章解线性方程组的直接法1.矩阵三角分解法及其方程组求解 直接三角分解法及其分解的条件平方根法(Cholesky 分解)追赶法列主元三角分解法* 2.Gauss 消去法Gauss 主元素消去法(列主元素消去法、全主元素消去法) Gauss 顺序消去法3.方程组的性态与误差分析 向量和矩阵的范数(基础知识) 方程组解的相对误差估计 矩阵的条件数 病态方程组的求解*第四章解线性代数方程组的迭代法1.迭代法的基本理论简单迭代法格式的构造、收敛性判断以及方程组的求解Gauss—Seidel迭代法格式的构造、收敛性判断以及方程组的求解2.三种迭代法的构造、收敛性判断以及方程组的求解Jacobi迭代法基于Jacobi迭代法的Gauss—Seidel迭代法逐次超松弛迭代法①掌握简单迭代收敛性判断的方法。
设B为迭代矩阵,如果||B||<1,则用||B||判断迭代的收敛性比用ρ(B)<1更为方便,但此结论仅为充分条件。
如果||B||≥1,判断迭代的收敛性需考察ρ(B)<1是否成立。
如果需证明迭代发散,则需证明ρ(B)≥1。
②简单迭代法的收敛快慢,依赖于迭代矩阵谱半径的大小。
当ρ(B)<1,迭代次数k≥(mln10)/(-lnρ(B)),则迭代矩阵谱半径越小,收敛越快。
数值分析总结

数值分析总结数值分析是一门应用数学的学科,它的目标是使用数值方法来解决数学问题,尤其是那些难以使用解析方法求解的问题。
通过使用计算机来计算近似解,数值分析提供了一种实用而有效的解决方案。
在本文中,我将对我在学习数值分析过程中的一些主要收获进行总结。
一、数值方法的重要性数值方法不仅在科学计算中起着重要作用,而且在工程和实际应用领域也有广泛的应用。
无论是模拟天气预报、设计飞机的机翼,还是分析金融市场的波动,数值分析都可以提供快速、准确的结果。
因此,掌握数值方法成为了现代科学与工程领域必备的技能之一。
二、数值计算的误差与稳定性在数值计算中,我们经常会面对误差的问题。
舍入误差、截断误差和舍入误差都是我们需要关注的。
舍入误差是由于计算机在进行浮点数计算时的有限精度而引入的,而截断误差则是由于将无限精度的数学问题转化为有限精度计算引起的。
为了减小误差,我们可以使用舍入规则,并尽可能减小截断误差。
稳定性是另一个需要考虑的重要因素。
在一些计算中,输入数据的微小变化可能会导致输出结果的巨大变化。
这种情况下,我们说该算法是不稳定的。
为了确保计算的稳定性,我们需要选择合适的算法和数据结构,并且要进行合理的数值分析。
三、插值和拟合插值和拟合是数值分析的重要应用之一。
在实际问题中,我们往往只能够获得有限个数据点,但是我们需要获得一条曲线或函数来描述这些数据。
插值方法可以通过连接这些数据点来获得平滑的曲线,而拟合方法则通过选择一个合适的函数来逼近数据点。
在实际应用中,我们需要根据具体问题选择合适的插值和拟合方法,并进行适当的调整和优化。
四、求解非线性方程求解非线性方程是数值分析中的一个重要问题。
在实际应用中,很多问题都可以归纳为求解非线性方程。
例如,求解光学系统中的折射问题、解微分方程等。
数值分析提供了多种求解非线性方程的方法,如牛顿法、二分法、割线法等。
这些方法有着各自的特点和适用范围,我们需要根据问题的性质选择合适的方法。
数值分析总结

数值分析复习总结任课教师王建国第二章数值分析基本概念教学内容:1.误差与有效数字误差、误差限、相对误差、相对误差限和有效数字的定义及相互关系;误差的来源和误差的基本特性;误差的计算(估计)的基本方法。
2.算法的适定性问题数值分析中的病态和不稳定性问题;病态问题和不稳定算法的实例分析。
3.数值计算的几个注意问题数值计算的基本概念误差概念和分析误差的定义:设x是精确值,p是近似值,则定义两者之差是绝对误差:a x p∆=-由于精确值一般是未知的,因而Δ不能求出来,但可以根据测量误差或计算情况估计它的上限|-|x p εε<称为绝对误差限。
相对误差定义为绝对误差与精确值之比ar x∆∆=ar xη∆∆=<称为相对误差限● 误差的来源:舍入误差将无限位字长的精确数处理成有限位字长近似数的处理方法称为舍入方法。
带来舍人误差。
截断误差用数值法求解数学模型时,往往用简单代替复杂,或者用有限过程代替无限过程所引起的误差。
● 有效数字对于a=a0 a1 … am . am+1 … am+n(a0≠0) 的近似数, 若|Δ|≤0.5x10-n ,则称a 为具有m+n+1位有效数字的有效数,其中每一位数字都叫做a 的有效数字。
有效数和可靠数的最末位数字称为可疑数字有效数位的多少直接影响到近似值的绝对误差与相对误差的大小。
推论1 对于给出的有效数,其绝对误差限不大于其最末数字的半个单位。
推论2 对于给出的一个有效数,其相对误差限可估计如下:例:计算y = ln x 。
若x ≈ 20,则取x 的几位有效数字可保证y 的相对误差 < 0.1% ?120.10mn x a a a =±⨯1102m nx x *-∆=-≤⨯120.10mn x a a a =±⨯15()10nr x a -∆≤⨯●数值计算的算法问题“良态”问题和“病态”问题在适定的情况下,若对于原始数据很小的变化δX,对应的参数误差δy也很小,则称该数学问题是良态问题;若δy很大,则称为病态问题。
数值分析知识点总结

数值分析知识点总结说明:本文只提供部分较好的例题,更多例题参考老师布置的作业题和课件相关例题。
一、第1章 数值分析与科学计算引论1. 什么是绝对误差与相对误差?什么是近似数的有效数字?它与绝对误差和相对误差有何关系?相对误差限:**r re ε=的一个上界。
有效数字:如果近似值*x 的误差限是某一位的半个单位,该位到*x 的第一位非零数字共有n 位,就说x *共有n 位有效数字。
即x *=±10m ×(a 1+a 2×10-1+…+a n ×10-(n-1)),其中a 1≠0,并且*11102m n x x -+-≤⨯。
其中m 位该数字在科学计数法时的次方数。
例如9.80的m 值为0,n 值为3,绝对误差限*211102ε-=⨯。
2. 一个比较好用的公式:f(x)的误差限:()***()'()()f x f x x εε≈ 例题:二、第2章插值法例题:5. 给出插值多项式的余项表达式,如何用其估计截断误差?6. 三次样条插值与三次分段埃尔米特插值有何区别?哪一个更优越?7. 确定n+1个节点的三次样条插值函数需要多少个参数?为确定这些参数,需加上什么条件?8. 三弯矩法:为了得到三次样条表达式,我们需要求一些参数:对于第一种边界条件,可导出两个方程:,那么写成矩阵形式:公式 1对于第二种边界条件,直接得端点方程:,则在这个条件下也可以写成如上公式1的形式。
对于第三种边界条件,可得:也可以写成如下矩阵形式:公式 2求解以上的矩阵可以使用追赶法求解。
(追赶法详见第五章)例题:数值分析第5版清华大学出版社第44页例7三、第3章函数逼近与快速傅里叶变换的正交多项式?什么是[-1,1]上的勒让德多项式?它有3.什么是[a,b]上带权()x什么重要性质?4.什么是切比雪夫多项式?它有什么重要性质?5.用切比雪夫多项式零点做插值点得到的插值多项式与拉格朗日插值有何不同?6.什么是最小二乘拟合的法方程?用多项式做拟合曲线时,当次数n较大时,为什么不直接求解法方程?例题请参考第3章书上的作业题和课件上的例题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章线性方程组的解法--------学习小结一、本章学习体会本章主要学习的是线性方程组的解法。
而我们则主要学习了高斯消去法、直接三角分解法以及迭代法三种方法。
这三种方法的优缺点以及适用范围各有不同。
高斯消去法中,我们又学习了顺序高斯消去法以及列主元素高斯消去法。
顺序高斯消去法可以得到方程组的精确解,但要求系数矩阵的主对角线元素不为零,而且该方法的数值稳定性没有保证。
但列主元素高斯消去法因为方程顺序的调整,其有较好的数值稳定性。
直接三角分解法中,我们主要学习了Doolitte分解法与Crout分解法。
其思想主要是:令系数矩阵A=UL,其中L为下三角矩阵,U是上三角矩阵,为求AX=b 的解,则引进Ly=b,Ux=y 两个方程,以求X得解向量。
这种方法计算量较小,但是条件苛刻,且不具有数值稳定性。
迭代法(逐次逼近法)是从一个初始向量出发,按照一定的计算格式,构造一个向量的无穷序列,其极限才是所求问题的精确解,只经过有限次运算得不到精确解。
该方法要求迭代收敛,而且只经过有限次迭代,减少了运算次数,但是该方法无法得到方程组的精确解。
二、本章知识梳理针对解线性方程组,求解线性方程组的方法可分为两大类:直接法和迭代法,直接法(精确法):指在没有舍入误差的情况下经过有限次运算就能得到精确解。
迭代法(逐次逼近法):从一个初始向量出发,按照一定的计算格式,构造一个向量的无穷序列,其极限才是所求问题的精确解,只经过有限次运算得不到精确解。
我们以前用的是克莱姆法则,对于计算机来说,这种方法运算量比较大,因此我们学习了几种减少运算次数的方法,有高斯消去法、直接三角分解法,同时针对病态方程组,也提出了几种不同的解法。
Gauss消去法Gauss消去法由消元和回代两个过程组成,消元过程是指针对方程组的增广矩阵,做有限次初等行变化,使它系数矩阵变为上三角矩阵。
顺序Gauss消去法消元过程:对于K=1,2,3…,n-1执行(1)如果a aa(a)=0,则算法失效,停止计算;否则转(2)(2)对于a=a+1,a+2,…,a计算a aa=a aa(a)a aa(a)⁄a aa(a+1)=a aa(a)−a aa a aa(a) (a=a+1,a+2,…,a)a a(a+1)=a a(a)−a aa a a(a)回代过程:a a=a a(a)a aa(a)⁄a a=(a a(a)−∑a aa(a)a aaa=a+1)a aa(a)⁄ (a=a−1,a−2, (1)综上:顺序Gauss消去法的数值稳定性是没有保证的。
列主元Gauss消去法1.消元过程对于K=1,2,3…,n-1执行(1)选行号a a,使得|a aa (a)|=aaaa≪a≪a|a aa(a)|(2)交换a kj(k)与a ik (k)(j=k,k+1,…,n)以及bk(k)与bi k(k)所含的数值。
(3)对于a=a+1,a+2,…,a计算a aa=a aa(a)a aa(a)⁄a aa(a+1)=a aa(a)−a aa a aa(a) (a=a+1,a+2,…,a)a a(a+1)=a a(a)−a aa a a(a)回代过程:a a=a a(a)a aa(a)⁄a a=(a a(a)−∑a aa(a)a aaa=a+1)a aa(a)⁄ (a=a−1,a−2, (1)经验证,列主元Gauss消元法有很好的数值稳定性。
直接三角分解法三角分解法的思想:系数矩阵A=UL,其中L为下三角矩阵,U是上三角矩阵,为求AX=b 的解,则引进Ly=b,Ux=y两个方程,以求X得解向量。
杜利特尔)分解L为单位下三角矩阵,U为上三角矩阵定理:矩阵A=[a ij]n×n(n≫2)有唯一的能进行Doolittle(杜利特尔)分解的充分必要条件是:A的前n-1个顺序主子式不等于0(1)A的Doolitte分解的计算公式对于k=1,2,…,n计算a aa=a aa−∑a aa a aaa−1a=1(a=a,a+1,…,a)a aa=(a aa−∑a aa a aaa−1a=1)a aa(a=a+1,a+2,…,a;a<a)⁄解的计算公式:y1=b1a a=a a−∑a aa a aa−1a=1(a=2,3,…,a)a a=a a a aa⁄a a=(a a−∑a aa a aaa=a+1)a aa (a=a−1,a−2, (1)⁄(2)选主元的Doolitte分解法:定理:若矩阵A∈R n×n非奇异,则存在置换矩阵Q,使得QA可做Doolitte分解,QA=LU,其中L是单位下三角矩阵,U是上三角矩阵。
只有矩阵A非奇异,则通过对A 做适当的行变换就可以进行Doolitte分解,而不必要求A的前n-1个顺序主子式不为0.进行选主元的Doolitte分解法具体算法如下:1)做分解QA=LU对于K=1,2,…,n 执行2)计算中间量a a=a aa−∑a aa a aa(a=a,a+1,…,a)a−1a=1选行号i k,使得|a aa |=aaaa≤a≤a|a a|,令M k=i l若i k=k,则转下一步,否则交换a aa与a aa a(t=1,2,…k-1)、a aa与a aa a(t=k,k+1,…n)以及a a与a aa所含的数值,转下一步计算a kk=s k a aa=a aa−∑a aa a aaa−1a=1(a=a+1,…,a;a<a)a aa=(a aa−∑a aa a aaa−1a=1)a aa(a=a+1,a+2,…,a;a<a)⁄3)求Qb对于K=1,2,…,n-1 执行t=M k交换b k与b t所含的数值4)求解Ly=Qb和Ux=yy1=b1a a=a a−∑a aa a aa−1a=1(a=2,3,…,a)a a=a a a aa⁄a a=(a a−∑a aa a aaa=a+1)a aa (a=a−1,a−2, (1)⁄克劳特)分解L为下三角矩阵,U为单位上三角矩阵推论:矩阵A=[a ij]n×n(n≫2)有唯一的能进行Crout(克劳特)分解分解的充分必要条件是:A的前n-1个顺序主子式不等于0A的Crout(克劳特)分解的计算公式对于k=1,2,…n计算a aa=a aa−∑a aa a aaa−1a=1(a=a,a+1,…,a)a aa=(a aa−∑a aa a aaa−1a=1)a aa(a=a+1,a+2,…,a;a<a)⁄解的计算公式:a1=a1a11⁄a a=(a a−∑a aa a aa−1a=1)a aa⁄(a=2,3,…,a)a a=a aa a=a a−∑a aa a aaa=a+1(a=a−1,a−2, (1)三角分解法解带状线性方程组定理:(1)A=[a ij]n×n是上半带宽为s,下半带宽为r的带状矩阵(2)A的前n-1个顺序主子式均不为零则A有唯一的Doolitte分解A=LU,其中L是下半带宽为r的单位下三角矩阵,U是上半带宽为s的上三角矩阵。
(1)作分解A=LU对于k=1,2,…,n计算a aa =a aa −∑a aa a aa a −1a =max (1,a −a ,a −a )(a=a .a +1,…,min (a +a ,a ))a aa=(a aa −∑a aa a aa a −1a =max (1,a −a ,a −a ))a aa (a =a +1,a +2,…,min (a +a ,a );a <a )⁄(2)求解Ly=b,Ux=yy 1=b 1a a =a a −∑a aa a a a −1a =max (1,a −a )(a =2,3,…,a )a a =a a a aa ⁄a a =(a a −∑a aa a a min (a +a ,a )a =a +1)a aa (a =a −1,a −2,…,1)⁄迭代法迭代法(逐次逼近法):从一个初始向量出发,按照一定的计算格式,构造一个向量的无穷序列,其极限才是所求问题的精确解,只经过有限次运算得不到精确解。
迭代法的一般形式及其收敛性 (1)一般形式:Λ,2,1,0,)()1(=+=+k d X G Xk kG 为迭代矩阵(2)向量顺序的收敛:(1)按坐标收敛;(2)按范数收敛。
(3)矩阵序列的收敛 (4)迭代公式的收敛性1.向量序列的收敛(极限)(1)定义:设向量ΛΛ,2,1,0,),,,()()(2)(1)(==k x x x XT k n k k k 若ni x x i k ik ,,2,1,lim *)(Λ==∞→(按坐标收敛),则称序列{})(k X收敛于X *,记为*)(lim X Xk k =∞→.⇔=∞→*)(lim X X k k *)(lim i k ik x x =∞→⇔0lim *)(=-∞→X X k k(2)向量序列收敛的充要条件*)(lim X X k k =∞→0lim *)(=-⇔∞→X X k k(3)矩阵序列的极限,n m k C A ⨯∈],[)(k ij k a A =若,,,2,1,,,2,1,lim )(n j m i a a ij k ijk ΛΛ===∞→则称][ij a A =为矩阵序列}{k A 的极限,记作:A A k k =∞→lim迭代收敛的条件 (1)谱半径(2)迭代收敛的充要条件 (3)迭代收敛的充分条件 (4)迭代终止的条件 迭代(1)分量形式i n in i ii i i b x a x a x a x a =++++Λ2211)(1∑≠-=i j j ij i ii i x a b a x n i x a b a x i j k j ij i ii k i,,2,1),(1)()1(Λ=-=∑≠+ n i x a b a x ij k j ij i ii k i,,2,1),(1)()1(Λ=-=∑≠+ (2)矩阵形式b D X A D I X k k 1)(1)1()(--++-=(3)Jacobi 迭代矩阵)(11U L D A D I G J +-=-=--A=D-(-L-U ) 迭代(异步迭代法) (1)分量形式n i x a x a b a x i j ni j k j ij k j ij i ii k i,,2,1),(1111)()1()1(Λ=--=∑∑-=+=++ n i x a x a b a x i j n i j k j ij k j ij i ii k i,,2,1),(1111)()1()1(Λ=--=∑∑-=+=++ (2)矩阵形式Λ,2,1,0,)()1(=+=+k d GX X k k b L D Ux D L x k k 1)(1)1()()(--++++-=(3)GS 迭代矩阵U D L G G 1)(-+-=A=(D+L)-(-U)U D L G G 1)(-+-=逐次超松弛迭代法(SOR 迭代) (1)分量形式⎪⎩⎪⎨⎧+-=--=++-=+=++∑∑)1()()1(111)()1()1(~)1()(1~k i k i k ii j ni j k j ij k j ij i ii k ix x x x a x a b a x ωω (2)计算公式])11([111)()()1()1(iii i j ni j k i k jiiijk jiiijk ia bx x aa x a a x ∑∑-=+=+++----=ωω(3)矩阵形式b D UX D LX D X k k k 1)(1)1(1)1(~--+-++--=)1()()1(~)1(+++-=k k k XXXωωb L D X U D L D X k k 1)(1)1()1(])11[()1(--++++-+-=ωωωb L D X U D L D Xk k 1)(1)1()1(])11[()1(--++++-+-=ωωω(4)SOR 迭代矩阵])11[()1(1U D L D G S +-+-=-ωωω>1, 逐次超松弛迭代法 ω<1, 逐次低松弛迭代法 ω=1, GS 迭代法U D L D A +-++=)11(1ωω])11([1U D L D ----+=ωω三、本章思考题Jacobi 迭代、Gauss-Seidel 迭代、逐次超松弛迭代法三种迭代方法,各有其优缺点以及适用范围,能否将三种方法有机结合,从而得到一个新的算法,使其适用范围和计算精度有所提升思路:使用类似加权平均的方法将三种方法的计算公式结合,已达到预期目标。