多元线性回归分析—内容提要与案例
多元线性回归分析范例

多元线性回归分析范例多元线性回归是一种用于预测因变量和多个自变量之间关系的统计分析方法。
它假设因变量与自变量之间存在线性关系,并通过拟合一个多元线性模型来估计因变量的值。
在本文中,我们将使用一个实际的数据集来进行多元线性回归分析的范例。
数据集介绍:我们选取的数据集是一份汽车销售数据,包括了汽车的价格(因变量)和多个与汽车相关的特征(自变量),如车龄、行驶里程、汽车品牌等。
我们的目标是通过这些特征来预测汽车的价格。
数据集包括了100个样本。
数据集的构成如下:车龄(年),行驶里程(万公里),品牌,价格(万元)----------------------------------------5,10,A,153,5,B,207,12,C,10...,...,...,...建立多元线性回归模型:我们首先需要将数据集划分为自变量矩阵X和因变量向量y。
其中,自变量矩阵X包括了车龄、行驶里程和品牌等特征,因变量向量y包括了价格。
在Python中,我们可以使用NumPy和Pandas库来处理和分析数据。
我们可以使用Pandas的DataFrame来存储数据集,并使用NumPy的polyfit函数来拟合多元线性模型。
首先,我们导入所需的库并读取数据集:```pythonimport pandas as pdimport numpy as np#读取数据集data = pd.read_csv('car_sales.csv')```然后,我们将数据集划分为自变量矩阵X和因变量向量y:```python#划分自变量矩阵X和因变量向量yX = data[['车龄', '行驶里程', '品牌']]y = data['价格']```接下来,我们使用polyfit函数来拟合多元线性模型。
我们将自变量矩阵X和因变量向量y作为输入,并指定多项式的次数(线性模型的次数为1):```python#拟合多元线性模型coefficients = np.polyfit(X, y, deg=1)```最后,我们可以使用拟合得到的模型参数来预测新的样本。
《2024年多元线性回归分析的实例研究》范文

《多元线性回归分析的实例研究》篇一一、引言多元线性回归分析是一种统计学方法,用于探究一个因变量与多个自变量之间的关系。
这种方法在各个领域的研究中广泛应用,如经济学、社会学、心理学等。
本文将通过一个具体的实例,展示多元线性回归分析的应用过程及其实证结果。
二、研究背景与目的本研究以某地区房价为研究对象,探讨房价与地理位置、房屋面积、房屋装修等因素之间的关系。
目的是通过多元线性回归分析,找出影响房价的主要因素,为房地产投资者和购房者提供参考依据。
三、数据收集与处理本研究采用某地区房地产交易数据,包括房价、地理位置、房屋面积、房屋装修等变量。
在数据收集过程中,我们确保数据的准确性和完整性,并对数据进行清洗和处理,以消除异常值和缺失值的影响。
四、多元线性回归分析(一)模型构建根据研究目的和收集的数据,构建多元线性回归模型。
假设房价为因变量Y,地理位置、房屋面积、房屋装修等因素为自变量X1、X2、X3。
则模型可以表示为:Y = β0 + β1X1 + β2X2 +β3X3 + ε。
其中,β0为常数项,β1、β2、β3为回归系数,ε为随机误差项。
(二)参数估计与假设检验利用统计软件对模型进行参数估计,得到各回归系数的估计值及其显著性水平。
通过假设检验,检验自变量与因变量之间的线性关系是否显著。
若显著性水平低于预设的阈值(如0.05),则认为自变量与因变量之间存在显著的线性关系。
(三)模型检验与优化对模型进行检验和优化,包括检查模型的拟合优度、自相关性和异方差性等。
若存在显著问题,则采取相应的方法进行修正和优化。
五、实证结果与分析(一)回归系数解释根据参数估计结果,得出各回归系数的估计值。
解释各系数在模型中的意义和作用,如地理位置对房价的影响程度、房屋面积对房价的影响程度等。
(二)实证结果分析根据实证结果,分析自变量与因变量之间的关系及影响程度。
通过对比各回归系数的估计值和显著性水平,找出影响房价的主要因素。
同时,结合实际情况,对实证结果进行深入分析和解释。
多元线性回归分析案例

多元线性回归分析案例1. 引言多元线性回归分析是一种用于探究多个自变量与一个连续型因变量之间关系的统计分析方法。
本文将以一个虚构的案例来介绍多元线性回归分析的应用。
2. 背景假设我们是一家电子产品制造公司,我们想了解哪些因素会对产品销售额产生影响。
为了解决这个问题,我们收集了一些数据,包括产品的价格、广告费用、竞争对手的产品价格和销售额。
3. 数据收集我们采集了100个不同产品的数据,其中包括以下变量:- 产品价格(自变量1)- 广告费用(自变量2)- 竞争对手的产品价格(自变量3)- 销售额(因变量)4. 数据分析为了进行多元线性回归分析,我们首先需要对数据进行预处理。
我们检查了数据的缺失情况和异常值,并进行了相应的处理。
接下来,我们使用多元线性回归模型来分析数据。
模型的方程可以表示为:销售额= β0 + β1 × 产品价格+ β2 × 广告费用+ β3 × 竞争对手的产品价格+ ε其中,β0、β1、β2、β3是回归系数,ε是误差项。
5. 结果解释我们使用统计软件进行回归分析,并得到了以下结果:- 回归系数的估计值:β0 = 1000, β1 = 10, β2 = 20, β3 = -5- 拟合优度:R² = 0.8根据回归系数的估计值,我们可以解释模型的结果:- β0表示当产品价格、广告费用和竞争对手的产品价格都为0时,销售额的估计值为1000。
- β1表示产品价格每增加1单位,销售额平均增加10单位。
- β2表示广告费用每增加1单位,销售额平均增加20单位。
- β3表示竞争对手的产品价格每增加1单位,销售额平均减少5单位。
拟合优度R²的值为0.8,说明模型可以解释销售额的80%变异程度。
这意味着模型对数据的拟合程度较好。
6. 结论根据我们的多元线性回归分析结果,我们可以得出以下结论:- 产品价格、广告费用和竞争对手的产品价格对销售额有显著影响。
多元线性回归分析—内容提要与案例

多元线性回归分析—内容提要与案例多元线性回归是一种统计分析方法,用于探究多个自变量与一个因变量之间的关系。
它在许多领域中都被广泛应用,如经济学、社会科学、医学等。
本文将介绍多元线性回归的基本原理、步骤和统计检验,并通过一个实际案例来演示其应用。
一、多元线性回归的基本原理1.线性关系假设:多元线性回归假设自变量与因变量之间存在线性关系。
即每个自变量的变化对因变量的影响是独立的,并且可以通过线性方程来描述。
2.回归模型构建:根据线性关系假设,可以构建一个回归模型,以自变量为解释变量,因变量为被解释变量。
3.参数估计:利用最小二乘法估计回归模型中的参数,使得模型对观测数据的拟合程度最好。
4.统计检验:通过统计方法检验回归模型中自变量对因变量的影响是否显著。
二、多元线性回归的步骤1.数据收集:收集包括自变量和因变量的观测数据。
2.模型构建:根据所收集到的数据,确定自变量和因变量之间的关系,并构建回归模型。
3.参数估计:使用最小二乘法估计回归模型中的参数。
4.拟合度检验:通过拟合度检验,评估回归模型对观测数据的拟合程度。
5.统计检验:利用各种统计方法,检验回归模型中自变量对因变量的影响是否显著。
6.模型解释:解释回归模型中各个参数的含义和影响。
三、多元线性回归的统计检验1.F检验:用于检验所有自变量对因变量联合作用是否显著。
2.t检验:用于检验每个自变量对因变量的独立作用是否显著。
3.R方和调整R方:用于评估回归模型对观测数据的拟合程度。
4. Durbin-Watson检验:用于检验回归模型是否存在自相关性。
五、多元线性回归的应用案例下面通过一个实际案例来演示多元线性回归的应用。
假设我们要研究一个人的体重与身高、年龄和性别之间的关系。
我们收集了100个人的数据,并通过多元线性回归分析来建立一个预测模型。
首先,根据数据,我们构建如下的多元线性回归模型:体重=β0+β1×身高+β2×年龄+β3×性别。
《2024年多元线性回归分析的实例研究》范文

《多元线性回归分析的实例研究》篇一一、引言多元线性回归分析是一种统计方法,用于研究多个变量之间的关系。
在社会科学、经济分析、医学等多个领域,这种分析方法的应用都十分重要。
本实例研究以一个具体的商业案例为例,展示了如何应用多元线性回归分析方法进行研究,以便深入理解和探索各个变量之间的潜在关系。
二、背景介绍以某电子商务公司的销售额预测为例。
电子商务公司销售量的影响因素很多,包括市场宣传、商品价格、消费者喜好等。
因此,本文通过收集多个因素的数据,使用多元线性回归分析,以期达到更准确的销售预测和因素分析。
三、数据收集与处理为了进行多元线性回归分析,我们首先需要收集相关数据。
在本例中,我们收集了以下几个关键变量的数据:销售额(因变量)、广告投入、商品价格、消费者年龄分布、消费者性别比例等。
这些数据来自电子商务公司的历史销售记录和调查问卷。
在收集到数据后,我们需要对数据进行清洗和处理。
这包括去除无效数据、处理缺失值、标准化处理等步骤。
经过处理后,我们可以得到一个干净且结构化的数据集,为后续的多元线性回归分析提供基础。
四、多元线性回归分析1. 模型建立根据所收集的数据和实际情况,我们建立了如下的多元线性回归模型:销售额= β0 + β1广告投入+ β2商品价格+ β3消费者年龄分布+ β4消费者性别比例+ ε其中,β0为常数项,β1、β2、β3和β4为回归系数,ε为误差项。
2. 模型参数估计通过使用统计软件进行多元线性回归分析,我们可以得到每个变量的回归系数和显著性水平等参数。
这些参数反映了各个变量对销售额的影响程度和方向。
3. 模型检验与优化为了检验模型的可靠性和准确性,我们需要对模型进行假设检验、R方检验和残差分析等步骤。
同时,我们还可以通过引入交互项、调整自变量等方式优化模型,提高预测精度。
五、结果分析与讨论1. 结果解读根据多元线性回归分析的结果,我们可以得到以下结论:广告投入、商品价格、消费者年龄分布和消费者性别比例均对销售额有显著影响。
《2024年多元线性回归分析的实例研究》范文

《多元线性回归分析的实例研究》篇一一、引言多元线性回归分析是一种统计方法,用于研究多个变量之间的线性关系。
在实际生活和科研工作中,这种分析方法广泛应用于经济、医学、生态学等领域。
本文以一个具体实例为例,深入探讨多元线性回归分析的步骤和应用。
该实例关注于房屋价格的影响因素分析。
二、研究背景及目的随着房地产市场的发展,房屋价格受到多种因素的影响。
为了探究这些因素如何共同影响房屋价格,本文选取了一组具有代表性的房屋数据,并运用多元线性回归分析方法进行实证研究。
研究目的在于揭示影响房屋价格的主要因素,为购房者和房地产投资者提供参考依据。
三、数据与方法(一)数据来源本研究的数据来源于某城市房屋交易数据库,涵盖了多个区域的房屋信息,包括房屋价格、房屋面积、房屋年龄、周边环境、学区等因素。
(二)研究方法本研究采用多元线性回归分析方法,通过建立模型来研究各因素与房屋价格之间的线性关系。
具体步骤包括:数据清洗、变量选择、模型建立、模型检验和结果解释等。
四、多元线性回归分析步骤及结果(一)变量选择与数据清洗根据研究目的和前人研究成果,本研究选择了以下变量:房屋价格(因变量)、房屋面积、房屋年龄、周边环境(包括交通、商业、绿化等)、学区等(自变量)。
在数据清洗阶段,剔除了异常值和缺失值,确保数据的准确性和可靠性。
(二)模型建立根据选定的变量,建立多元线性回归模型。
模型形式如下:P = β0 + β1 × Area + β2 × Age + β3 × Environment + β4 × Schoo l + ε其中,P表示房屋价格,Area表示房屋面积,Age表示房屋年龄,Environment表示周边环境因素,School表示学区因素,βi 为各变量的回归系数,ε为随机误差项。
(三)模型检验通过SPSS软件进行模型检验。
首先进行多重共线性检验,发现各变量之间不存在明显的共线性问题。
多元线性回归分析—内容提要与案例

多元线性回归分析—内容提要 1.多元线性回归的数学模型【模型的理论假设】设p x x x ,,,21 是) 2 ( ≥p 个自变量(解释变量),y 是因变量,则多元线性回归模型的理论假设是εββββ+++++=p p x x x y 22110,),0(~2σεN ,其中,p ββββ,,,,210 是1+p 个未知参数,0β称为回归常数,p βββ,,,21 称为回归系数,),0(~2σεN 为随机误差.【模型的建立】求p 元线性函数p p x x x Ey ββββ++++= 22110的经验回归方程pp x x x y ββββˆˆˆˆˆ22110++++= , 其中,y ˆ是Ey 的统计估计,p ββββˆ,,ˆ,ˆ,ˆ210 分别是,,,,,210pββββ 的统计估计,称为经验回归系数.【模型的数据结构】设对变量向量y x x x p ,,,,21 的n 次观测得到的样本数据为),,,,(21i ip i i y x x x ,) 1 ( ,,2,1 +>=p n i .为了今后讨论方便,我们引进矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n y y y y 21,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=np n p p x x x x x x X 1221111111,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=p ββββˆˆˆˆ10 ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n εεεε 21 于是,多元线性回归模型的数据结构为εβ+=X y称为多元样本回归方程,其中n p X rank <+=1)(,) ,(~21n n n n I O N ⨯⨯σε且各个i ε相互独立.由于矩阵X 是样本数据,X 的数据可以进行设计和控制,因此,矩阵X 称为回归设计矩阵或资料矩阵.注释 对多元线性回归模型理论假设的进一步说明:⑴ 条件n p X rank <+=1)(表明,X 是一个满稚矩阵,即矩阵X 列向量(解释变量)间线性无关,样本容量的个数应当大于解释变量的个数.反该假设时,称模型存在多重共线性问题.⑵ 条件) ,(~21n n n n I O N ⨯⨯σε且各个i ε相互独立表明,系统受到零均值齐性方差的正态随机干扰,系统自变量之间不存在序列相关,即0)(=i E ε,⎩⎨⎧≠==ji ji j i ,0 ,),cov(2σεε, ,,2,1, n j i =. 当j i j i ≠≠ ),var()var(εε时,称回归模型存在异方差.当j i j i ≠≠,0),cov(εε时,称回归模型存在自相关.当模型违反上述假设后,就不能使用最小二乘法估计回归系数.解决方法将在后面介绍,先介绍模型符合假设时的参数估计方法.2.模型参数的最小二乘估计【参数估计的准则】定义离差平方和),,,(10p Q βββ ∑=-=ni i i y E y 12))((∑=----=ni ip p i x x yi 12110)(βββ ,求pβββˆ,,ˆ,ˆ10 使得 ),,,(m in)ˆ,,ˆ,ˆ(10,,,1010p pQ Q pβββββββββ =,称p βββˆ,,ˆ,ˆ10 称为模型参数pβββ,,,21 的最小二乘估计,称 ipp i i i x x x y ββββˆˆˆˆˆ22110++++= 为因变量),,2,1( n i y i =的回归拟合值,简称回归值或拟合值.称i i i yy e ˆ-= 为因变量),,2,1( n i y i =的残差.【参数估计的算法】当满足元线性回归模型理论假设的条件时,模型参数p βββ,,,21 的最小二乘解为()y X X X T T 1ˆ-=β. 可以证明)ˆ(ββ=E ,12)()ˆcov( -=X X T σβ, ),(~ˆ2σββjjj j c N ,p j ,,2,1 =, 其中()p p ij T c X X ⨯-=1)(.由此可见,T p)ˆ,,ˆ,ˆ(ˆ10ββββ =是T p ),,,(10ββββ =的无偏估计.协方差阵)ˆcov(β反映出估计量βˆ的波动大小,由于)ˆcov(β是2σ右乘一个矩阵1)(-X X T ,所以βˆ的波动大小可以由抽样过程中进行控制.同一元线性回归分析一样,在多元线性回归中,样本抽样要尽可能的分散.3.回归方程的显著性检验⑴ 多元回归方程显著性的整体性检验检验解释变量p x x x ,,,21 全体对因变量y 是否有显著影响,方法是F 检验,亦称方差分析.【显著性检验基本定理】令∑=-=ni i y y SST 12)( ─ 总偏差平方和,自由度1-=n f T .∑=-=ni i y ySSR 12)ˆ( ─ 回归平方和,自由度p f R =. ∑=-=ni i i yy SSE 12)ˆ( ─ 残差平方和,自由度1--=p n f E . 则有① SSE SSR SST +=. ②)1(~22--p n SSEχσ且2)1()(σ--=p n SSE E .③ SSE 与T p)ˆ,,ˆ,ˆ(ˆ10ββββ =相互独立. 【显著性检验基本方法 ─ F 检验(方差分析)】 检验假设0:H 021====p βββ .检验统计量及其分布在0H 为真时,SSR 与SSE 相互独立,)(~22p SSRχσ,于是检验统计量)1,(~)1/(/----=p n p F p n SSE pSSR F .检验的显著性概率()F p n p F P p >--=)1,( .决策准则在显著性水平α下,当p >α时拒绝0H ,即认为回归方程有显著意义. ① 当01.0<p 时,称回归方程高度显著,标记为**; ② 当05.001.0<≤p 时,称回归方程显著,标记为*; ③ 当05.0≥p 时,称回归方程不显著,不做标记. 检验结果的报告(方差分析表)此外,与一元线性回归分析类似,可用可决系数SSTSSRR =2 来测定回归方程对各个观测点的拟合程度,]1,0[2∈R ,2R 的值越大(小)表明回归直线对各个观测点的拟合程度越高(低).⑵ 多元回归方程中每个自变量对因变量影响显著性检验 检验解释变量j x 对因变量y 影响的显著性. 检验假设0:j H 0=j β(p j ,,2,1 =). 检验统计量及其分布 在0H 为真时,检验统计量)1,1(~)1/(ˆ2----=p n F p n SSE c F jj jj β检验的显著性概率()j F p n F P p >--=)1,1(.决策准则在显著性水平α下,当p >α时拒绝j H 0,即认为解释变量j x 对因变量y 影响显著. 若存在不显著的变量,取}{min 1j pj k F F ≤≤=,从回归方程中剔除自变量k x .设从原回归方程pp k k k k k k x x x x x y ββββββˆˆˆˆˆˆˆ1111110+++++++=++-- 中剔除自变量k x 后,重新建立的回归方程中为pp k k k k x x x x y *1*11*11*1*0ˆˆˆˆˆˆβββββ++++++=++-- , 则可以证明,新回归方程的系数与原回归方程的系数有如下关系:k kkkj j j c c βββˆˆˆ*-= ) , ,,2,1(k j p j ≠= , ∑≠-=kj jj x y **0ˆˆββ. 对于新建立的回归方程,必须对每一个余下的变量再次进行检验,直至余下变量全部显著为止.4.最优回归方程的选择⑴ 最优回归方程选择标准① 因子完备的原则 回归方程中包含所有对因变量有显著影响的自变量. ② 模型从简的原则 回归方程中所包含的自变量的个数尽可能的少. ③ 充分拟合的原则 回归方程的剩余方差达到最小. ⑵ 最优回归方程选择方法(逐步回归法)① 根据问题所属专业领域的理论和经验提出对因变量可能有影响的所有自变量. ② 计算每一个自变量对因变量的相关系数,按其绝对值从大到小排序.③ 取相关系数绝对值最大的那个自变量建立一元线性回归模型,检验所得回归方程的显著性,若检验表明回归效果显著则转入④,若检验表明回归效果不显著则停止建模.④ 进行变量的追加、剔除和回归方程的更新操作:若检验表明回归效果显著,则按相关系数绝对值由大到小的顺序逐一将相应的自变量引入回归方程;每引入一个新的自变量,对新回归方程中每一个自变量都要进行显著性检验.若检验表明回归效果不显著,则剔除对因变量影响最小的自变量,更新回归方程;对更新后的回归方程中的每一个自变量仍要进行显著性检验、剔除、更新,直到回归方程中的每一个自变量都显著为止,再引入前面未曾引入的自变量.以此类推,直到无法剔除已经引入的自变量,也无法引入新的自变量为止. 注释① 逐步回归法不能保证得到真正的最优回归方程,但此法是计算量较小、预测效果较好、有工具软件支持、应用最多欧德一种方法.② 逐步回归法受检验的显著性水平α影响较大,α较大将会有较多的自变量引入回归方程,α较小将会导致一些重要的自变量被剔除.5.利用回归方程对系统进行预测⑴ 点预测设预测点为T p x x x x ),,,(002010 =,则pp x x x y 002201100ˆˆˆˆˆββββ++++= 是对p p x x x Ey 002201100ββββ++++=的点估计,亦是对0002201100εββββ+++++=p p x x x y ,),0(~20σεN的点预测.⑵ 区间预测 可以证明)1(~ˆ00--∆-=p n t s yy t其中12--=p n SSEs (剩余方差),∑∑==--++=∆p i pj ij j j i i c x x x x n 1100))((11,),,2,1( 11p i x n x nk ki i ==∑=.于是,点预测的误差为∆--±-s p n t )1(2/1α,即在0x 处的区间预测为))1(ˆ , )1(ˆ(2/102/10∆--+∆-----s p n t y s p n t yαα 即ααα-=∆--+<<∆-----1})1(ˆ )1(ˆ{2/1002/10s p n t y y s p n t yP . 当n 较大,),,2,1( 0p i x x i i =≈时,可取1=∆以此来简化计算.多元线性回归分析—案例及M A T L A B 解决【案例】 设某种水泥在凝固时所释放出的热量Y (卡/克)与水泥中的下列四种化学成分有关:1x ─32O Al 3CaO ⋅的成分(%), 2x ─2SiO 3CaO ⋅的成分(%), 3x ─3232O Fe O Al 4CaO ⋅⋅的成分(%),4x ─2SiO 2CaO ⋅的成分(%).共观测了13组数据(见下表):序号x 1x 2x 3x 4Y1 2 3 4 57 1 11 11 726 29 56 31 526 15 8 8 660 52 20 47 3378.5 74.3 104.3 87.6 95.96 7 8 9 10 11 12 1311 3 1 2 21 1 11 1055 71 31 54 47 40 66 689 17 22 18 4 23 9 822 6 44 22 26 34 12 12109.2 102.7 72.5 93.1 115.9 83.8 113.3 109.4试用逐步回归法求出Y 对1x 、2x 、3x 和4x 的最优回归方程.注释 数据保存在hald.mat 文件中,ingredients 为解释变量, heat 为因变量 .1、MATLAB 逐步回归法建模的交互式图形环境介绍【函数名称】stepwise 【函数功能】创建多元线性回归分析的逐步回归法建模的交互式图形环境. 【调用格式】 stepwise(X,y)stepwise(X,y,inmodel,penter,premove) 【参数说明】X ─p 元线性模型解释变量的n 个观测值的n ×p 矩阵. y ─p 元线性模型因变量的n 个观测值的n ×1向量.inmodel ─标量或向量(由X 的列号构成),用来指明最初引入回归方程的解释变量(缺省设置为空).penter ─模型检验的显著性水平上限值(缺省设置为0.05). premoveb ─模型检验的显著性水平下限值(缺省设置为0.10). 【案例中的应用】load haldstepwise(ingredients, heat) 【交互式图形界面的说明】窗口Ⅰ C o e f f i c i e n t s w i t h E r r o r B a r s绘出各个解释变量回归系数的估计,圆点表示点估计值,横线表示置信区间(有色线段表示90%置信区间,黑色线段表示95%置信区间).窗口的右侧给出回归系数的点估计值(Coeff)、显著性检验的t统计量的值(t-stet)和显著性概率p值(p-val).窗口ⅡM o d e l H i s t o r y该窗口绘出的圆点表示历次建模的模型标准差σ的估计.两个窗口中间输出的是当前模型的有关信息,包括:lntercept ─模型截距(常数项)的估计.RMSE ─模型标准差σ的估计.R-square ─可决系数.Adj-R-sq ─校正的可决系数.F ─模型整体性检验的F统计量的值.p ─模型整体性检验的显著性概率.窗口Ⅰ右侧的三个按钮:Next Step ─在回归方程中按相关系数绝对值大小逐次引入解释变量,如无解释变量可引入时按钮不可用.All Steps ─直接给出“只进不出”方式建模的最终结果(注意,此时的回归方程未必是最优回归方程).Export…─选择向Workspace传输的计算结果(有关变量名可由用户自定义).2、MATLAB逐步回归法建模的集成命令介绍【函数名称】stepwisefit【函数功能】用逐步回归法创建多元线性回归分析的最优回归方程..【调用格式】b = stepwisefit(X,y)[b,se,pval,inmodel,stats,nextstep,history] = tepwisefit(...) [...] = stepwisefit(X,y,'Param1',value1,'Param2',value2,...) 【参数说明】输入参数X与y的意义同函数stepwise. 其它引用参数的用法请用doc命令调阅系统帮助.输出参数b─模型系数 .se ─模型系数的标准误差.pval─各个解释变量显著性检验的显著性概率.inmodel─各个解释变量在最终回归方程中地位的说明(1表示在方程中,0表示不再方程中).stats─是一个构架数组,包括:source :建模方法的说明,'stepwisefit'表示逐步回归法;dfe:最优回归方程的剩余自由度;df0:最优回归方程的回归自由度;SStotal:最优回归方程的总偏差平方和;SSresid:最优回归方程的剩余平方和;fstat:最优回归方程的F统计量的值;pval:最优回归方程的显著性概率;rmse:最优回归方程的标准误差估计;B:模型系数;SE:模型系数的标准误差;TSTAT:每个自变量显著性检验的T统计量的值;PVAL:每个自变量显著性检验的显著性概率;intercept:常数项的点估计;等等.nextstep ─对是否还有需要引入回归方程的自变量的说明(0表示没有)history ─是一个构架数组,包括:rmse:每一步的模型标准误差估计;df0:每一步引入方程的变量个数;in:记录了按相关系数绝对值大小逐步引入回归方程的变量的次序.【案例中的应用】load hald[b,se,pval,inmodel,stats,nextstep,history]=stepwisefit(ingredients, heat, 'penter', .10) Initial columns included: noneStep 1, added column 4, p=0.000576232Step 2, added column 1, p=1.10528e-006Step 3, added column 2, p=0.0516873Step 4, removed column 4, p=0.205395Final columns included: 1 2Columns 1 through 3'Coeff' 'Std.Err.' 'Status'[ 1.4683] [ 0.1213] 'In'[ 0.6623] [ 0.0459] 'In'[ 0.2500] [ 0.1847] 'Out'[-0.2365] [ 0.1733] 'Out'Column 4'P'[2.6922e-007][5.0290e-008][ 0.2089][ 0.2054]b =1.46830.66230.2500-0.2365se =0.12130.04590.18470.1733pval =0.00000.00000.20890.2054inmodel =1 1 0 0stats =source: 'stepwisefit' dfe: 10df0: 2SStotal: 2.7158e+003SSresid: 57.9045fstat: 229.5037pval: 4.4066e-009rmse: 2.4063xr: [13x2 double] yr: [13x1 double] B: [4x1 double]SE: [4x1 double]TSTAT: [4x1 double]PVAL: [4x1 double]intercept: 52.5773wasnan: [13x1 logical]nextstep =history =rmse: [8.9639 2.7343 2.3087 2.4063] df0: [1 2 3 2]in: [4x4 logical]。
多元线性回归分析案例

多元线性回归分析案例多元线性回归分析是统计学中常用的一种分析方法,它可以用来研究多个自变量对因变量的影响,并建立相应的数学模型。
在实际应用中,多元线性回归分析可以帮助我们理解变量之间的关系,预测未来的趋势,以及制定相应的决策。
本文将通过一个实际案例来介绍多元线性回归分析的基本原理和应用方法。
案例背景。
假设我们是一家电子产品制造公司的市场营销团队,我们想要了解产品销量与广告投入、产品定价和市场规模之间的关系。
我们收集了过去一年的数据,包括每个月的产品销量(千台)、广告投入(万元)、产品定价(元/台)和市场规模(亿人)。
数据分析。
首先,我们需要对数据进行描述性统计分析,以了解各变量的分布情况和相关性。
我们计算了产品销量、广告投入、产品定价和市场规模的均值、标准差、最大最小值等统计量,并绘制了相关性矩阵图。
通过分析发现,产品销量与广告投入、产品定价和市场规模之间存在一定的相关性,但具体的关系还需要通过多元线性回归分析来验证。
多元线性回归模型。
我们建立了如下的多元线性回归模型:\[Sales = \beta_0 + \beta_1 \times Advertising + \beta_2 \times Price + \beta_3 \times MarketSize + \varepsilon\]其中,Sales表示产品销量,Advertising表示广告投入,Price表示产品定价,MarketSize表示市场规模,\(\beta_0, \beta_1, \beta_2, \beta_3\)分别为回归系数,\(\varepsilon\)为误差项。
模型验证。
我们利用最小二乘法对模型进行参数估计,并进行了显著性检验和回归诊断。
结果表明,广告投入、产品定价和市场规模对产品销量的影响是显著的,模型的拟合效果较好。
同时,我们还对模型进行了预测能力的验证,结果表明模型对未来产品销量的预测具有一定的准确性。
决策建议。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多元线性回归分析—内容提要 1.多元线性回归的数学模型【模型的理论假设】设p x x x ,,,21 是) 2 ( ≥p 个自变量(解释变量),y 是因变量,则多元线性回归模型的理论假设是εββββ+++++=p p x x x y 22110,),0(~2σεN ,其中,p ββββ,,,,210 是1+p 个未知参数,0β称为回归常数,p βββ,,,21 称为回归系数,),0(~2σεN 为随机误差.【模型的建立】求p 元线性函数p p x x x Ey ββββ++++= 22110的经验回归方程pp x x x y ββββˆˆˆˆˆ22110++++= , 其中,y ˆ是Ey 的统计估计,p ββββˆ,,ˆ,ˆ,ˆ210 分别是,,,,,210pββββ 的统计估计,称为经验回归系数.【模型的数据结构】设对变量向量y x x x p ,,,,21 的n 次观测得到的样本数据为),,,,(21i ip i i y x x x ,) 1 ( ,,2,1 +>=p n i .为了今后讨论方便,我们引进矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n y y y y 21,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=np n p p x x x x x x X 1221111111,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=p ββββˆˆˆˆ10 ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n εεεε 21 于是,多元线性回归模型的数据结构为εβ+=X y称为多元样本回归方程,其中n p X rank <+=1)(,) ,(~21n n n n I O N ⨯⨯σε且各个i ε相互独立.由于矩阵X 是样本数据,X 的数据可以进行设计和控制,因此,矩阵X 称为回归设计矩阵或资料矩阵.注释 对多元线性回归模型理论假设的进一步说明:⑴ 条件n p X rank <+=1)(表明,X 是一个满稚矩阵,即矩阵X 列向量(解释变量)间线性无关,样本容量的个数应当大于解释变量的个数.反该假设时,称模型存在多重共线性问题.⑵ 条件) ,(~21n n n n I O N ⨯⨯σε且各个i ε相互独立表明,系统受到零均值齐性方差的正态随机干扰,系统自变量之间不存在序列相关,即0)(=i E ε,⎩⎨⎧≠==ji ji j i ,0 ,),cov(2σεε, ,,2,1, n j i =. 当j i j i ≠≠ ),var()var(εε时,称回归模型存在异方差.当j i j i ≠≠,0),cov(εε时,称回归模型存在自相关.当模型违反上述假设后,就不能使用最小二乘法估计回归系数.解决方法将在后面介绍,先介绍模型符合假设时的参数估计方法.2.模型参数的最小二乘估计【参数估计的准则】定义离差平方和),,,(10p Q βββ ∑=-=ni i i y E y 12))((∑=----=ni ip p i x x yi 12110)(βββ ,求pβββˆ,,ˆ,ˆ10 使得 ),,,(m in)ˆ,,ˆ,ˆ(10,,,1010p pQ Q pβββββββββ =,称p βββˆ,,ˆ,ˆ10 称为模型参数pβββ,,,21 的最小二乘估计,称 ipp i i i x x x y ββββˆˆˆˆˆ22110++++= 为因变量),,2,1( n i y i =的回归拟合值,简称回归值或拟合值.称i i i yy e ˆ-= 为因变量),,2,1( n i y i =的残差.【参数估计的算法】当满足元线性回归模型理论假设的条件时,模型参数p βββ,,,21 的最小二乘解为()y X X X T T 1ˆ-=β. 可以证明)ˆ(ββ=E ,12)()ˆcov( -=X X T σβ, ),(~ˆ2σββjjj j c N ,p j ,,2,1 =, 其中()p p ij T c X X ⨯-=1)(.由此可见,T p)ˆ,,ˆ,ˆ(ˆ10ββββ =是T p ),,,(10ββββ =的无偏估计.协方差阵)ˆcov(β反映出估计量βˆ的波动大小,由于)ˆcov(β是2σ右乘一个矩阵1)(-X X T ,所以βˆ的波动大小可以由抽样过程中进行控制.同一元线性回归分析一样,在多元线性回归中,样本抽样要尽可能的分散.3.回归方程的显著性检验⑴ 多元回归方程显著性的整体性检验检验解释变量p x x x ,,,21 全体对因变量y 是否有显著影响,方法是F 检验,亦称方差分析.【显著性检验基本定理】令∑=-=ni i y y SST 12)( ─ 总偏差平方和,自由度1-=n f T .∑=-=ni i y ySSR 12)ˆ( ─ 回归平方和,自由度p f R =. ∑=-=ni i i yy SSE 12)ˆ( ─ 残差平方和,自由度1--=p n f E . 则有① SSE SSR SST +=. ②)1(~22--p n SSEχσ且2)1()(σ--=p n SSE E .③ SSE 与T p)ˆ,,ˆ,ˆ(ˆ10ββββ =相互独立. 【显著性检验基本方法 ─ F 检验(方差分析)】 检验假设0:H 021====p βββ .检验统计量及其分布在0H 为真时,SSR 与SSE 相互独立,)(~22p SSRχσ,于是检验统计量)1,(~)1/(/----=p n p F p n SSE pSSR F .检验的显著性概率()F p n p F P p >--=)1,( .决策准则在显著性水平α下,当p >α时拒绝0H ,即认为回归方程有显著意义. ① 当01.0<p 时,称回归方程高度显著,标记为**; ② 当05.001.0<≤p 时,称回归方程显著,标记为*; ③ 当05.0≥p 时,称回归方程不显著,不做标记. 检验结果的报告(方差分析表)此外,与一元线性回归分析类似,可用可决系数SSTSSRR =2 来测定回归方程对各个观测点的拟合程度,]1,0[2∈R ,2R 的值越大(小)表明回归直线对各个观测点的拟合程度越高(低).⑵ 多元回归方程中每个自变量对因变量影响显著性检验 检验解释变量j x 对因变量y 影响的显著性. 检验假设0:j H 0=j β(p j ,,2,1 =). 检验统计量及其分布 在0H 为真时,检验统计量)1,1(~)1/(ˆ2----=p n F p n SSE c F jj jj β检验的显著性概率()j F p n F P p >--=)1,1(.决策准则在显著性水平α下,当p >α时拒绝j H 0,即认为解释变量j x 对因变量y 影响显著. 若存在不显著的变量,取}{min 1j pj k F F ≤≤=,从回归方程中剔除自变量k x .设从原回归方程pp k k k k k k x x x x x y ββββββˆˆˆˆˆˆˆ1111110+++++++=++-- 中剔除自变量k x 后,重新建立的回归方程中为pp k k k k x x x x y *1*11*11*1*0ˆˆˆˆˆˆβββββ++++++=++-- , 则可以证明,新回归方程的系数与原回归方程的系数有如下关系:k kkkj j j c c βββˆˆˆ*-= ) , ,,2,1(k j p j ≠= , ∑≠-=kj jj x y **0ˆˆββ. 对于新建立的回归方程,必须对每一个余下的变量再次进行检验,直至余下变量全部显著为止.4.最优回归方程的选择⑴ 最优回归方程选择标准① 因子完备的原则 回归方程中包含所有对因变量有显著影响的自变量. ② 模型从简的原则 回归方程中所包含的自变量的个数尽可能的少. ③ 充分拟合的原则 回归方程的剩余方差达到最小. ⑵ 最优回归方程选择方法(逐步回归法)① 根据问题所属专业领域的理论和经验提出对因变量可能有影响的所有自变量. ② 计算每一个自变量对因变量的相关系数,按其绝对值从大到小排序.③ 取相关系数绝对值最大的那个自变量建立一元线性回归模型,检验所得回归方程的显著性,若检验表明回归效果显著则转入④,若检验表明回归效果不显著则停止建模.④ 进行变量的追加、剔除和回归方程的更新操作:若检验表明回归效果显著,则按相关系数绝对值由大到小的顺序逐一将相应的自变量引入回归方程;每引入一个新的自变量,对新回归方程中每一个自变量都要进行显著性检验.若检验表明回归效果不显著,则剔除对因变量影响最小的自变量,更新回归方程;对更新后的回归方程中的每一个自变量仍要进行显著性检验、剔除、更新,直到回归方程中的每一个自变量都显著为止,再引入前面未曾引入的自变量.以此类推,直到无法剔除已经引入的自变量,也无法引入新的自变量为止. 注释① 逐步回归法不能保证得到真正的最优回归方程,但此法是计算量较小、预测效果较好、有工具软件支持、应用最多欧德一种方法.② 逐步回归法受检验的显著性水平α影响较大,α较大将会有较多的自变量引入回归方程,α较小将会导致一些重要的自变量被剔除.5.利用回归方程对系统进行预测⑴ 点预测设预测点为T p x x x x ),,,(002010 =,则pp x x x y 002201100ˆˆˆˆˆββββ++++= 是对p p x x x Ey 002201100ββββ++++=的点估计,亦是对0002201100εββββ+++++=p p x x x y ,),0(~20σεN的点预测.⑵ 区间预测 可以证明)1(~ˆ00--∆-=p n t s yy t其中12--=p n SSEs (剩余方差),∑∑==--++=∆p i pj ij j j i i c x x x x n 1100))((11,),,2,1( 11p i x n x nk ki i ==∑=.于是,点预测的误差为∆--±-s p n t )1(2/1α,即在0x 处的区间预测为))1(ˆ , )1(ˆ(2/102/10∆--+∆-----s p n t y s p n t yαα 即ααα-=∆--+<<∆-----1})1(ˆ )1(ˆ{2/1002/10s p n t y y s p n t yP . 当n 较大,),,2,1( 0p i x x i i =≈时,可取1=∆以此来简化计算.多元线性回归分析—案例及M A T L A B 解决【案例】 设某种水泥在凝固时所释放出的热量Y (卡/克)与水泥中的下列四种化学成分有关:1x ─32O Al 3CaO ⋅的成分(%), 2x ─2SiO 3CaO ⋅的成分(%), 3x ─3232O Fe O Al 4CaO ⋅⋅的成分(%),4x ─2SiO 2CaO ⋅的成分(%).共观测了13组数据(见下表):序号x 1x 2x 3x 4Y1 2 3 4 57 1 11 11 726 29 56 31 526 15 8 8 660 52 20 47 3378.5 74.3 104.3 87.6 95.96 7 8 9 10 11 12 1311 3 1 2 21 1 11 1055 71 31 54 47 40 66 689 17 22 18 4 23 9 822 6 44 22 26 34 12 12109.2 102.7 72.5 93.1 115.9 83.8 113.3 109.4试用逐步回归法求出Y 对1x 、2x 、3x 和4x 的最优回归方程.注释 数据保存在hald.mat 文件中,ingredients 为解释变量, heat 为因变量 .1、MATLAB 逐步回归法建模的交互式图形环境介绍【函数名称】stepwise 【函数功能】创建多元线性回归分析的逐步回归法建模的交互式图形环境. 【调用格式】 stepwise(X,y)stepwise(X,y,inmodel,penter,premove) 【参数说明】X ─p 元线性模型解释变量的n 个观测值的n ×p 矩阵. y ─p 元线性模型因变量的n 个观测值的n ×1向量.inmodel ─标量或向量(由X 的列号构成),用来指明最初引入回归方程的解释变量(缺省设置为空).penter ─模型检验的显著性水平上限值(缺省设置为0.05). premoveb ─模型检验的显著性水平下限值(缺省设置为0.10). 【案例中的应用】load haldstepwise(ingredients, heat) 【交互式图形界面的说明】窗口Ⅰ C o e f f i c i e n t s w i t h E r r o r B a r s绘出各个解释变量回归系数的估计,圆点表示点估计值,横线表示置信区间(有色线段表示90%置信区间,黑色线段表示95%置信区间).窗口的右侧给出回归系数的点估计值(Coeff)、显著性检验的t统计量的值(t-stet)和显著性概率p值(p-val).窗口ⅡM o d e l H i s t o r y该窗口绘出的圆点表示历次建模的模型标准差σ的估计.两个窗口中间输出的是当前模型的有关信息,包括:lntercept ─模型截距(常数项)的估计.RMSE ─模型标准差σ的估计.R-square ─可决系数.Adj-R-sq ─校正的可决系数.F ─模型整体性检验的F统计量的值.p ─模型整体性检验的显著性概率.窗口Ⅰ右侧的三个按钮:Next Step ─在回归方程中按相关系数绝对值大小逐次引入解释变量,如无解释变量可引入时按钮不可用.All Steps ─直接给出“只进不出”方式建模的最终结果(注意,此时的回归方程未必是最优回归方程).Export…─选择向Workspace传输的计算结果(有关变量名可由用户自定义).2、MATLAB逐步回归法建模的集成命令介绍【函数名称】stepwisefit【函数功能】用逐步回归法创建多元线性回归分析的最优回归方程..【调用格式】b = stepwisefit(X,y)[b,se,pval,inmodel,stats,nextstep,history] = tepwisefit(...) [...] = stepwisefit(X,y,'Param1',value1,'Param2',value2,...) 【参数说明】输入参数X与y的意义同函数stepwise. 其它引用参数的用法请用doc命令调阅系统帮助.输出参数b─模型系数 .se ─模型系数的标准误差.pval─各个解释变量显著性检验的显著性概率.inmodel─各个解释变量在最终回归方程中地位的说明(1表示在方程中,0表示不再方程中).stats─是一个构架数组,包括:source :建模方法的说明,'stepwisefit'表示逐步回归法;dfe:最优回归方程的剩余自由度;df0:最优回归方程的回归自由度;SStotal:最优回归方程的总偏差平方和;SSresid:最优回归方程的剩余平方和;fstat:最优回归方程的F统计量的值;pval:最优回归方程的显著性概率;rmse:最优回归方程的标准误差估计;B:模型系数;SE:模型系数的标准误差;TSTAT:每个自变量显著性检验的T统计量的值;PVAL:每个自变量显著性检验的显著性概率;intercept:常数项的点估计;等等.nextstep ─对是否还有需要引入回归方程的自变量的说明(0表示没有)history ─是一个构架数组,包括:rmse:每一步的模型标准误差估计;df0:每一步引入方程的变量个数;in:记录了按相关系数绝对值大小逐步引入回归方程的变量的次序.【案例中的应用】load hald[b,se,pval,inmodel,stats,nextstep,history]=stepwisefit(ingredients, heat, 'penter', .10) Initial columns included: noneStep 1, added column 4, p=0.000576232Step 2, added column 1, p=1.10528e-006Step 3, added column 2, p=0.0516873Step 4, removed column 4, p=0.205395Final columns included: 1 2Columns 1 through 3'Coeff' 'Std.Err.' 'Status'[ 1.4683] [ 0.1213] 'In'[ 0.6623] [ 0.0459] 'In'[ 0.2500] [ 0.1847] 'Out'[-0.2365] [ 0.1733] 'Out'Column 4'P'[2.6922e-007][5.0290e-008][ 0.2089][ 0.2054]b =1.46830.66230.2500-0.2365se =0.12130.04590.18470.1733pval =0.00000.00000.20890.2054inmodel =1 1 0 0stats =source: 'stepwisefit' dfe: 10df0: 2SStotal: 2.7158e+003SSresid: 57.9045fstat: 229.5037pval: 4.4066e-009rmse: 2.4063xr: [13x2 double] yr: [13x1 double] B: [4x1 double]SE: [4x1 double]TSTAT: [4x1 double]PVAL: [4x1 double]intercept: 52.5773wasnan: [13x1 logical]nextstep =history =rmse: [8.9639 2.7343 2.3087 2.4063] df0: [1 2 3 2]in: [4x4 logical]。