第三章 经典进化计算——遗传算法_2

合集下载

遗传算法遗传算法

遗传算法遗传算法
11
(5)遗传算法在解空间进行高效启发式搜索,而非盲 目地穷举或完全随机搜索;
(6)遗传算法对于待寻优的函数基本无限制,它既不 要求函数连续,也不要求函数可微,既可以是数学解 析式所表示的显函数,又可以是映射矩阵甚至是神经 网络的隐函数,因而应用范围较广;
(7)遗传算法具有并行计算的特点,因而可通过大规 模并行计算来提高计算速度,适合大规模复杂问题的 优化。
26
(4)基本遗传算法的运行参数 有下述4个运行参数需要提前设定:
M:群体大小,即群体中所含个体的数量,一般取为 20~100; G:遗传算法的终止进化代数,一般取为100~500; Pc:交叉概率,一般取为0.4~0.99;
Pm:变异概率,一般取为0.0001~0.1。
27
10.4.2 遗传算法的应用步骤
遗传算法简称GA(Genetic Algorithms)是1962年 由美国Michigan大学的Holland教授提出的模拟自然 界遗传机制和生物进化论而成的一种并行随机搜索最 优化方法。
遗传算法是以达尔文的自然选择学说为基础发展起 来的。自然选择学说包括以下三个方面:
1
(1)遗传:这是生物的普遍特征,亲代把生物信息交 给子代,子代总是和亲代具有相同或相似的性状。生 物有了这个特征,物种才能稳定存在。
18
(3)生产调度问题 在很多情况下,采用建立数学模型的方法难以对生
产调度问题进行精确求解。在现实生产中多采用一些 经验进行调度。遗传算法是解决复杂调度问题的有效 工具,在单件生产车间调度、流水线生产车间调度、 生产规划、任务分配等方面遗传算法都得到了有效的 应用。
19
(4)自动控制。 在自动控制领域中有很多与优化相关的问题需要求
10

遗传算法

遗传算法

1.3 遗传算法与传统方法的比较
传统算法 起始于单个点 遗传算法 起始于群体
改善 (问题特有的)

改善 (独立于问题的) 否
终止?
终止? 是 结束

结束
1.3.1遗传算法与启发式算法的比较
启发式算法是通过寻求一种能产生可行解的启发式规则,找到问 题的一个最优解或近似最优解。该方法求解问题的效率较高,但是具有 唯一性,不具有通用性,对每个所求问题必须找出其规则。但遗传算法 采用的是不是确定性规则,而是强调利用概率转换规则来引导搜索过程。
1.2 遗传算法的特点
遗传算法是一种借鉴生物界自然选择和自然遗传机制 的随机搜索法。它与传统的算法不同,大多数古典的优化算 法是基于一个单一的度量函数的梯度或较高次统计,以产生 一个确定性的试验解序列;遗传算法不依赖于梯度信息,而 是通过模拟自然进化过程来搜索最优解,它利用某种编码技 术,作用于称为染色体的数字串,模拟由这些串组成的群体 的进化过程。
1.2.2 遗传算法的缺点
(1)编码不规范及编码存在表示的不准确性。 (2)单一的遗传算法编码不能全面地将优化问题的约束表示 出来。考虑约束的一个方法就是对不可行解采用阈值,这样, 计算的时间必然增加。 (3)遗传算法通常的效率比其他传统的优化方法低。 (4)遗传算法容易出现过早收敛。 (5)遗传算法对算法的精度、可信度、计算复杂性等方面, 还没有有效的定量分析方法。
上述遗传算法的计算过程可用下图表示。
遗传算法流程图
目前,遗传算法的终止条件的主要判据有 以下几种:
• 1) 判别遗传算法进化代数是否达到预定的最大代数; • 2) 判别遗传搜索是否已找到某个较优的染色体; • 3) 判别各染色体的适应度函数值是否已趋于稳定、再上升 否等。

遗传算法

遗传算法

1 遗传算法1.1 遗传算法的定义遗传算法(GeneticAlgorithm,GA)是近多年来发展起来的一种全新的全局优化算法,它是基于了生物遗传学的观点,是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。

它通过自然选择、遗传、复制、变异等作用机制,实现各个个体的适应性的提高,从而达到全局优化。

遗传算法151解决一个实际问题通常都是从一个种群开始,而这个种群通常都是含有问题的一个集合。

这个种群是由一定数目的个体所构成的,利用生物遗传的知识我们可以知道这些个体正好组成了我们知道的染色体,也就是说染色体是由一个个有特征的个体组成的。

另外我们还知道,遗传算法是由染色体组成,而染色体是由基因组成,可以这么说,基因就决定了个体的特性,所以对于遗传算法的最开始的工作就需要进行编码工作。

然后形成初始的种群,最后进行选择、交叉和变异的操作。

1.2遗传算法的重要应用在现实应用中,遗传算法在很多领域得到很好的应用,特别是在解决多维并且相当困难的优化问题中时表现出了很大的优势。

在遗传算法的优化问题的应用中,其中最为经典的应用就是我们所熟悉的函数优化问题,它也是对遗传算法的性能进行评价的最普遍的一种算法;另外的一个最重要的应用,也就是我们本文所研究的应用—组合优化问题,一般的算法很难解决组合优化问题的搜索空间不断扩大的局面,而组合优化问题正好是解决这种问题的最有效的方法之一,在本文的研究中,比如求解TSP问题、VRP问题等方面都得到了很好的应用;另外遗传算法在航空控制系统中的应用、在图像处理和模式识别的应用、在生产调度方面的应用以及在工人智能、人工生命和机器学习方面都得到了很好的应用。

其实在当今的社会中,有关于优化方面的问题应用于各行各业中,因此有关于优化问题已经变得非常重要,它对于整个社会的发展来说都是一个不可改变的发展方向,也是社会发展的一个非常重要的需要。

1.3 遗传算法的特点遗传算法不同于传统的搜索与优化方法,它是随着问题种类的不同以及问题规模的扩大,能以有限的代价来很好的解决搜索和优化的方法。

遗传算法-2-2

遗传算法-2-2

确定式选择
按照确定的方式进行选择。其具体操作过程是: (1)计算群体中每个个体在下一代群体中的期望生存数目 N i: N
N i N Fi
F ,
j j 1
i 1, 2, , N
(2)用 N i 的整数部分[ N i ]确定各个对应个体在下一代群 体中的生存数目; (3)按照 N i 的小数部分对个体进行降序排序,顺序取前
2.4.1
单点交叉
单点交叉(One-point Crossover)又称为简 单交叉,它是指在个体码串中只随机设置一个交 叉点,然后两个配对染色体分别在该点处断开, 并交换断开后部的染色体。具体过程是:
(1)群体中的个体进行随机成双配对; (2)对每一对配对的个体随机的设置某一个 基因座的位置为交叉点 (3)对每一对配对的个体依设定的交叉概率 pc 在其交叉点处相互交换两个个体的部分染色体, 从而产生出两个新的个体。依概率 pc 的含义是 当机器产生的随机数 p pc 时交换,p p c 时不 交换。
N [ N j ]个个体加入到下一代群体中,至此可完全确定出下
j 1 N
一代群体中的 N 个个体。 这种方法可保证适应度较大的一些个体一定能够被保留 在下一代群体中。
2.4 交叉算子
遗传算法中的交叉运算是指对两个染色体按 某种方式相互交换其部分基因,从而产生两个新 的基因,即产生两个新的个体。交叉运算是产生 新个体的主要方法。

交叉点1 交叉点2
A : x xxx xx 双点交叉 B : y yyy yy
A : x yyy xx B : y xxx y y
将单点交叉和双点交叉的概念加以推广,可以得到 多点交叉的概念。 A : x xx xxx x 三 点交叉 A : x yy xxx y B : y yy yyy y B : y xx yyy x

遗传算法

遗传算法

1.1引言
生命科学--与工程科学的相互交叉、相互渗透和相互促进是近代科学技术发展的一个显著特点,而遗传算法的蓬勃发展正体现了科学发展的这一特征和趋势。
遗传算法(Genetic Algorithm-GA),是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,它是由美国Michigan大学的J.Holland教授于1 975年首先提出的[1]。J.Holland教授和他的研究小组围绕遗传算法进行研究的宗旨有两个,一是抽取和解释自然系统的自适应过程,二是设计具有自然系统机理的人工系统。毫无疑问,Holland教授的研究,无论对白然系统还是对人工系统都是十分有意义的。
生物的各项生命活动都有它的物质基础,生物的遗传与变异也是这样。根据现代细胞学和遗传学的研究得知,遗传物质的主要载体是染色体(chromsome),染色体主要是由DNA(脱氧核糖核酸)和蛋白质组成,其中DNA又是最主要的遗传物质。现代分子水平的遗传学的研究又进一步证明,基因(gene)是有遗传效应的片段,它储存着遗传信息,可以准确地复制,也能够发生突变,并可通过控制蛋白质的合成而控制生物的性状。生物体自身通过对基因的复制(reproduction)和交叉(crossover),即基因分离、基因自由组合和基因连锁互换的操作使其性状的遗传得到选择和控制。同时,通过基因重组、基因变异和染色体在结构和数目上的变异产生丰富多采的变异现象。需要指出的是,根据达尔文进化论,多种多样的生物之所以能够适应环境而得以生存进化,是和上述的遗传和变异生命现象分不开的。生物的遗传特性,使生物界的物种能够保持相对的稳定;生物的变异特性,使生物个体产生新的性状,以至于形成了新的物种,推动了生物的进化和发展。
1100|0 -> 11001
表1.2

遗传算法(GeneticAlgorithm)..

遗传算法(GeneticAlgorithm)..
问题的一个解 解的编码 编码的元素
被选定的一组解 根据适应函数选择的一组解 以一定的方式由双亲产生后代的过程 编码的某些分量发生变化的过程
遗传算法的基本操作
➢选择(selection):
根据各个个体的适应值,按照一定的规则或方法,从 第t代群体P(t)中选择出一些优良的个体遗传到下一代 群体P(t+1)中。
等到达一定程度时,值0会从整个群体中那个位上消失,然而全局最 优解可能在染色体中那个位上为0。如果搜索范围缩小到实际包含全局 最优解的那部分搜索空间,在那个位上的值0就可能正好是到达全局最 优解所需要的。
2023/10/31
适应函数(Fitness Function)
➢ GA在搜索中不依靠外部信息,仅以适应函数为依据,利 用群体中每个染色体(个体)的适应值来进行搜索。以染 色体适应值的大小来确定该染色体被遗传到下一代群体 中的概率。染色体适应值越大,该染色体被遗传到下一 代的概率也越大;反之,染色体的适应值越小,该染色 体被遗传到下一代的概率也越小。因此适应函数的选取 至关重要,直接影响到GA的收敛速度以及能否找到最优 解。
2023/10/31
如何设计遗传算法
➢如何进行编码? ➢如何产生初始种群? ➢如何定义适应函数? ➢如何进行遗传操作(复制、交叉、变异)? ➢如何产生下一代种群? ➢如何定义停止准则?
2023/10/31
编码(Coding)
表现型空间
基因型空间 = {0,1}L
编码(Coding)
10010001
父代
111111111111
000000000000
交叉点位置
子代
2023/10/31
111100000000 000011111111

03第三章 遗传算法

03第三章 遗传算法

第三章遗传算法习题与答案1.填空题(1)遗传算法的缩写是,它模拟了自然界中过程而提出,可以解决问题。

在遗传算法中,主要的步骤是、、。

(2)遗传算法的三个算子是、、。

解释:本题考查遗传算法的基础知识。

具体内容请参考课堂视频“第3章遗传算法”及其课件。

答案:(1)GA,生物进化,全局优化,编码,计算适应度函数,遗传算子(2)选择,交叉,变异2.对于编码长度为7的二进制编码,判断以下编码的合法性。

(1)[1020110](2)[1011001](3)[0110010](4)[0000000](5)[2134576]解释:本题考查遗传算法的二进制编码的合法性。

具体内容请参考课堂视频“第3章遗传算法”及其课件。

答案:(1)[1020110]不合法,不能出现“2”(2)[1011001]合法(3)[0110010]合法(4)[0000000]合法(5)[2134576]不合法,不能出现0、1以外的数字3.下图能够基本反映生物学遗传与优胜劣汰的过程。

理解该图,联想计算类问题求解,回答下列问题。

(1)下列说法正确的是_____。

(多选)A)任何一个生物个体的性状是由其染色体确定的,染色体是由基因及其有规律的排列所构成的,因此生物个体可由染色体来代表。

B)生物的繁殖过程是通过将父代染色体的基因复制到子代染色体中完成的,在复制过程中会发生基因重组或基因突变。

基因重组是指同源的两个染色体之间基因的交叉组合,简称为“杂交/交配”。

基因突变是指复制过程中基因信息的变异,简称“突变”。

C)不同染色体会产生不同生物个体的性状,其适应环境的能力也不同。

D)自然界体现的是“优胜劣汰,适者生存”的丛林法则。

不适应环境的生物个体将被淘汰,自然界生物的生存能力会越来越强。

解释:本题考核对生物遗传观点以及所给图片的理解。

具体内容请参考课堂视频“第3章遗传算法”及其课件。

答案:A、B、C、D关于生物遗传进化的基本观点如下:(1)生物的所有遗传信息都包含在其染色体中,染色体决定了生物的性状。

遗传算法--种群进化(经典算法连载二)

遗传算法--种群进化(经典算法连载二)

遗传算法--种群进化(经典算法连载⼆)遗传算法核⼼---杂交,物竞天择
物竞天择--适应性评分与及选择函数。

1.物竞――适应度函数(fitness function)
你产⽣的个体,对你预设的环境有多⼤的适应度
2.天择――选择函数(selection)
3.变异,进化的源泉。

//1.评估每条染⾊体所对应个体的适应度。

//2.遵照适应度越⾼,选择概率越⼤的原则,从种群中选择两个个体作为⽗⽅和母⽅。

//3.抽取⽗母双⽅的染⾊体,进⾏交叉,产⽣⼦代。

//4.对⼦代的染⾊体进⾏变异。

//5.重复2,3,4步骤,直到新种群的产⽣。

//结束循环。

void calAdaptive(个体unit);//计算个体适应度
void outUnit(种群units) ;
void getSon();//获取⼦孙后代
void variation();//变异
int test()
{
//种群初始化
init(uints);
do{
foreach uint in uints
calAdaptive(uint);
select good mother and father to create a son
getSon(mother,father);//获取⼦孙后代
variation();//变异
}(looptime==>)//终⽌条件可以使迭代次数也可以是种群对环境适应度⽔平等
}。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解 (1) 设定种群规模 , 编码染色体,产生初始 种群。 将种群规模设定为 4 ;用 5 位二进制数编码 染色体;取下列个体组成初始种群S1: s1= 13 (01101), s2= 24 (11000) s3= 8 (01000), s4= 19 (10011)
(2) 定义适应度函数,
取适应度函数:f (x)=x2
s3=11000
81
576
0.04
0.32
0.48
0.80
0
1
s4=10011
361
0.20
1.00
1
设这一轮的选择-复制结果为:
s1’=11100(28), s2’=11100(28)
s3’=11000(24), s4’=10011(19) 做交叉运算,让s1’与s4’,s2’与s3’ 分别交换 后两位基因,得 s1’’=11111(31), s2’’=11100(28) s3’’=11000(24), s4’’=10000(16) 这一轮仍然不会发生变异。
3.3—遗传算法的模式理论
指导遗传算法的基本理论,是J.H.Holland教授创 立的模式理论。该理论揭示遗传算法的基本机理。
一、基本概念 二、模式定理 三、建筑块假说 四、隐含并行性
一、基本概念
1.1 问题的引出
例: 求 max f(x)=x2 x {0,31}
[分析] • 当编码的最左边字符为“1”时,其个体适应度较大,如2号个体和4号个体, 我们将其记为 “ 1**** ”; 其中2号个体适应度最大,其编码的左边两位都是1,我们记为 “ 11*** ”; • 当编码的最左边字符为“0”时,其个体适应度较小,如1号和3号个体, 我们记为 “ 0**** ”。
——遗传算法总是在寻找优解, 而不像图搜 索那样并非总是要求优解, 而一般是设法尽快 找到解, 所以遗传算法又是一种优化搜索算法。
——遗传算法的搜索过程是从空间的一个点 集(种群)到另一个点集(种群)的搜索,而不像图 搜索那样一般是从空间的一个点到另一个点地 搜索。 因而它实际是一种并行搜索, 适合大规 模并行计算,而且这种种群到种群的搜索有能力 跳出局部最优解。
j 1
选择-复制
设从区间[0, 1]中产生4个随机数如下: r1 = 0.450126, r2 = 0.110347 r3 = 0.572496, r4 = 0.98503
染色体 适应度 选择概率 积累概率 选中次数
s1=01101
s2=11000 s3=01000
169
576 64
0.14
0.49 0.06
——遗传算法的适应性强 , 除需知适应度 函数外, 几乎不需要其他的先验知识。 ——遗传算法长于全局搜索 , 它不受搜索 空间的限制性假设的约束,不要求连续性, 能以 很大的概率从离散的、多极值的、 含有噪声的 高维问题中找到全局最优解。
◆遗传算法的应用
函数优化
是遗传算法的经典应用领域; 组合优化 实践证明,遗传算法对于组合优化中的NP完全问题 非常有效; 自动控制 如基于遗传算法的模糊控制器优化设计、基于遗传算 法的参数辨识、利用遗传算法进行人工神经网络的结构 优化设计和权值学习等; 机器人智能控制 遗传算法已经在移动机器人路径规划、关节机器人运 动轨迹规划、机器人逆运动学求解、细胞机器人的结构 优化和行动协调等;
于是,得第四代种群S4:
s1=11111(31), s2=11100(28)
s3=11000(24), s4=10000(16)
显然,在这一代种群中已经出现了适应度 最高的染色体s1=11111。于是,遗传操作终止, 将染色体“11111”作为最终结果输出。 然后,将染色体“11111”解码为表现型,即 得所求的最优解:31。 将31代入函数y=x2中,即得原问题的解,即 函数y=x2的最大值为961。
0.14
0.63 0.69
1
2 0
s4=10011
361
0.31
1.00
1
于是,经复制得群体:
s1’ =11000(24), s2’ =01101(13)
s3’ =11000(24), s4’ =10011(19)
交叉
设交叉率 pc=100% ,即 S1 中的全体染色体都 参加交叉运算。
设s1’与s2’配对,s3’与s4’配对。分别交换后 两位基因,得新染色体: s1’’=11001(25), s2’’=01100(12)
第二代种群S2中各染色体的情况 染色体 s1=11001 s2=01100 s3=11011 s4=10000 适应度 625 144 729 256 选择概率 0.36 0.08 0.41 0.15 积累概率 0.36 0.44 0.85 1.00 估计的 选中次数 1 0 2 1
假设这一轮选择-复制操作中,种群S2中的
• 阶次越低,模式的概括性越强,所代表的编码串个体数也越多,反之亦然; • 当模式阶次为零时,它没有明确含义的字符,其概括性最强。
模式的定义长度( Schema Defining Length) ——指模式中第一个和最后一个具有明确含意的字符之间的距离,记作 (s)。 例如,模式( 011*l** ) 的第一个字符为0,最后一个字符为l,中间有3个 字符,其定义长度为4,记作 ( 011*l** ) = 4 ;模式 ( 0****** ) 的长度是0,记 作 ( 0****** ) = 0 ;
4个染色体都被选中,则得到群体:
s1’=11001(25), s2’= 01100(12)
s3’=11011(27), s4’= 10000(16)
做交叉运算,让s1’与s2’,s3’与s4’ 分别交换 后三位基因,得 s1’’ =11100(28), s2’’ = 01001(9)
s3’’ =11000(24), s4’’ = 10011(19)
这一轮仍然不会发生变异。
于是,得第三代种群S3:
s1=11100(28), s2=01001(9)
s3=11000(24), s4=10011(19)
第三代种群S3中各染色体的情况 染色体 s1=11100 适应度 784 选择概率 0.44 积累概率 0.44 估计的 选中次数 2
s2=01001
• 一般地,有式子 (s)=b – a 式中 b—模式s 中最后一个明确字符的位置; a—模式s 中最前一个明确字符的位置。 • 模式的长度代表该模式在今后遗传操作(交叉、变异)中被破坏的可能性: 模式长度越短,被破坏的可能性越小,长度为0的模式最难被破坏。
1.3 编码字符串的模式数目
(1) 模式总数
• 二进制字符串 假设字符的长度为,字符串中每一个字符可取( 0, 1, * ) 三个符号中任意 一个,可能组成的模式数目最多为: 3 3 3 … 3 = (2+1) • 一般情况下, 假设字符串长度为,字符的取值为 k 种,字符串组成的模式数目 n1 最多 为: n1=(k+1)
s3’’=11011(27), s4’’=10000(16)
变异
设变异率pm=0.001。
这样,群体S1中共有
5×4×0.001=0.02
位基因可以变异。 0.02位显然不足 1位,所以本轮遗传操作不 做变异。
于是,得到第二代种群S2:
s1=11001(25), s2=01100(12)
s3=11011(27), s4=10000(16)
(3) 计算各代种群中的各个体的适应度 , 并
对其染色体进行遗传操作,直到适应度最高的个
体(即31(11111))出现为止。
首先计算种群S1中各个体 s1= 13(01101), s2= 24(11000) s3= 8(01000), s4= 19(10011) 的适应度f (si) 。 容易求得 f (s1) = f(13) = 132 = 169 f (s2) = f(24) = 242 = 576 f (s3) = f(8) = 82 = 64 f (s4) = f(19) = 192 = 361
[结论] 从这个例子可以看比,我们在分析编码字符串时,常常只关心某一位或某几位 字符,而对其他字符不关心。换句话讲.我们只关心字符的某些特定形式,如 1****,11***,0****。这种特定的形式就叫模式。
Hale Waihona Puke 1.2 模式、模式阶及模式定义长度
模式(Schema)——指编码的字符串中具有类似特征的子集。 以五位二进制字符串为例,模式 *111* 可代表4个个体: 01110,01111, 11110,11111;模式 *0000 则代表2个个体:10000,00000 。
Y
Y
y=x2
y =x2
8 Y
13
19 24
X Y
12 16
25 27
X
第一代种群及其适应度
第二代种群及其适应度
y=x 2
y=x2
9
19 24 28
X
16
24 28 31 X
第三代种群及其适应度
第四代种群及其适应度
二、遗传算法的特点与优势
◆遗传算法的主要特点 ——遗传算法一般是直接在解空间搜索 , 而不像图搜索那样一般是在问题空间搜索 , 最 后才找到解。 ——遗传算法的搜索随机地始于搜索空间 的一个点集 , 而不像图搜索那样固定地始于搜 索空间的初始节点或终止节点 , 所以遗传算法 是一种随机搜索算法。
• 个体是由二值字符集 V={0, 1} 中的元素所组成的一个编码串; • 而模式却是由三值字符集 V={0, 1,* } 中的元素所组成的一个编码串,其中 “ * ” 表示通配符,它既可被当作 “1” 也可被当作 “0”。 模式阶 (Schema Order) ——指模式中已有明确含意(二进制字符时指0或1)的字符个数, 记做 o(s),式中 s 代表模式。 例如,模式 ( 011*1** ) 含有4个明确含意的字符,其阶次是4, 记作 o( 011*1** ) =4; 模式 ( 0****** ) 的阶次是1,记作 o( 0****** ) =1。
相关文档
最新文档