函数的表示法学案

合集下载

中等教育数学(基础模块上)3.1.2 函数的表示方法 (二)(学案)

中等教育数学(基础模块上)3.1.2 函数的表示方法 (二)(学案)

(3) f(a)与 f(-a)相等吗?有怎样的关系?
(4) 函数图象是轴对称图形还是中心对称图形?
如果有问题,赶紧记下来,做为质疑的问题,你的问题越多,你的收获越多! 1
高 一
年级
数学
学科
导学案
使用时间:
2014 年
主编:
李晓霏
审核:
职高二备课组
【探究学习三】 例 3 作出函数 y=|x|+1 的图像。
【知识拓展】作出下列函数的图像 1、y=-x
3
2、y= x 1
思考:函数图象的图像特征?
1 3、y= 2 x +1
【探究学习四】 例 4
作出下列函数 f(x)=


1, x 1,0 的图象。 2, x 0,1
(三)、总结提升
(四)、课后作业 思考:函数的图像特征? 1、y=-3x+4 3、y=|x|
作出下列函数图像 2、y=2x -5 4、y= x
2
如果有问题,赶紧记下来,做为质疑的问题,你的问题越多,你的收获越多!
2
3 2
(2)函数值 y 随 x 的增大有怎样的变化?
(3)f(a)与 f(-a)相等吗?有怎样的关系?
(4)函数图象是轴对称图形还是中心对称图形?
1 【探究学习二】 例 2 作函数 y= 2 的图象. x
1 (1) 函数 y= 2 的定义域、值域是什么? x
(2) 在第一象限中, 函数值 y 随 x 的增大有怎样的变化?在第二象限中呢?
高 一
年级
数学
学科
导学案
使用时间:
2014 年
主编:
李晓霏
审核:
职高二备课组

第1课时 函数的表示法(学案)21-22高一数学教材配套学案+课件+练习(人教A版19必修第一册

第1课时 函数的表示法(学案)21-22高一数学教材配套学案+课件+练习(人教A版19必修第一册

3.1.2 函数的表示法第1课时函数的表示法【学习目标】函数的三种表示方法注意:【小试牛刀】思辨解析(正确的打“√”,错误的打“×”)(1)任何一个函数都可以用列表法表示.()(2)任何一个函数都可以用图象法表示.()(3)函数的图象一定是其定义区间上的一条连续不断的曲线.()(4)函数f(x)=2x+1可以用列表法表示.()【经典例题】题型一函数的表示法点拨:(1)列表法、图象法、解析法均是函数的表示法,无论用哪种方式表示函数,都必须满足函数的概念.(2)在实际操作中,仍以解析法为主.例1 某种笔记本的单价是5元,买x(x∈{1,2,3,4,5})个笔记本需要y元.试用函数的三种表示法表示函数y=f(x).【跟踪训练】1 已知函数f(x),g(x)分别由下表给出(1)f(g(3))=__________;(2)若g(f(x))=2,则x=__________.题型二图象法表示函数点拨:作函数图象的步骤及注意点(1)作函数图象主要有三步:列表、描点、连线.作图象时应先确定函数的定义域,再在定义域内化简函数解析式,再列表画出图象.(2)函数的图象可能是平滑的曲线,也可能是一群孤立的点,画图时要注意关键点,如图象与坐标轴的交点、区间端点、二次函数的顶点等等.例2 作出下列函数的图象并求出其值域.(1)y=2x,x∈[2,+∞);(2)y=x2+2x,x∈[-2,2].【跟踪训练】2 画出下列函数的图象:(1)y=x+1(x≤0);(2)y=x2-2x(x>1或x<-1).题型三 求函数解析式点拨:(1)待定系数法:若已知函数的类型,可用待定系数法求解,即由函数类型设出函数解析式,再根据条件列方程(组),通过解方程(组)求出待定系数,进而求出函数解析式. (2)已知f (g (x ))=h (x ),求f (x ),常用的有两种方法:①换元法,即令t =g (x ),解出x ,代入h (x )中,得到一个含t 的解析式,即为函数解析式,注意:换元后新元的范围.②配凑法,即从f (g (x ))的解析式中配凑出“g (x )”,即用g (x )来表示h (x ),然后将解析式中的g (x )用x 代替即可.(3)方程组法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).例3-1 已知函数f (x )是一次函数,若f [f (x )]=4x +8,求f (x )的解析式.【跟踪训练】3已知f (x )是二次函数且满足f (0)=1,f (x +1)-f (x )=2x ,则函数f (x )的解析式为________.例3-2 已知函数f (x +1)=x +2x +1,求f (x )的解析式。

人教B版高中数学必修一【学案8】函数的表示方法

人教B版高中数学必修一【学案8】函数的表示方法

学案八 函数的表示方法一、三维目标:知识与技能:进一步理解函数的概念;使学生掌握函数的三种表示方法;使学生掌握分段函数及其简单应用。

过程与方法:通过实例,使学生会根据具体问题选择合适的方法来表示两个变量之间的函数关系,并初步感知处理函数问题的方法。

情感态度与价值观:通过学习,让学生体会到生活离不开数学,激发学习兴趣,培养学生学数学用数学的意识。

二、学习重、难点:重点:函数的表示方法,根据具体问题选择合适的方法来表示两个变量之间的函数关系。

难点:函数三种表示方法的选择及分段函数的表达和性质。

学法指导:在回顾初中所学函数的有关知识的基础上,认真阅读教材P38--P43,通过对教材中的例题的研究,完成学习目标 。

学习过程:1、函数的三种表示方法(1)列表法:__________________________________________________。

举例: 如:人口普查表(见课本P38) 优点:___________________________________________________________________. (2)解析法:___________________________________________________________。

举例:___________________________________________________________。

优点: ⎩⎨⎧函数值;意一个自变量所对应的可以通过解析式求出任量间的关系;简明,全面地概括了变(3)图象法:__________________________________________________________。

优点:___________________________________________________________。

说出函数y=f(x)与其图像间的关系:__________________________________________ ___________________________________________________________________________ ___________________________________________________________________________. 这是“数形结合”思想和方法的依据。

高中数学第三章函数函数及其表示方法第1课时函数的概念学案新人教B版必修第一册

高中数学第三章函数函数及其表示方法第1课时函数的概念学案新人教B版必修第一册

3.1 函数的概念与性质 3.1.1 函数及其表示方法第1课时 函数的概念课程标准在初中用变量之间的依赖关系描述函数的基础上,用集合语言和对应关系刻画函数,建立完整的函数概念,体会集合语言和对应关系在刻画函数概念中的作用.了解构成函数的要素,能求简单函数的定义域.新知初探·自主学习——突出基础性教材要点知识点一 函数的概念1.函数的概念一般地,给定两个非空实数集A与B,以及对应关系f,如果对于集合A中的每一个实数x,在集合B中都有唯一确定的实数y与x对应,则称f为定义在集合A上的一个函数,记作y=f(x),x∈A.2.函数的定义域和值域函数y=f(x)中x称为自变量,y称为因变量,自变量取值的范围(即数集A)称为这个函数的定义域,所有函数值组成的集合{y|y=f(x),x∈A}称为函数的值域.状元随笔 对函数概念的3点说明(1)当A , B为非空实数集时,符号“ f :A→B ”表示A到B的一个函数.(2)集合A中的数具有任意性,集合B中的数具有唯一性.(3)符号“f ”表示对应关系,在不同的函数中f的具体含义不一样.知识点二 同一函数一般地,如果两个函数的定义域相同,对应关系也相同(即对自变量的每一个值,两个函数对应的函数值都相等),则称这两个函数就是同一个函数.知识点三 常见函数的定义域和值域函数一次函数反比例函数二次函数a<0基础自测1.下列从集合A到集合B的对应关系f是函数的是( )A.A={-1,0,1},B={0,1},f:A中的数平方B.A={0,1},B={-1,0,1},f:A中的数开方C.A=Z,B=Q,f:A中的数取倒数D.A={平行四边形},B=R,f:求A中平行四边形的面积2.函数f(x)=√x−1x−2的定义域为( )A.(1,+∞) B.[1,+∞)C.[1,2) D.[1,2)∪(2,+∞) 3.下列各组函数表示同一函数的是( )A.y=x2−9x−3与y=x+3B.y=√x2-1与y=x-1C.y=x0(x≠0)与y=1(x≠0)D.y=x+1,x∈Z与y=x-1,x∈Z4.若函数f(x)=√x+6x−1,求f(4)=________.课堂探究·素养提升——强化创新性题型1 函数的定义[经典例题]例1 根据函数的定义判断下列对应关系是否为从集合A到集合B的函数:(1)A={1,2,3},B={7,8,9},f(1)=f(2)=7,f(3)=8;状元随笔 从本题可以看出函数f(x)的定义域是非空数集A,但值域不一定是非空数集B,也可以是集合B的子集.(2)A={1,2,3},B={4,5,6},对应关系如图所示;状元随笔 判断从集合A到集合B的对应是否为函数,一定要以函数的概念为准则,另外也要看A中的元素是否有意义,同时,一定要注意对特殊值的分析.(3)A=R,B={y|y>0},f:x→y=|x|;(4)A=Z,B={-1,1},n为奇数时,f(n)=-1,n为偶数时,f(n)=1.方法归纳(1)判断一个集合A到集合B的对应关系是不是函数关系的方法:①A,B必须都是非空数集;②A中任意一个数在B中必须有并且是唯一的实数和它对应.注意:A中元素无剩余,B中元素允许有剩余.(2)函数的定义中“任意一个x”与“有唯一确定的y”说明函数中两变量x,y的对应关系是“一对一”或者是“多对一”,而不能是“一对多”.跟踪训练1 (1)设M={x|0≤x≤2},N={y|0≤y≤2},给出下列四个图形,其中能表示从集合M到集合N的函数关系的有( )A.0个 B.1个 C.2个 D.3个(1)①x∈[0,1]取不到[1,2].③y∈[0,3]超出了N∈[0,2]范围.④可取一个x值,y有2个对应,不符合题意.(2)关键是否符合函数定义.①x→3x,x≠0,x∈R;②x→y,其中y2=x,x∈R,y∈R.(2)下列对应是否是函数?题型2 求函数的定义域[教材P87例题1]例2 求下列函数的定义域:(1)f(x)=1√(2)g(x)=1x+1x+2.方法归纳求函数的定义域(1)要明确使各函数表达式有意义的条件是什么,函数有意义的准则一般有:①分式的分母不为0;②偶次根式的被开方数非负;③y=x0要求x≠0.(2)当一个函数由两个或两个以上代数式的和、差、积、商的形式构成时,定义域是使得各式子都有意义的公共部分的集合.(3)定义域是一个集合,要用集合或区间表示,若用区间表示数集,不能用“或”连接,而应该用并集符号“∪”连接.跟踪训练2 求下列函数的定义域:(1)f(x)=6x2−3x+2;(2)f(x)=0√||(3)f(x)=√2x+3-√1 x .(1)分母不为0(2){偶次根式被开方数≥0(x+1)0底数不为0分母不为0 (3){偶次根式被开方数≥0分母不为0题型3 同一函数例3 下面各组函数中为相同函数的是( )A .f (x )=√(x −1)2,g (x )=x -1B .f (x )=√x 2−1,g (x )=√x +1·√x−1C .f (x )=x ,g (x )=x 2xD .f (x )=x 0与g (x )=1x 0方法归纳判断同一函数的三个步骤和两个注意点(1)判断同一函数的三个步骤(2)两个注意点:①在化简解析式时,必须是等价变形;②与用哪个字母表示无关.跟踪训练3 试判断下列函数是否为同一函数.(1)f (x )=x 2−xx ,g (x )=x -1;(2)f(x)=√xx,g(x)√(3)f(x)=x2,g(x)=(x+1)2;(4)f(x)=|x|,g(x)=√x2.状元随笔 判断两个函数是否为同一函数,要看三要素是否对应相同.函数的值域可由定义域及对应关系来确定,因而只要判断定义域和对应关系是否对应相同即可.题型4 求函数的值域[经典例题]状元随笔 求函数值域的注意事项①数形结合求值域一定要注意函数的定义域;②值域一定要用集合或区间来表示.例4 求下列函数的值域.(1)y=3-4x,x∈(-1,3];(2)f(x)=1x,x∈[3,5];(3)y=2xx+1;(4)y=x2-4x+5,x∈{1,2,3};(5)y=x2-2x+3,x∈[0,3);(6)y=2x-√x−1;(7)f(x)=1x2+2.状元随笔 (1)用不等式的性质先由x∈(-1,3]求-4x的取值范围,再求3-4x的取值范围即为所求.(2)先分离常数将函数解析式变形,再求值域.(3)将自变量x=1,2,3代入解析式求值,即可得值域.(4)先配方,然后根据任意实数的平方都是非负数求值域.方法归纳求函数值域的方法(1)观察法:通过对函数解析式的简单变形,利用熟知的基本函数的值域,或利用函数图象的“最高点”和“最低点”观察函数的值域.如函数y=11+x2的值域为{y|0<y≤1}.(2)配方法:求形如F(x)=a[f(x)]2+bf(x)+c的函数的值域可用配方法,但要注意f(x)的取值范围.如求函数y=x-2√x+3的值域,因为y=(√x-1)2+2≥2,故所求值域为{y|y≥2}.对于形如y=ax2+bx+c(a≠0)的函数,尤其要注意在给定区间上二次函数最值的求法.(3)分离常数法:此方法主要是针对分子分母同次的分式,即将分式转化为“反比例函数类”的形式,便于求值域.(4)换元法:形如y=ax+b+√cx+d的函数常用换元法求值域,即先令t=√cx+d,求出x,并注明t的取值范围,再代入上式表示成关于t的二次函数,最后用配方法求值域.注意:分离常数法的目的是将分式函数变为反比例函数类,换元法的目的是将函数变为二次函数类.即将函数解析式变为已经熟悉的简单函数类型求值域.(5)反表示法:根据函数解析式反解出x,根据x的取值范围转化为关于y的不等式求解.(6)中间变量法:根据函数解析式确定一个已知范围的中间变量(如x2),用y表示出该中间变量,根据中间变量的取值范围转化为关于y的不等式求解.跟踪训练4 求下列函数的值域:(1)y=2x+1,x∈{1,2,3,4,5};(2)y=√x+1;(3)y=1−x21+x2;先分离再求值域(4)y=-x2-2x+3(-5≤x≤-2);配方法求值域(5)f(x)=5x+4 x−1.第三章 函数3.1 函数的概念与性质3.1.1 函数及其表示方法第1课时 函数的概念新知初探·自主学习[教材要点]知识点三{x|x≠0} R {y|y≤4ac−b24a}[基础自测]1.解析:对B,集合A中的元素1对应集合B中的元素±1,不符合函数的定义;对C,集合A中的元素0取倒数没有意义,在集合B中没有元素与之对应,不符合函数的定义;对D,A集合不是数集,故不符合函数的定义.综上,选A.答案:A2.解析:使函数f(x)=√x−1x−2有意义,则{x−1≥0,x−2≠0,即x≥1,且x≠2.所以函数的定义域为{x|x≥1且x≠2}.故选D.答案:D3.解析:A中两函数定义域不同;B中两函数值域不同;D中两函数对应法则不同.答案:C4.解析:f(4)=√4+64−1=2+2=4.答案:4课堂探究·素养提升例1 【解析】 (1)(4)对于集合A中的任意一个值,在集合B中都有唯一的值与之对应,因此(1)(4)中对应关系f是从集合A到集合B的一个函数.(2)集合A中的元素3在集合B中没有对应元素,且集合A中的元素2在集合B中有两个元素(5和6)与之对应,故所给对应关系不是集合A到集合B的函数.(3)A中的元素0在B中没有对应元素,故所给对应关系不是集合A到集合B的函数.跟踪训练1 解析:(1)图号正误原因①×x=2时,在N中无元素与之对应,不满足任意性②√同时满足任意性与唯一性③×x=2时,对应元素y=3∉N,不满足任意性④×x=1时,在N中有两个元素与之对应,不满足唯一性解析:(2)①是函数.因为任取一个非零实数x,都有唯一确定的3x与之对应,符合函数定义.②不是函数.当x=1时,y=±1,即一个非零自然数x,对应两个y的值,不符合函数的概念.答案:(1)B (2)①是函数②不是函数例2 【解析】 (1)因为函数有意义当且仅当{x+1≥0,√x+1≠0,解得x>-1,所以函数的定义域为(-1,+∞).(2)因为函数有意义当且仅当{x≠0,x+2≠0,解得x≠0且x≠-2,因此函数的定义域为(-∞,-2)∪(−2,0)∪(0,+∞).跟踪训练2 解析:(1)要使函数有意义,只需x2-3x+2≠0,即x≠1且x≠2,故函数的定义域为{x|x≠1且x≠2}.(2)要使函数有意义,则{x+1≠0,|x|−x>0,解得x<0且x≠-1.所以定义域为(-∞,-1)∪(−1,0).(3)要使函数有意义,则{2x +3≥0,2−x >0,x≠0,解得-32≤x <2,且x ≠0.故定义域为[−32,0)∪(0,2).例3 【解析】 函数的三要素相同的函数为相同函数,对于选项A ,f (x )=|x -1|与g (x )对应关系不同,故排除选项A ,选项B 、C 中两函数的定义域不同,排除选项B 、C ,故选D.【答案】 D跟踪训练3 解析:所以函数y =3-4x ,x ∈(-1,3]的值域是[-9,7).(2)因为f (x )=1x 在[3,5]上单调递减,所以其值域为[15,13].(3)因为y =2x x +1=2(x +1)−2x +1=2-2x +1≠2,所以函数y =2x x +1的值域为{y |y ∈R 且y ≠2}. (4)函数的定义域为{1,2,3},当x =1时,y =12-4×1+5=2,当x =2时,y =22-4×2+5=1,当x =3时,y =32-4×3+5=2,所以这个函数的值域为{1,2},(5)y =x 2-2x +3=(x -1)2+2,由x ∈[0,3),再结合函数的图象(如图),可得函数的值域为[2,6).(6)设t =√x −1,则x =t 2+1,且t ≥0,所以y =2(t 2+1)-t =2(t -14)2+158,由t ≥0,再结合函数的图象(如图),可得函数的值域为[158,+∞).【解析】(7)方法一 因为x 2+2≥2,所以0<1x 2+2≤12,所以f (x )的值域为(0,12].方法二 设t 是所求值域中的元素,则关于x 的方程1x 2+2=t 应该有解,即x 2=1t -2应该有解,所以1t -2≥0,即1−2t t ≥0,解得0<t ≤12,所以所求值域为(0,12].跟踪训练4 解析:(1)将x =1,2,3,4,5分别代入y =2x +1,计算得函数的值域为{3,5,7,9,11}.(2)因为√x ≥0,所以√x +1≥1,即所求函数的值域为[1,+∞).(3)因为y =1−x 21+x 2=-1+21+x 2,所以函数的定义域为R ,因为x 2+1≥1,所以0<21+x2≤2.所以y ∈(-1,1].所以所求函数的值域为(-1,1].(4)y =-x 2-2x +3=-(x +1)2+4.因为-5≤x≤-2,所以-4≤x+1≤-1.所以1≤(x+1)2≤16.所以-12≤4-(x+1)2≤3.所以所求函数的值域为[-12,3].解析:(5)函数f(x)=5x+4x−1=5(x−1)+9x−1=5+9x−1,因为x≠1,所以9x−1≠0,所以f(x)≠5,所以函数f(x)=5x+4x−1的值域为(-∞,5)∪(5,+∞).。

函数的概念与图象,函数的表示方法,函数的单调性(一) (学案)机构绝密资料

函数的概念与图象,函数的表示方法,函数的单调性(一) (学案)机构绝密资料

精锐教育学科教师辅导学案学员编号: 年 级:高一 课 时 数: 3 学员姓名: 辅导科目:数学 学科教师:授课类型 T 函数的概念与图象(4) T函数的表示方法T函数的单调性(一)授课日期及时段教学内容函数的概念与图象(4)[学习目标]1.会运用描点法作出一些简单函数的图象,从“形”的角度进一步加深对函数概念的理解;2.通过对函数图象的描绘和研究,培养数形结合的意识,提高运用数形结合的思想方法解决数学问题的能力. [知识要点]1.函数图象的概念将自变量的一个值0x 作为横坐标,相应的函数值()0f x 作为纵坐标,就得到坐标平面上的一个点()()0,0x f x .当自变量取遍函数定义域A中的每一个值时,就得到一系列这样的点.所有这些点组成的集合(点集)为()(){},,x f x x A ∈即()(){},,x y y f x x A =∈,所有这些点组成的图形就是函数()y f x =的图象.2.函数图象的画法画函数的图象,常用描点法,其基本步骤是:⑴列表;⑵描点;⑶连线.在画图过程中,一定要注意函数的定义域和值域.3.会作图,会读(用)图[例题讲解]例1.画出下列函数的图象,并求值域:(1)y =13-x ,∈x [1,2]; (2)y = (1-)x,∈x {0,1,2,3}; (3)y =x ; 变题:1y x =-; (4)y =2x 22--x例2.直线y =3与函数y =|x 2-6x |图象的交点个数为 ( ) (A )4个 (B )3个 (C )2个 (D )1个例3.下图中的A. B. C. D 四个图象中,用哪三个分别描述下列三件事最合适,并请你为剩下的一个图象写出一件事。

离开家的距离(m) 离开家的距离(m)时间(min ) 时间(min ) A B离开家的距离(m) 离开家的距离(m)时间(min ) 时间(min )C D(1) 我离开家不久,发现自己把作业本忘在家里了,停下来想了一会还是返回家取了作业本再上学; (2) 我骑着车一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3) 我出发后,心情轻松,缓缓行进,后来为了赶时间加快了速度。

函数的表示法学案(新课标)

函数的表示法学案(新课标)

函数的表示法学案
1.学习目标:掌握函数的表示方法;
通过函数的各种表示及其相互之间的转换来加深对函数概念的理解,同时为
今后学习数形结合打好基础。

2.自学内容:通读教材19页至21页,约用10分钟。

3.思考并回答以下问题:
(1)函数常用哪些方法来表示?
(2)函数的各种表示方法各有什么优缺点?
4.知识点小结:
5.例题思考:
例1:某种笔记本每个5元,买x(x {1,2,3,4,})个笔记本的钱数记为y(元).试写出以x为自变量的函数y的解析式,并画出这个函数的图象.
例2:国内投寄信函(外埠),邮资按下列规则计算:
1.信函质量不超过100g时,每20g付邮资80分,即信函质量不超过20g付邮资80分,
信函质量超过20g,但不超过40g付邮资160分,依此类推;
2.信函质量大于100g且不超过200g时,每100g付邮资200分,即信函质量超过100g,
但不超过200g付邮资(A+200)分,(A为质量等于100g的信函的邮资),信函质量超过200g,但不超过300g付邮资(A+400)分,依此类推.
设一封x g(0<x≤200)的信函应付的邮资为y(单位:分),试写出以x为自变量的函数y的解析式,并画出这个函数的图象.。

北师大版高中数学必修一函数的表示方法学案

北师大版高中数学必修一函数的表示方法学案

函数的表示法【要点导学】1、函数的表示法(1)解析法:就是把两个变量的函数关系,用一个等式表示,这个等式叫做函数的解析表达式,简称解析式.优点:一是简明、全面地概括了变量间的关系;二是可以通过解析式求出任意一个自变量的值所对应的函数值.中学阶段研究的函数主要是用解析法表示的函数.(2)列表法:就是列出表格来表示两个变量的函数关系.优点:不需要计算就可以直接看出与自变量的值相对应的函数值. (3)图象法:就是用函数图象表示两个变量之间的关系.优点:能直观形象地表示出自变量的变化,相应的函数值变化的趋势.2、分段函数:有些函数在它的定义域中,对于自变量x 的不同取值范围,对应法则不同,这样的函数称为分段函数.分段函数是一个函数,而不是几个函数. 3、求函数解析式的方法:(1)待定系数法;(2)换元法;(3)方程法 ;(4)配凑法等.4、作函数图象的一般步骤:(1)确定函数定义域;(2)化简或变形函数表达式(一般来说可化简成常见函数或其复合函数);(3)利用描点法或图象变换法作出图象.5、常见的图象变换有:平移变换、对称变换和翻折变换等.【范例精析】例1 (1)已知)(x f 是一次函数, 且14))((-=x x f f ,求)(x f 的解析式 ; ( 2)已知x x x f 2)1(+=+,求)(x f ; (3)已知)(x f 满足x xf x f 3)1()(2=+,求)(x f 思路剖析 根据题设条件的特点,灵活采用相应的方法求解. 解题示范 (1)(待定系数法)设0,)(≠+=k b kx x f , 则 14)(-=++x b b kx k ,即14)1(2-=++x b k x k .比较系数,得⎩⎨⎧-=+=1)1(42b k k ,解得,⎪⎩⎪⎨⎧-==312b k 或 ⎩⎨⎧=-=12b k .∴312)(-=x x f 或12)(+-=x x f .(2)法1(换元法):令t =1+x ( t ≥1),则2)1(-=t x ,∴1)1(2)1()(22-=-+-=t t t t f ∴1)(2-=x x f (x ≥1)法2(配凑法):∵1)1(2)1(2-+=+=+x x x x f ,又 ∵1+x ≥1, ∴1)(2-=x x f (x ≥1).(3)(方程法)∵x xf x f 3)1()(2=+ ---①,将①中x 换成x1,得 x x f x f 3)()1(2=+---②,①×2-②,得 xx x f 36)(3-=,∴xx x f 12)(-=.回顾反思 求函数解析式的方法:(1)待定系数法:适用于已知函数的类型,求函数的解析式;(2)换元法或配凑法:适用于已知复合函数))((x g f 的表达式,求)(x f 的解析式,但运用时要注意正确确定中间变量)(x g t =的取值范围;(3)方程法:只已知关于)(x f 及)1(xf 的一个条件要求)(x f ,可通过条件再寻找关于)(x f 及)1(x f 的另一个方程,利用解方程组求出)(x f .请思考:若本题中把x1换成x -,你能求)(x f 的解析式吗?(4)由实际问题求函数解析式时, 常根据实际意义(如面积、距离等)确定函数解析式,并注明符合实际问题的定义域.例2 动点P 从边长为1的正方形ABCD 的顶点A 出发,顺次经过B 、C 、D 再回到A .设x 表示P 点的行程,y 表示P A 的长,求y 关于x 的函数关系式.思路剖析 视P 点所处的正方形边的位置分别计算PA 的长.解题示范 如图 ,当P 在AB 边上运动,即10≤≤x 时, P A =x ; 当P 在BC 边上运动,即21≤<x 时, P A =2)1(1-+x =222+-x x ;当P 在CD 边上运动,即32≤<x 时,P A =2)3(1x -+=1062+-x x ;当P 在DA 边上运动,即43≤<x 时, P A =4-x .DA∴⎪⎪⎩⎪⎪⎨⎧-+-+-=x x x x x x y 41062222 )43()32()21()10(≤<≤<≤<≤≤x x x x 回顾反思 由于y 表示的是线段PA 的长度,而x 表示的是P 点从A 点出发后所走的路程,从而计算PA 长度的方式应随着P 点所在正方形边的位置的变化而改变,因此计算PA 时需对P 点的位置进行分类讨论, 故y 不可能用关于x 的一个表达式来表示,应用分段函数来表示.例3 作出函数(1)y =|122--x x |;(2)y =|x |2-2|x |-1的图象.思路剖析 找出所作图象的函数与常见函数间的联系,利用函数的图象变换作图.解题示范 (1) 当122--x x ≥0时, y =122--x x当122--x x <0时,y =-(122--x x ) 作图步骤:①作出函数y =122--x x 的图象②将上述图象在x 轴下方的部分沿x 轴翻折到x 轴上方(原在x 轴上方的部分保留不变),即得y =|x 2-2x -1|的图象(如图). (2)当x ≥0时 y =122--x x 当x <0时 y =122-+x x即 y =(-x )2-2(-x )-1 作图步骤:①作出y =122--x x 的图象;②保留所得图象在y 轴右方的部分,去掉y 轴左方的部分,以y 轴为对称轴将右方部分的图象翻折到y 轴的左方(翻折过程中保留y 轴右方的图象),即得y =|x |2-2|x |-1的图象 (如图).回顾反思 1、常见的图象变换有:(1)平移变换:用于研究函数)(x f y =的图象与b a x f y ++=)(的图象之间的联系: ①将函数)(x f y =的图象向左(或向右)平移|k |个单位(k >0向左,k <0向右)得)(k x f y +=图象;P②将函数)(x f y =的图象向上(或向下)平移|k |个单位(k >0向上,k <0向下)得k x f y +=)(图象.(2)对称变换: 用于研究函数的图象)(x f y =与)(x f y -=、)(x f y -=及)(x f y --=的图象之间的联系:①函数)(x f y =的图象与)(x f y -=的图象关于x 轴对称; ②函数)(x f y =的图象与)(x f y -=的图象关于y 轴对称; ③函数)(x f y =的图象与)(x f y --=的图象关于原点对称.(3)翻折变换:用于研究函数)(x f y =的图象与|)(|x f y =与|)(|x f y =的图象之间的联系:①将)(x f y =的图象在x 轴上方的部分不变,下方部分以x 轴为对称轴向上翻折即得|)(|x f y =的图象;②将)(x f y =的图象在y 轴右方的部分保留不变,去掉y 轴左方的部分,以y 轴为对称轴将右方部分向左翻折即得|)(|x f y =的图象.2、并不是每一个函数都能作出它的图象,如狄利克雷(Dirichlet )函数D(x )=⎩⎨⎧.x 0x 1是无理数,是有理数,,,我们就作不出它的图象.例4 对于任意的实数x ,规定y 取4-x ,x +1,)5(21x -三个值中的最小值. (1)求y 与x 的函数关系式,并画出此函数的图象. (2)x 为何值时,y 最大?最大值是多少?思路剖析 所谓y 是4-x ,x +1,)5(21x -三个值中的最小值,是对于同一个x 值而言的,从图象上反映应是三个函数y =4-x ,y =x +1,y =)5(21x -的图象中处于最下方的那一个.解题示范 (1)在同一坐标系中作出三个函数y =4-x ,y =x +1,y =)5(21x -的图象.设函数y =)5(21x -的图象分别与函数 ABy =x +1,y =4-x 的图象交于A 、B 两点,由⎪⎩⎪⎨⎧+=-=1)5(21x y x y 解得A (1, 2); 由⎪⎩⎪⎨⎧=-=xy x y -4)5(21解得B (3, 1). ∴y 与x 的函数关系式是⎪⎩⎪⎨⎧>-≤<-≤+=3431)5(2111x xx x x x y ,其图象为实线部分.(2)由图象可知,当x = 1时, y 最大,其最大值为m ax y = 2 .回顾反思 求解此题的数学思想方法称为数形结合思想. 数形结合思想是数学中的重要思想方法之一,它在求解数学问题时有着广泛的应用,它在解题中的独到之处在于以形助数,利用形的直观性寻找到解题的突破口.例5 已知函数 3222)(a b x a ax x f -++= .(1) 当x ∈(-2,6)时,其值为正;x ∈),6()2,(+∞--∞ 时,其值为负,求a , b 的值及f (x )的表达式; (2) 设)16(2)1(4)(4)(-+++-=k x k x f kx F ,k 为何值时,函数F (x )的值恒为负值?思路剖析 利用不等式与方程的关系以及数形结合的思想求解. 解题示范 (1)显然0≠a .当x ∈(-2,6)时,其值为正;x ∈),6()2,(+∞--∞ 时,其值为负,∴-2,6是方程02322=a b x a ax -++的两个根,∴ ⎩⎨⎧=-++=-+-0263602243232a b a a a b a a 解得 a = - 4 ,b = - 8 ∴48164)(2++-=x x x f(2) 24)16(2)1(4)48164(4)(22-+=-+++++--=x kx k x k x x kx F 欲使函数F (x )的值恒为负值,显然0≠k,故 ⎩⎨⎧<+=∆<08160k k ,解得 k < - 2∴当k < - 2时,函数F (x )的值恒为负值.回顾反思 1、 二次函数、一元二次方程、一元二次不等式间的关系: 设)(x f =c bx ax ++2(0≠a ),则(1)方程c bx ax ++2=0的两根即为)(x f =c bx ax ++2的图象与x 轴两交点的横坐标;(2)不等式c bx ax ++2>0的解集即为)(x f =c bx ax ++2的图象在x 轴上方部分的横坐标x 的取值范围 ;不等式c bx ax ++2<0的解集即为)(x f =c bx ax ++2的图象在x 轴下方部分的横坐标x 的取值范围 ;(3)若不等式c bx ax ++2>0()0>a 的解集为}|{21x x x x x ><或,则21,x x 是方程c bx ax ++2=0的两个根;若21,x x )(21x x < 是方程c bx ax ++2=0的两个根,则不等式c bx ax ++2>0()0>a 的解集为}|{21x x x x x ><或.2、 设)(x f =c bx ax ++2(0≠a ),由二次函数的图象可直观地得到:当⎩⎨⎧<->0402ac b a 时,0)(>x f 恒成立;当⎩⎨⎧<-<0402ac b a 时,0)(<x f 恒成立,反之也成立. 【能力训练】一、 选择题1、已知11)1(+=x x f ,那么)(x f 的解析式为 ( )A 、11+xB 、x x +1C 、1+x xD 、x +12、在x 克a %的盐水中,加入y 克b %的盐水,浓度变成c %),0,(b a b a ≠>, 则x 与y 的函数关系式是 ( ) A 、x b c a c y --= B 、x c b ac y --= C 、x c b c a y --= D 、x ac cb y --=3、某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程.在下图中纵轴表示离学校的距离d ,横轴表示出发后的时间t ,则下列四个图形中较符合该生走法的是 ( )A 、B 、C 、D 、4、函数2)1(+=x y -2的图象可由函数2x y =的图象经过( )得到.A 、先向右平移1个单位,再向下平移2个单位B 、先向右平移1个单位,再向上平移2个单位C 、先向左平移1个单位,再向下平移2个单位D 、先向左平移1个单位,再向上平移2个单位5、函数1)1(2-+-=x y 的图象与函数1)1(2+-=x y 的图象关于( ) A 、y 轴对称 B 、x 轴对称 C 、原点对称 D 、以上都不对二、填空题6、已知⎪⎩⎪⎨⎧+=10)(x x f π )0()0()0(>=<x x x ,则_______)]}1([{=-f f f .7、已知f (x )=x x 22+,则f (2x +1)= .8、已知x x x f 2)1(+=-,则___________)(=x f .9、将长为a 的铁丝折成矩形,设矩形的长为x ,则面积y 关于x 的函数关系式是 _______ ,其定义域是 ______.10、已知f (x )=⎩⎨⎧>-≤+)0(2)0(12x x x x ,若f (x )=10,则x = .三、解答题11、(1)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x );(2)设二次函数f (x )满足f (x +2)= f (2-x ),且方程f (x )=0的两实根的平方和为10,)(x f 的图象过点(0,3),求f (x )的解析式.12、已知[]221)(,21)(x x x g f x x g -=-= (x ≠0), 求)21(f .13、(1) 已知12)(3)(+=-+x x f x f ,求)(x f .(2)设,)(331--+=+x x x x f 221)(--+=+x x x x g 求f [g (x )].14、作出下列函数的图象:(1)⎩⎨⎧---=14)(22x x x f )20()02(≤<≤≤-x x ; (2)322-+=x x y ;(3)xx x y -+=||)21(015、讨论函数273++=x x y 的图象与xy 1=的图象的关系. 【素质提高】16、已知函数f (x )满足f (a b )= f (a )+ f (b )且f (2)=p ,f (3)= q ,则f (36)= .17、讨论关于x 的方程)(|34|2R a a x x ∈=+-的实数解的个数.18、设函数f (x )=x 2-4x -4的定义域为[t -2, t -1],对任意t ∈R ,求函数f (x )的最小值ϕ(t )的解析式,并画出)(t ϕ的图象.2.2 函数的表示法1、C2、B3、D4、C5、C6、1+π7、3842++x x 8、)1(342-≥++x x x 9、y = 221x ax -,定义域是(0, 2a ) 10、-3 11、(1)f (x )=2x +7; (2)f (x )=x 2-4x +312、15 13、(1)41)(+-=x x f (2) f [g (x )]=296246-+-x x x 14、略 15、273++=x x y 的图象可由xy 1=的图象先向左平移两个单位,再向上平移三个单位得到 16、2(p +q ) 17、当)0,(-∞∈a 时,没有解;当0=a 或),1(+∞∈a 时,两解;当1=a 时,三解;当)1,0(∈a 时,四解18、⎪⎩⎪⎨⎧>+-≤≤-<+-=)4(88)43(8)3(16)(22t t t t t t t t ϕ ,图略。

【精选】九年级数学下册5.1函数与它的表示法学案1新版青岛版

【精选】九年级数学下册5.1函数与它的表示法学案1新版青岛版

5.1 函数与它的表示法【学习目标】1、掌握函数的三种表示方法:解析法.列表法.图像法.2、能够恰当地运用函数的三种表示方法解决一些实际问题,初步培养将实际问题转化为数学问题的能力. 【学习过程】 一、自主学习1、完成教材第4页的观察与思考题.2、用来表达函数关系的数学式子叫做______________或___________.用数学式子表示函数的方法叫做___________.用表格表示函数关系的方法,叫做__________.用图象表示函数关系的方法,叫做_____________. 二、合作探究1、你能分别举出用三种方法表示函数的例子吗?2、你认为用解析法.列表法和图像法表示函数关系各有哪些优点和不足?3、用描点法画函数图象时用到了函数关系的哪几种表示方法? 三、合作探究1、一辆汽车在行驶中,速度随时间变化的情况如图所(1)在这个问题中,速度与时间之间的函数关系是用哪种方法表示的? (2)时间的取值范围是什么?(3)当时间为何值时,汽车行驶速度最大?最大速度是多少?当时间取何值时,速度为0? (4)在哪一时间段汽车的行驶速度逐渐增加?在哪一时间段汽车的行驶速度逐渐减少?在哪一时间段汽车按匀速运动行驶?(5)根据图象,填写下表:2、如图,正三角形内接于圆O ,设圆的半径为.试写出圆中除三角形外的部分面积与之间的函数关系,它们之间的函数关系是用哪种方法表示的?四、系列训练1、常用来表示函数的方法有______法._______法和_______法.2、正常人的体温一般在37℃左右,但一天中的不同时刻的体温不尽相同,如图是某天24小时内小莹体温T (℃)随时刻t (h )的变化情况:这天_______时她的体温最高,_______时体温最低,12时的体温约是_________℃.3、列车以90km/h 的速度从A 地开往B 地.(1)填写下表:(2)写出y 与x 之间的函数解析式.4、一辆汽车的油箱中现有汽油60升,如果不再加油,那么油箱中的油量y(单位:升)随行驶里程x(单位:千米)增加而减少,若这辆汽车平均耗油量为0.2升/千米,则y与x之间的函数关系用图象表示大致是()五、达标测试5、一个小球由静止开始在一个斜坡上从上向下滚动,其速度每秒增加2m/s,到达坡底时,小球的速度达到40m/s.(1)写出小球的速度为v(m/s)与时间为t(s)之间的关系式.(2)求3.5s时小球的速度.(3)何时小球的速度为16m/s?6、某地举行龙舟赛,甲、乙两队在比赛时,路程y(米)与时间x(分钟)的函数图象如图所示,根据函数图象填空和解答问题:(1)最先到达终点的是队,比另一队领先分钟到达;(2)在比赛过程中,甲队的速度始终保持为米/分;而乙队在第分钟后第一次加速,速度变为米/分,在第分钟后第二次加速;(3)图中点A的坐标是,点B的坐标是.(4)假设乙队在第一次加速后,始终保持这个速度继续前进,那么甲、乙两队谁先到达终点?请说明理由.六、课堂小结5.1 函数与它的表示法(第2课时)课型:总第课时学习目标1、理解什么是函数,会判断图像、关系式是否是函数关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的表示法学习目标:明确函数的三种表示方法(解析法、列表法、图象法);了解映射的概念及表示方法;通过具体实例,了解简单的分段函数,并能简单应用;结合简单的对应图示,了解一一映射的概念;学习重点:函数的三种表示方法,分段函数的概念, 分段函数的图像与值域学习难点:根据不同的需要选择恰当的方法表示函数,分段函数的表示及其图象学习过程:一 复习:(1)函数的三要素是 、 、 . (2)已知函数21()1f x x =-,则(0)f = ,1()f x = ,()f x 的定义域为 . (3)初中所学习的函数三种表示方法?试举出日常生活中的例子说明.解析法,就是用 表示两个变量之间的对应关系.图象法,就是用 表示两个变量之间的对应关系.列表法,就是用 表示两个变量之间的对应关系.比较三种表示法,它们各自的特点是什么?所有的函数都能用解析法表示吗?二 探究新知1.解析法:用数学表达式表示__________之间的函数关系,这种表示方法叫做解析法,这个数学表达式叫做-__________________;图象法:以___________的取值为横坐标,对应的_______y 为纵坐标,在平面直角坐标系中描出各个点,这些点构成了____________,这种用图象表示两个变量之间函数关系的方法叫做图象法;列表法:列一个两行多列的表格,第一行是____________,第二行是对应的_________,这种用表格来表示___________之间的函数关系的方法叫做列表法解析法:用数学表达式表示两个变量之间的对应关系. 优点:简明;给自变量求函数值. 图象法:用图象表示两个变量之间的对应关系. 优点:直观形象,反应变化趋势. 列表法:列出表格来表示两个变量之间的对应关系. 优点:不需计算就可看出函数值.2.分段函数:依据分类讨论思想,在函数的定义域内,对于自变量x 的不同取值范围,有着_____________,即在定义域内的不同区间上对应着不同的解析式的函数,这样的函数通常叫做分段函数说明:分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.①分段函数是一个函数,而不是几个函数;处理分段函数问题时,首先要确定自变量的数值属于哪个区间段,从而选取相应的对应法则;画分段函数图象时,应根据不同定义域上的不同解析式分别作出;②分段函数的定义域是所有区间的并集,值域是各段函数值域的并集;③分段函数的求解策略:分段函数分段解,分段函数是一个函数,只不过x 的______________不同时,对应法则不相同处理分段函数的求值和作图象时的两个注意点:(1)分段函数求值要先找准自变量所在区间及所对应的解析式,然后求值.(2)分段函数的图象是由几段曲线构成,作图时要注意衔接点的虚实.3.映射概念函数是“两个数集间的一种确定的对应关系”。

当我们将数集扩展到任意的集合时,就可以得到映射的概念。

映射定义:一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射(mapping ).记作“f :A →B ”映射的判断:如果集合A 中的任何一个元素,按照对应关系f ,在集合B 中都有唯一的元素和它对应,那么这个对应就是映射,否则就不是映射。

方向不同,映射也不同。

象与原象:映射是从原象集合到象集的对应。

探究先看几个例子,两个集合A、B的元素之间的一些对应关系,并用图示意.①{1,4,9}A=, {3,2,1,1,2,3}B=---,对应法则:开平方;②{3,2,1,1,2,3}A=---,{1,4,9}B=,对应法则:平方;③{30,45,60}A=︒︒︒,231{1,,,}2B=, 对应法则:求正弦.关键:A中任意,B中唯一;对应法则f.试试:分析例1 ①~③是否映射?反思:①映射的对应情况有、,一对多是映射吗?②函数是建立在两个非空数集间的一种对应,若将其中的条件“非空数集”弱化为“任意两个非空集合”,按照某种法则可以建立起更为普通的元素之间的对应关系,即映射.映射的四个特征(1)确定性:集合A、集合B与对应关系是确定的一个整体;(2)非空性:集合A、集合B都必须是非空集合;(3)方向性:从集合A到集合B的映射f:A→B与从集合B到集合A的映射f:B→A是不同的映射;(4)多样性:映射的对应方式可以是多对一,也可以是一对一判断一个对应f:A→B是否为映射的两点主要依据:(1)任意性:集合A中每一个元素,在集合B中是否都有元素与之对应.(2)唯一性:集合A中任一元素在集合B中是否都有唯一的元素与之对应.4.①分段函数图象的特点及画法(1)特点:分段函数的图象可以是光滑的曲线段,也可以是一些孤立的点或几条线段.(2)画法:画分段函数的图象要分段画,当函数式中含有绝对值符号时,首先要根据绝对值的意义去掉绝对值符号,将函数转化为分段函数,然后再画图象.②分段函数求函数值的步骤及注意点(1)步骤:①确定要求值的自变量属于哪一段区间;②代入该段的解析式求值,直到求出值为止.(2)注意点:当出现f(f(x0))的形式时,应从内到外依次求值.③列表法表示函数的使用范围及生活中的实例(1)适用范围:列表法主要适用于自变量个数较少,且为有限个,并且自变量的取值为孤立的实数,同时当变量间的关系无规律时,也常采用列表法表示两变量之间的关系.(2)生活中的实例:生活中经常见到的银行利率表、列车时间表、国民生产总值表等都是采用列表法.④图象平移变换的一般原则:(1)左右平移:y=f(x)的图象y=f(x+k)的图象.(2)上下平移:y=f(x)的图象 y=f(x)+k的图象.⑤作函数图象的三个步骤⑥求函数解析式的常见类型及解法(1)已知类型:函数类型已知,一般用待定系数法,但对于二次函数问题要注意一般式:y=ax2+bx+c(a≠0),顶点式:y=a(x-h)2+k(a≠0),两根式y=a(x-x1)(x-x2)(a≠0)的选择.(2)已知f(g(x))型:解答已知f(g(x))求f(x)型问题可采用配凑法,也可采用换元法(3)函数方程问题,需建立关于f (x )的方程组,若函数方程中同时出现f (x ),f (1/x ),则一般x 用1/x 代之;若同时出现f (x ),f (-x ),一般用-x 代替x ,构造另一个方程.注意:求函数解析式时要严格考虑函数的定义域⑦映射与函数的相同点和不同点(1)相同点:①函数与映射都是两个集合中的元素的对应;②函数与映射分别都有三个要素;③函数映射的对应都具有方向性;④函数中的两个集合与映射中两个集合都是非空的;⑤对应类型只有:一对一,或多对一(2)不同点:①函数是一种特殊的映射,映射是函数的扩展;②函数中的两个集合是非空的数集,映射中的两个集合的元素是任意的课内自测1.某种笔记本的单价是2元,买x (x ∈{1,2,3,4,5})个笔记本需要y 元.试用三种表示法表示函数y=f (x )2.作业本每本0.3元,买x 个作业本的钱数y (元). 试用三种方法表示此实例中的函数3.邮局寄信,不超过20g 重时付邮资0.5元,超过20g 重而不超过40g 重付邮资1元. 每封x 克(0<x ≤40)重的信应付邮资数y (元),试写出y 关于x 的函数解析式,并画出函数的图象4.探究从集合A 到集合B 一些对应法则,哪些是映射,哪些是一一映射?(1)A={P|P 是数轴上的点},B=R ;(2)A={三角形},B={圆};(3)A={P|P 是平面直角体系中的点},B=﹛(x ,y )︱x ∈R ,y ∈R ﹜;(4)A={高一学生},B={高一班级}.5.在下列对应关系中,哪些能构成A 到B 的映射?__________________6.设集合P={x|0≤x ≤4},Q={y|0≤y ≤2},下列的对应不表示从P 到Q 的映射的是( )A.f:x →y =12xB.f:x →y =13xC.f:x →y =23x D.f:x →y =x 7.下列对应是否是集合A 到集合B 的映射(1)A={1,2,3,4},B={2,4,6,8},对应法则是“乘以2”;(2)A= R*,B=R ,对应法则是“求算术平方根”;(3){}|0,A x x B =≠=R ,对应法则是“求倒数”.8.下列对应是否是集合A 到集合B 的映射?(1)A={1,2,3,4},B={3,4,5,6,7,8,9},对应法则f:x →2x+1(2)A=N*,B={0,1},对应法则f:x →x 除以2得的余数(3)A=N,B={0,1,2},f:x →x 被3除所得的余数(4)设x={1,2,3,4},y={1,1/2,1/3,1/4},f:x →1/x(5)A={x |x >2,x ∈N },B=N ,f:x →小于x 的最大质数9.已知集合A={a,b },B={-1,0,1}从集合A 到集合B 的映射,试问能构造出多少映射?10.已知f (3x-2)=6x-7,求f(x)的解析式11.已知f(x)是一次函数,且f 〔f(x)〕=4x+3,求f(x)的解析式12.已知函数f(3x-2)= x 2-2x+5,求f(x)的表达式13.画y=︱x+3︱+︱x-5︱的图像,并求值域14.函数f(x)=⎪⎩⎪⎨⎧≤≤+1x x 1x 1-x 1-x 322,,,x ,求f {f 〔f(-2)〕}的值课堂达标1.如下图可作为函数()y f x =的图象的是( )2.函数|1|y x =-的图象是( )A B C D3.在映射:f A B →中,{(,)|,}A B x y x y R ==∈,且:(,)(,)f x y x y x y →-+,则与A 中的元素(1,2)-对应的B 中的元素为( )A.(3,1)- B.(1,3) C.(1,3)-- D.(3,1)4.下列对应:f A B →:①{},0,:;A R B x R x f x x ==∈>→②*,,:1;A N B N f x x ==→-③{}20,,:.A x R x B R f x x =∈>=→不是从集合A 到B 映射的有( ) A.①②③ B.①② C.②③ D.①③5.如果f(1x )=x 1-x ,则当x≠0时,f(x)等于( )A.1x B.1x -1 C.11-x D.1x-1 6.已知f(x)=2x +3,g(x +2)=f(x),则g(x)等于( )A .2x +1B .2x -1C .2x -3D .2x +77.若g(x)=1-2x ,f[g(x)]=1-x 2x 2,则f(12)的值为( ) A .1 B .15 C .4 D .30 8.一个面积为100 cm 2的等腰梯形,上底长为x cm ,下底长为上底长的3倍,则把它的高y 表示成x 的函数为( )A .y =50x(x>0)B .y =100x(x>0)C .y =50x (x>0)D .y =100x(x>0) 9.一水池有2个进水口,1个出水口,进出水速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示.(至少打开一个水口)给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水.则正确论断的个数是( )A .0 B .1 C .2 D .310.一个弹簧不挂物体时长12cm ,挂上物体后会伸长,伸长的长度与所挂物体的质量成正比例.如果挂上 3 kg 物体后弹簧总长是13.5cm ,则弹簧总长y(cm)与所挂物体质量x(kg)之间的函数关系式为__________________11.已知函数y =f(x)满足f(x)=2f(1x)+x ,求f(x)的解析式12.已知f(x)是一次函数,若f(f(x))=4x +8,求f(x)的解析式13.已知f(x-1)+2f(1-x)=2x,求f(x)的解析式14.已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求f(x)的解析式15.已知二次函数f(x)满足f(0)=f(4),且f(x)=0的两根平方和为10,图象过(0,3)点,求f(x)的解析式16.已知函数f(x)=x2+ax+b的图象关于x=1对称,①求实数a的值;②若f(x)的图象过(2,0)点,求x∈[0,3]时f(x)的值域17.设A=B={(x,y)|x∈R,y∈R},f:(x,y)→(kx,y+b).是从集合A到集合B的映射,若B中元素(6,2)在映射f下对应A中元素(3,1),求k,b的值18.动点P从单位正方形ABCD顶点A开始运动一周,设沿正方形ABCD的运动路程为自变量x,写出P点与A点距离y与x的函数关系式,并画出函数的图象19.中国移动公司开展了两种通讯业务:“全球通”,月租50元,每通话1分钟,付费0.4元;“神州行”不缴月租,每通话1分钟,付费0.6元. 若一个月内通话x分钟,两种通讯方式费用分别为y1,y2(元). (1)写出y1,y2与x之间的函数关系式?(2)一个月内通话多少分钟,两种通讯方式的费用相同?(3)若某人预计一个月内使用话费200元,应选择哪种通讯方式?。

相关文档
最新文档