最新实验 4 用分支限界法实现0-1背包问题

合集下载

回溯法和分支限界法解决0-1背包题(精)[精品文档]

回溯法和分支限界法解决0-1背包题(精)[精品文档]

0-1背包问题计科1班朱润华 2012040732方法1:回溯法一、回溯法描述:用回溯法解问题时,应明确定义问题的解空间。

问题的解空间至少包含问题的一个(最优)解。

对于0-1背包问题,解空间由长度为n的0-1向量组成。

该解空间包含对变量的所有0-1赋值。

例如n=3时,解空间为:{(0,0,0),(0,1,0),(0,0,1),(1,0,0),(0,1,1),(1,0,1),(1,1,0),(1,1,1)}然后可将解空间组织成树或图的形式,0-1背包则可用完全二叉树表示其解空间给定n种物品和一背包。

物品i的重量是wi,其价值为vi,背包的容量为C。

问:应如何选择装入背包的物品,使得装入背包中物品的总价值最大?形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找一n元向量(x1,x2,…,xn,),xi∈{0,1}, ? ∑ wi xi≤c,且∑ vi xi达最大.即一个特殊的整数规划问题。

二、回溯法步骤思想描述:0-1背包问题是子集选取问题。

0-1 背包问题的解空间可以用子集树表示。

在搜索解空间树时,只要其左儿子节点是一个可行节点,搜索就进入左子树。

当右子树中有可能含有最优解时,才进入右子树搜索。

否则,将右子树剪去。

设r是当前剩余物品价值总和,cp是当前价值;bestp是当前最优价值。

当cp+r<=bestp时,可剪去右子树。

计算右子树上界的更好的方法是将剩余物品依次按其单位价值排序,然后依次装入物品,直至装不下时,再装入物品一部分而装满背包。

例如:对于0-1背包问题的一个实例,n=4,c=7,p=[9,10,7,4],w=[3,5,2,1]。

这4个物品的单位重量价值分别为[3,2,3,5,4]。

以物品单位重量价值的递减序装入物品。

先装入物品4,然后装入物品3和1.装入这3个物品后,剩余的背包容量为1,只能装0.2的物品2。

由此得一个解为[1,0.2,1,1],其相应价值为22。

0-1背包问题的分支限界法源代码

0-1背包问题的分支限界法源代码
{
int i;
n=nn;
c=cc;
p=new int[n];
w=new int[n];
M=new int[n];
for(i=0;i<n;i++)
{
p[i]=pp[i];
w[i]=ww[i];
M[i]=i; //用M数组记录大小顺序关系
}
front=new node[1];
front->next=NULL;
cin>>w[i];
cout<<endl;
cout<<"请输入这"<<n<<"个物品的价值P:"<<endl;
for(i=0;i<n;i++)
cin>>p[i];
Knap knbag(p,w,c,n);
knbag.solvebag();
getch();
return 0;
}
//#include "stdafx.h"
#include<iostream>
#include<cstdio>
#include<conio.h>
#include<iomanip>
using namespace std;
int *x;
struct node //结点表结点数据结构
{
node *parent;//父结点指针
{
minl=1.0*p[i]/w[i];
k=0;
for(j=1;j<=n-i;j++)
{
if(minl<1.0*p[j]/w[j])

分支限界法结局0~1背包问题

分支限界法结局0~1背包问题

Bound( i ) cleft = c – cw; b = cp; while( i <= n && w[i] <= cleft ){ cleft -= w[i]; b += p[i]; i++; } if( i<=n) b += p[i]/w[i] * cleft; return b; }

此后,从活结点表中取下一结点成为当前扩展结点,并重复上述结 点扩展过程。这个过程一直持续到找到所需的解或活结点表为空时为 止。
与回溯法区别
求解目标不同: 一般而言,回溯法的求解目标是找出解空间树中满 足的约束条件的所有解,而分支限界法的求解目标 则是尽快的找出满足约束条件的一个解。

搜索方法不同 回溯法使用深度优先方法搜索,而分支限界一般用宽 度优先或最佳优先方法来搜索;

按照队列先进先出(FIFO)原则选取下一个节点为扩展节点;
数据结构:队列
(2)优先队列式分支限界法

按照优先队列中规定的优先级选取优先级最高的节点成为当前 扩展节点。 数据结构:堆 最大优先队列:使用最大堆,体现最大效益优先

最小优先队列:使用最小堆,体现最小费用优先
【0-1背包问题】
物品数量n=3,重量w=(20,15,15),价值v=(40,25,25) 背包容量c=30,试装入价值和最大的物品? 解空间:{(0,0,0),(0,0,1),…,(1,1,1)}
分支限界法解决0/1背包问题
分支限界法思想概述 与回溯法区别 求解步骤 常见的两种分支限界法 0-1背包问题
分支限界法的基本思想
分支限界法基本思想

分支限界法常以广度优先或以最小耗费(最大效益)优先的方式搜 索问题的解空间树。

0-1背包问题的多种解法

0-1背包问题的多种解法

问题描述0/1 背包问题 :现有 n 种物品,对 1<=i<=n ,已知第 i 种物品的重量为正整数 W i ,价值为正整数 V i , 背包能承受的最大载重量为正整数 W ,现要求找出这 n 种物品的一个子集,使得子集中物 品的总重量不超过 W 且总价值尽量大。

(注意:这里对每种物品或者全取或者一点都不取, 不允许只取一部分)算法分析根据问题描述,可以将其转化为如下的约束条件和目标函数:nw i x i W i 1 i i(1)x i { 0,1}( 1 i n)nmax v i x i (2) i1于是,问题就归结为寻找一个满足约束条件( 1 ),并使目标函数式( 2 )达到最大的 解向量 X (x 1, x 2 ,x 3, ........... , x n ) 。

首先说明一下 0-1 背包问题拥有最优解。

假设 (x 1,x 2,x 3, ........ ,x n ) 是所给的问题的一个最优解, 则(x 2,x 3, ............... ,x n )是下面问题的n n n个问 题 的 一 个 最 优解 , 则v i y iv i x i , 且 w 1x 1w i y i W 。

因此 ,i 2 i 2 i 2一个最优解:w i x i Wi2w 1x 1nmax v i x i 。

如果不是的话,设(y 2,y 3, , y n ) 是这x i {0,1}( 2 i n)i2n n nv1x1 v i y i v1x1 v i x i v i x i ,这说明(x1,y2,y3, ............. ,y n) 是所给的0-1 背包问i 2 i 2 i 1题比( x1 , x 2 , x3 , ... , x n ) 更优的解,从而与假设矛盾。

穷举法:用穷举法解决0-1 背包问题,需要考虑给定n 个物品集合的所有子集,找出所有可能的子集(总重量不超过背包重量的子集) ,计算每个子集的总重量,然后在他们中找到价值最大的子集。

分支界限法0-1背包问题(优先队列式分支限界法)

分支界限法0-1背包问题(优先队列式分支限界法)

分⽀界限法0-1背包问题(优先队列式分⽀限界法)输⼊要求有多组数据。

每组数据包含2部分。

第⼀部分包含两个整数C (1 <= C <= 10000)和 n (1 <= n <= 10,分别表⽰背包的容量和物品的个数。

第⼆部分由n⾏数据,每⾏包括2个整数 wi(0< wi <= 100)和 vi(0 < vi <= 100),分别表⽰第i个物品的总量和价值输出要求对于每组输⼊数据,按出队次序输出每个结点的信息,包括所在层数,编号,背包中物品重量和价值。

每个结点的信息占⼀⾏,如果是叶⼦结点且其所代表的背包中物品价值⼤于当前最优值(初始为0),则输出当前最优值 bestv 和最优解bestx(另占⼀⾏)参见样例输出测试数据输⼊⽰例5 32 23 22 3输出⽰例1 1 0 02 2 2 23 5 2 24 10 4 5bestv=5, bestx=[ 1 0 1 ]4 11 2 23 4 5 42 3 0 0⼩贴⼠可采⽤如下的结构体存储结点:typedef struct{int no; // 结点在堆中的标号int sw; // 背包中物品的重量int sv; // 背包中物品的价值double prior; // 优先值 sv/sw}Node;#include<stdio.h>#include<math.h>#include<string.h>typedef struct {int no; // 结点标号int id; // 节点idint sw; // 背包中物品的重量int sv; // 背包中物品的价值double prior; // sv/sw}Node;int surplusValue(int *v,int n,int y) {int sum = 0;for(int i = y; i <= n; i++) {sum += v[i];}return sum;}void qsort(Node *que,int l,int r) {int len = r - l + 1;int flag;for(int i = 0; i < len; i ++) {flag = 0;for(int j = l; j < l + len - i; j++) {if(que[j].prior < que[j+1].prior) {Node t = que[j];que[j] = que[j+1];que[j+1] = t;flag = 1;}}//if(!flag ) return;}}void branchknap(int *w,int *v,int c,int n) {int bestv = 0;int f = 0;int r = 0;Node que[3000];memset(que,0,sizeof(que));int path[15];que[0].no = 1;que[0].id = que[0].sv = que[0].sw = que[0].prior = 0;while(f <= r) {Node node = que[f];printf("%d %d %d %d\n",node.id+1,node.no,node.sw,node.sv);if(node.no >= pow(2,n)) {if(node.sv > bestv) {bestv = node.sv;printf("bestv=%d, bestx=[",bestv);int temp = node.no;int i = 0;while(temp > 1) {if(temp % 2 == 0)path[i] = 1;elsepath[i] = 0;temp /= 2;i++ ;}i--;while(i >= 0) {while(i >= 0) {printf(" %d",path[i]);i--;}printf(" ]\n");}} else {if((node.sw + w[node.id + 1]) <= c && surplusValue(v,n,node.id+1) + node.sv > bestv) { r++;que[r].id = node.id + 1;que[r].no = node.no*2;int id = node.id + 1;que[r].sv = node.sv + v[id];que[r].sw = node.sw + w[id];que[r].prior = que[r].sv / (que[r].sw*1.0);}if(surplusValue(v,n,node.id+2) + node.sv > bestv) {r++;que[r].id = node.id + 1;que[r].no = node.no*2 + 1;que[r].sv = node.sv;que[r].sw = node.sw;que[r].prior = node.prior;}}f++;qsort(que,f,r);}}int main() {int c,n;int w[15],v[15];while(~scanf("%d %d",&c,&n)){for(int i = 1; i <= n; i++) {scanf("%d %d",&w[i],&v[i]);}branchknap(w,v,c,n);}return 0;}#include<stdio.h>#include<math.h>#include<string.h>typedef int bool;#define true 1#define false 0struct Node{int no; // ?áµ?±êo?int id; //jie dian idint sw; // ±3°ü?D·µá?int sv; // ±3°ü?D·µ?µdouble prior;};struct Node queuee[2000];int w[15],v[15];int bestv = 0,c,n;int path[15]; //lu jingint surplusValue(int y) {int sum = 0;for(int i = y; i <= n; i++)sum += v[i];return sum;}void qsort(int l,int r) {// printf("------\n");int len = r - l + 1;//printf("----%d %d %d-----\n",l,r,len);bool flag;for(int i = 0; i < len ; i++) {flag = false;for(int j = l; j <l+ len -i ;j++) {if(queuee[j].prior < queuee[j+1].prior) {struct Node temp = queuee[j];queuee[j] = queuee[j+1];queuee[j+1] = temp;flag = true;}//if(!flag) return;}}// printf("---排序嘻嘻---\n");//for(int i = l; i <= r;i++ )// printf("***%d : %.2lf\n",queuee[i].no,queuee[i].prior);// printf("\n------\n");}void branchknap() {bestv = 0;int f = 0;int r = 0;queuee[0].no = 1;queuee[0].id = 0;queuee[0].sv = 0;queuee[0].sw = 0;queuee[0].prior = 0;// printf("f: %d r: %d\n",f,r);while(f <= r) {struct Node node = queuee[f];printf("%d %d %d %d\n",node.id+1,node.no,node.sw,node.sv);if(node.no >= pow(2,n)) {if(node.sv > bestv) {bestv = node.sv;//TODOprintf("bestv=%d, bestx=[",bestv);int temp = node.no;int i = 0;while(temp > 1) {if(temp%2 == 0)path[i] = 1;elsepath[i] = 0;temp /= 2;i++;}i--;while(i >= 0) {while(i >= 0) {printf(" %d",path[i]);i--;}printf(" ]\n");}} else {if((node.sw + w[node.id+1]) <= c && surplusValue(node.id+1) + node.sv > bestv) { r++;//printf("%d\n",(node.sw + w[node.id+1]));queuee[r].id = node.id+1;queuee[r].no = node.no*2;int id = node.id+1;queuee[r].sv = node.sv + v[id];queuee[r].sw = node.sw + w[id];queuee[r].prior = queuee[r].sv/(queuee[r].sw*1.0);//printf("进队id: %d\n",queuee[r].no) ;//printf("%d %d %d\n",id,v[id], w[id]);}if(surplusValue(node.id+2) + node.sv > bestv) {r++;queuee[r].id = node.id+1;queuee[r].no = node.no*2 + 1;queuee[r].sv = node.sv ;queuee[r].sw = node.sw ;queuee[r].prior = node.prior;//printf("进队id: %d\n",queuee[r].no) ;}}f++;qsort(f,r);}}int main() {while(~scanf("%d %d",&c,&n)){memset(queuee,0,sizeof(queuee));for(int i = 1; i <= n; i++) {scanf("%d %d",&w[i],&v[i]);}branchknap();}return 0;}。

算法分析与设计实验五分枝—限界算法

算法分析与设计实验五分枝—限界算法

算法分析与设计实验五分枝—限界算法1、实现0/1背包问题的LC分枝—限界算法,要求使用大小固定的元组表示动态状态空间树,与0/1背包问题回溯算法做复杂性比较。

2、实现货郎担问题的分枝—限界算法并与货郎担问题的动态规划算法做复杂性比较比较。

3、实现带有期限的作业排序的分枝—限界算法并与带有期限的作业排序贪心算法做复杂性比较。

(任选一个完成)实验六分枝—限界算法实验目的1.掌握分枝—限界的基本思想方法;2.了解适用于用分枝—限界方法求解的问题类型,并能设计相应动态规划算法;3.掌握分枝—限界算法复杂性分析方法,分析问题复杂性。

预习与实验要求1.预习实验指导书及教材的有关内容,掌握分枝—限界的基本思想;2.严格按照实验内容进行实验,培养良好的算法设计和编程的习惯;3.认真听讲,服从安排,独立思考并完成实验。

实验设备与器材硬件:PC机软件:C++或Java等编程环境实验原理分枝—限界算法类似于回溯法,也是一种在问题的解空间树上搜索问题解的算法。

但两者求解方法有两点不同:第一,回溯法只通过约束条件剪去非可行解,而分枝—限界法不仅通过约束条件,而且通过目标函数的限界来减少无效搜索,也就是剪掉了某些不包含最优解的可行解;第二,在解空间树上,回溯法以深度优先搜索,而分枝—限界法则以广度优先或最小耗费优先的方式搜索。

分枝—限界的搜索策略是,在扩展节点处,首先生成其所有的儿子结点(分支),然后再从当前的活结点表中选择下一个扩展结点。

为了有效地选择下一扩展结点,以加速搜索进程,在每一活结点处,计算一个函数值(限界),并根据这些已计算出的函数值从当前活结点表中选择一个最有利的结点做为扩展,使搜索朝着解空间树上最优解的分支推进,以便尽快找出一个最优解。

分枝—限界法常以广度优先或以最小耗费优先的方式搜索问题的解空间树(问题的解空间树是表示问题皆空间的一颗有序树,常见的有子集树和排序树)。

在搜索问题的解空间树时,分枝—限界法的每一个活结点只有一次机会成为扩展结点。

分支界限方法01背包问题解题步骤

分支界限方法01背包问题解题步骤

分支界限方法是一种用于解决优化问题的算法。

在动态规划算法中,分支界限方法被广泛应用于解决01背包问题。

01背包问题是一个经典的动态规划问题,其解题步骤如下:1. 确定问题:首先需要明确01背包问题的具体描述,即给定一组物品和一个背包,每个物品有自己的价值和重量,要求在不超过背包容量的情况下,选取尽可能多的物品放入背包,使得背包中物品的总价值最大。

2. 列出状态转移方程:对于01背包问题,可以通过列出状态转移方程来描述问题的求解过程。

假设dp[i][j]表示在前i个物品中,背包容量为j时能够获得的最大价值,则状态转移方程可以表示为:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]]+v[i])3. 初始化边界条件:在动态规划中,需要对状态转移方程进行初始化,一般情况下,dp数组的第一行和第一列需要单独处理。

对于01背包问题,可以初始化dp数组的第一行和第一列为0。

4. 利用分支界限方法优化:针对01背包问题,可以使用分支界限方法来优化动态规划算法的效率。

分支界限方法采用广度优先搜索的思想,在每一步选择最有希望的分支,从而减少搜索空间,提高算法的效率。

5. 实际解题步骤:根据上述步骤,实际解决01背包问题的步骤可以概括为:确定问题,列出状态转移方程,初始化边界条件,利用分支界限方法优化,最终得到问题的最优解。

分支界限方法在解决01背包问题时起到了重要的作用,通过合理的剪枝策略,可以有效地减少动态规划算法的时间复杂度,提高问题的求解效率。

分支界限方法也可以应用于其他优化问题的求解过程中,在算法设计和实现中具有重要的理论和实际意义。

在实际应用中,分支界限方法需要根据具体问题进行灵活选择和调整,结合动态规划和剪枝策略,以便更好地解决各类优化问题。

掌握分支界限方法对于解决复杂问题具有重要的意义,也是算法设计和优化的关键技术之一。

分支界限方法在解决01背包问题的过程中,具有重要的作用。

优先队列式分支限界法求解0-1背包问题

优先队列式分支限界法求解0-1背包问题

算法分析与设计实验报告第7 次实验}1、测试自己输入的小规模数据2、测试随机生成1003、随机生成1000数据4、随机生成1000数据附录:完整代码#include <iostream>#include<time.h>#include<algorithm>#include<fstream>using namespace std;ifstream in("input.txt");ofstream out("output.txt");typedef int Typew;typedef int Typep;//物品类class Object{friend Typep Knapsack(Typew *, Typep *, Typew, int, int *); public:int operator <= (Object a) const{return (d >= a.d);}private:int ID; //物品编号float d; //单位重量价值};//树结点类class bbnode{friend class Knap;friend Typep Knapsack(Typew *, Typep *, Typew, int, int *); private:bbnode *parent; //指向父节点的指针int LChild;};//堆结点类class HeapNode{friend class Knap;friend class MaxHeap;public:operator Typep()const{return uprofit;};private:Typep uprofit, //结点的价值上界profit; //结点所相应的价值Typew weight; //结点所相应的重量int level; //活结点在子集树中所处的层序号bbnode *elemPtr; //指向该活结点在子集树中相应结点的指针};//最大堆类class MaxHeap{public:MaxHeap(int maxElem){HeapElem = new HeapNode* [maxElem+1]; //下标为0的保留capacity = maxElem;size = 0;}void InsertMax(HeapNode *newNode);HeapNode DeleteMax(HeapNode* &N);private:int capacity;int size;HeapNode **HeapElem;};//0-1背包问题的主类class Knap{friend Typep Knapsack(Typew *, Typep *, Typew, int, int *); public:Typep MaxKnapsack();private:MaxHeap *H;Typep Bound(int i);void AddLiveNode(Typep up, Typep cp, Typew cw, int ch, int level);bbnode *E; //指向扩展结点的指针Typew c; //背包容量int n; //物品总数Typew *w; //物品重量数组(以单位重量价值降序)Typep *p; //物品价值数组(以单位重量价值降序)Typew cw; //当前装包重量Typep cp; //当前装包价值int *bestx; //最优解};void MaxHeap::InsertMax(HeapNode *newNode){int i = 1;for (i = ++size; i/2 > 0 && HeapElem[i/2]->uprofit < newNode->uprofit; i /= 2){HeapElem[i] = HeapElem[i/2];}HeapElem[i] = newNode;}HeapNode MaxHeap::DeleteMax(HeapNode *&N){if(size >0 ){N = HeapElem[1];int i = 1;while(i < size){if(((i*2 +1) <= size) && HeapElem[i*2]->uprofit > HeapElem[i*2 +1]->uprofit){HeapElem[i] = HeapElem[i*2];i = i*2;}else{if(i*2 <= size){HeapElem[i] = HeapElem[i*2];i = i*2;}elsebreak;}}if(i < size)HeapElem[i] = HeapElem[size];}size--;return *N;}Typep Knap::MaxKnapsack(){H = new MaxHeap(10000);bestx = new int [n+1];int i = 1;E = 0;cw = 0;cp = 0;Typep bestp = 0;Typep up = Bound(1);while (i != n+1){Typew wt = cw + w[i];if(wt <= c) {if(cp + p[i] > bestp)bestp = cp + p[i];AddLiveNode(up, cp + p[i], cw + w[i], 1, i);}up = Bound(i + 1);if(up >= bestp)AddLiveNode(up, cp, cw, 0, i);HeapNode* N;H->DeleteMax(N);E = N->elemPtr;cw = N->weight;cp = N->profit;up = N->uprofit;i = N->level + 1;}for (int i = n; i > 0; i--){bestx[i] = E->LChild;E = E->parent;}return cp;}Typep Knap::Bound(int i){Typew cleft = c - cw;Typep b = cp;while (i<=n && w[i] <= cleft){cleft -= w[i];b += p[i];i++;}if(i<=n) b += p[i]/w[i] * cleft;return b;}void Knap::AddLiveNode(Typep up, Typep cp, Typew cw, int ch, int level) {bbnode *b=new bbnode;b->parent=E;b->LChild=ch;HeapNode *N = new HeapNode;N->uprofit=up;N->profit=cp;N->weight=cw;N->level=level;N->elemPtr=b;H->InsertMax(N);}//Knapsack返回最大价值,最优值保存在bestxTypep Knapsack(Typew *w, Typep *p, Typew c, int n, int *bestx){Typew W = 0;Typep P = 0;Object *Q = new Object[n];for(int i =1; i<=n; i++){Q[i-1].ID = i;Q[i-1].d = 1.0*p[i]/w[i];P += p[i];W += w[i];}if (W <= c){for(int i =1; i<=n; i++){bestx[i] = p[i];}return P;}for(int i = 1; i<n; i++)for(int j = 1; j<= n-i; j++){if(Q[j-1].d < Q[j].d){Object temp = Q[j-1];Q[j-1] = Q[j];Q[j] = temp;}}Knap K;K.p = new Typep [n+1];K.w = new Typew [n+1];for(int i = 1; i<=n; i++){K.p[i] = p[Q[i-1].ID];K.w[i] = w[Q[i-1].ID];}K.cp = 0;K.cw = 0;K.c = c;K.n = n;Typep bestp = K.MaxKnapsack();for(int i = 1; i<=n; i++){bestx[Q[i-1].ID] = K.bestx[i];}delete [] Q;delete [] K.w;delete [] K.p;delete [] K.bestx;delete [] K.H;return bestp;}int main(){cout<<"请在input.txt文件中输入物品数量、背包容量"<<endl;int N ;in>>N;Typew c; //背包容量in>>c;int bestx[N+1]; //最优解int bestp; //最优值Typep p[N+1];//物品价值Typew w[N+1];//物品重量cout<<"在input.txt文件中读取的物品总数N = "<< N<<",背包容量C = "<< c<<endl; cout<<"请选择生成数据的规模大小:200请输入1,2000请输入2,20000请输入3"<<endl; int x;cin>>x;if(x==1){ofstream in1("input1.txt");srand(time(NULL));int n=200;int *a=new int[n];for(int i=0;i<n;i++){a[i]=rand()%91;in1<<a[i]<<" ";}cout<<"随机数已请生成到input1文件中,请将数据添加到input.txt文件中"<<endl; }else if(x==2){ofstream in1("input1.txt");srand(time(NULL));int n=2000;int *a=new int[n];for(int i=0;i<n;i++){a[i]=rand()%91;in1<<a[i]<<" ";}cout<<"随机数已请生成到input1文件中,请将数据添加到input.txt文件中"<<endl; }else if(x==3){ofstream in1("input1.txt");srand(time(NULL));int n=20000;int *a=new int[n];for(int i=0;i<n;i++){a[i]=rand()%91;in1<<a[i]<<" ";}cout<<"随机数已请生成到input1文件中,请将数据添加到input.txt文件中"<<endl;}cout<<"添加完毕后请输入1"<<endl;int m;cin>>m;clock_t start,finish;start=clock();for (int i = 1; i <= N; i++){in>>w[i];}for (int i = 1; i <= N; i++){in>>p[i];}cout<<"已在input文件中读取物品重量和价值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验四用分支限界法实现0-1背包问题
一.实验目的
1.熟悉分支限界法的基本原理。

2.通过本次实验加深对分支限界法的理解。

二.实验内容及要求
内容:.给定n种物品和一个背包。

物品i的重量是w,其价值为v,背包容量为c。

问应该如何选择装入背包的物品,使得装入背包中物品的总价值最大?
要求:使用优先队列式分支限界法算法编程,求解0-1背包问题
三.程序列表
#include<iostream>
#include<stack>
using namespace std;
#define N 100
class HeapNode//定义HeapNode结点类
{
public:
double upper, price, weight; //upper为结点的价值上界,price是结点所对应的价值,weight 为结点所相应的重量
int level, x[N]; //活节点在子集树中所处的层序号
};
double MaxBound(int i);
double Knap();
void AddLiveNode(double up, double cp, double cw, bool ch, int level);//up是价值上界,cp是相应的价值,cw是该结点所相应的重量,ch是ture or false
stack<HeapNode> High; //最大队High
double w[N], p[N]; //把物品重量和价值定义为双精度浮点数
double cw, cp, c; //cw为当前重量,cp为当前价值,定义背包容量为c
int n; //货物数量为
int main()
{
cout <<"请输入背包容量:"<< endl;
cin >> c;
cout <<"请输入物品的个数:"<< endl;
cin >> n;
cout <<"请按顺序分别输入物品的重量:"<< endl;
int i;
for (i = 1; i <= n; i++)
cin >> w[i]; //输入物品的重量
cout <<"请按顺序分别输入物品的价值:"<< endl;
for (i = 1; i <= n; i++)
cin >> p[i]; //输入物品的价值
cout <<"最优值为:";
cout << Knap() << endl; //调用knap函数输出最大价值
return 0;
}
double MaxBound(int k) //MaxBound函数求最大上界
{
double cleft = c - cw; //剩余容量
double b = cp; //价值上界
while (k <= n&&w[k] <= cleft) //以物品单位重量价值递减装填剩余容量
{
cleft -= w[k];
b += p[k];
k++;
}
if (k <= n)
b += p[k] / w[k] * cleft; //装填剩余容量装满背包
return b;
}
void AddLiveNode(double up, double cp, double cw, bool ch, int lev) //将一个新的活结点插入到子集数和最大堆High中
{
HeapNode be;
be.upper = up;
be.price = cp;
be.weight = cw;
be.level = lev;
if (lev <= n)
High.push(be);
}//调用stack头文件的push函数 }
double Knap() //优先队列分支限界法,返回最大价值,bestx返回最优解
{
int i = 1;
cw = cp = 0;
double bestp = 0; //best为当前最优值
double up = MaxBound(1);//价值上界
//搜索子集空间树
while (1) //非叶子结点
{
double wt = cw + w[i];
if (wt <= c) //左儿子结点为可行结点
{
if (cp + p[i]>bestp)
bestp = cp + p[i];
AddLiveNode(up, cp + p[i], cw + w[i], true, i + 1);
}
up = MaxBound(i + 1);
if (up >= bestp) //右子数可能含最优解
AddLiveNode(up, cp, cw, false, i + 1);
if (High.empty())
return bestp;
HeapNode node = High.top(); //取下一扩展结点
High.pop();
cw = node.weight;
cp = node.price;
up = node.upper;
i = node.level;
}
}四.实验结果
酒店服务员年度工作汇报
20xx年是自我挑战的一年,我将努力改正过去一年工作中的不足,把新一年的工作做好,过去的一年在领导的关心和同事的热情帮助,通过自身的不懈努力,在工作上取得了一定的成果,现将工作总结如下。

一、培训方面:
1、托盘要领,房间送餐流程。

2、大、中、小型宴会各部门帮忙跑菜的相关知识讲解。

3、宾馆相关制度培训与督导。

4、出菜途径相关安全意识。

5、对本班组进行学习酱料制作。

二、管理方面:
1、上级是下级的模范,我一直坚持以身作则,所以我的班组非常团结。

2、我对任何人都一样,公平、公正、公开做事。

3、以人为本,人与人的性格多方面的管理方式。

4、20xx年传菜全年离职人数23人,20xx年传菜全年离职人数4人,20xx年是比较稳定的一年。

三、作为我本人,负责传菜工作。

1、负责厅面的酱料运转。

2、传菜出菜相应输出与控制。

3、传菜人手的协调。

四、在操作方面的几点。

1、人手不足,。

相关文档
最新文档