等离子体物理基础期末考试(含答案)课件

合集下载

大连理工大学等离子体物理基础试题B(2010.6)

大连理工大学等离子体物理基础试题B(2010.6)

大连理工大学一、Write the expressions.(20)(a)Bohm velocity(b)Electron Larmor radius(c)Ion plasma frequency(d)Gravitational drift velocity(e)Magnetic moment.二、For a magnetic mirror system with the mirror ratio 4. Determine the conditionunder which the charged particles are confined in the system and calculates the probability of loss. (15)三、Assuming the electrons at thermal equilibrium, write the Maxwellian distribution with the temperature T e and the expression of electron mean kinetic energy. (10)四、Write the expression of the change in the kinetic energy of a electron as a resultof elastic collision with a atom. (10)五、Assuming that the thermal diffusion is insignificant,write the electron and ion directed velocities respectively. Deduce the ambipolar electric field and the ambipolar directed velocity. (15)六、Deduce the Child-Langmuir law for the collisionless sheath.(15)*七、Write the dispersion relation for electromagnetic waves propagating in a plasma with no dc magnetic field, and then deduces the phase velocity, the group velocity, and the cutoff condition. If k is imaginary, please determine the skin depth.(15)*为考了类似的,其中第一题必会!感谢您的支持与配合,我们会努力把内容做得更好!。

等离子体物理基础(英)全册精品完整课件

等离子体物理基础(英)全册精品完整课件

The surface density of the charge on the plates is
neex
(1-8)
The electric field E is determined
E neex
o
(1-9)
The electron motion equation has the form
Te ,Ti :
~104 eV (108K)
Plasmas are also classified as low temperature plasma and high temperature plasma.
1.4 Debye shielding and Debye length
Let us introduce a negative charge into a plasma having equilibrium densities
temperature
Te Ti Tg
The plasma is at thermal equilibrium.
p:
over 100 Torr
ne :
Te :
1016 cm3
2000K~50000K
The plasma used for controlled thermonuclear fusion
Plasma in a processing reactor (computer model, by M. Kushner)
The plasma is called a nonequilibrium plasma.
1.3.2 Thermal plasma
The plasmas are generated by the arc discharges with the

等离子体物理基础期末考试(含答案)

等离子体物理基础期末考试(含答案)

等离⼦体物理基础期末考试(含答案)版权所有,违者必究!!中⽂版低温等离⼦体作业⼀. 氩等离⼦体密度103210n cm -=?, 电⼦温度 1.0e T eV =, 离⼦温度0.026i T eV =, 存在恒定均匀磁场B = 800 Gauss, 求(1)德拜半径;(2)电⼦等离⼦体频率和离⼦等离⼦体频率;(3)电⼦回旋频率和离⼦回旋频率;(4)电⼦回旋半径和离⼦回旋半径。

解:1、1/2302()8.310()e iD e i T T mm T T neελ-==?+, 2、氩原⼦量为40,221/21/200()8.0,()29pe pi e ine ne GHz MHz m m ωωεε====,3、14,0.19e i e ieB eB GHz MHz m m Ω==Ω== 4、设粒⼦运动与磁场垂直24.210, 1.3e e i i ce ci m v m v r mm r mm qB qB -===?===⼆、⼀个长度为2L 的柱对称磁镜约束装置,沿轴线磁场分布为220()(1/)B z B z L =+,并满⾜空间缓变条件。

求:(1)带电粒⼦能被约束住需满⾜的条件。

(2)估计逃逸粒⼦占全部粒⼦的⽐例。

解:1、由B(z)分布,可以求出02m B B =,由磁矩守恒得22001122m mmv mv B B ⊥⊥=,即0m v ⊥⊥= (1)当粒⼦能被约束时,由粒⼦能量守恒有0m v v ⊥≥,因此带电粒⼦能被约束住的条件是在磁镜中央,粒⼦速度满⾜0022、逃逸粒⼦百分⽐201sin 129.3%2P d d πθθθπ===?? (2)三、在⾼频电场0cos E E t ω=中,仅考虑电⼦与中性粒⼦的弹性碰撞,并且碰撞频率/t t ea ea v νλ=正⽐于速度。

求电⼦的速度分布函数,电⼦平均动能,并说明当t ea ων>>时,电⼦遵守麦克斯韦尔分布。

解:课件6.6节。

等离子体物理基础期末考试(含问题详解)

等离子体物理基础期末考试(含问题详解)

版权所有,违者必究!!中文版低温等离子体作业一. 氩等离子体密度103210n cm -=⨯, 电子温度 1.0e T eV =, 离子温度0.026i T eV =,存在恒定均匀磁场B = 800 Gauss, 求 (1) 德拜半径;(2) 电子等离子体频率和离子等离子体频率; (3) 电子回旋频率和离子回旋频率; (4) 电子回旋半径和离子回旋半径。

解:1、1/2302()8.310()e iD e i T T mm T T neελ-==⨯+, 2、氩原子量为40,221/21/200()8.0,()29pe pi e ine ne GHz MHz m m ωωεε====,3、14,0.19e i e ieB eB GHz MHz m m Ω==Ω== 4、设粒子运动与磁场垂直24.210, 1.3e e i i ce ci m v m v r mm r mm qB qB -===⨯===二、一个长度为2L 的柱对称磁镜约束装置,沿轴线磁场分布为220()(1/)B z B z L =+,并满足空间缓变条件。

求:(1)带电粒子能被约束住需满足的条件。

(2)估计逃逸粒子占全部粒子的比例。

解:1、由B(z)分布,可以求出02m B B =,由磁矩守恒得22001122m mmv mv B B ⊥⊥=,即0m v ⊥⊥= (1) 当粒子能被约束时,由粒子能量守恒有0m v v ⊥≥,因此带电粒子能被约束住的条件是在磁镜中央,粒子速度满足002v v ⊥≥2、逃逸粒子百分比201sin 129.3%2P d d πθϕθθπ===⎰⎰ (2)三、 在高频电场0cos E E t ω=中,仅考虑电子与中性粒子的弹性碰撞,并且碰撞频率/t t ea ea v νλ=正比于速度。

求电子的速度分布函数,电子平均动能,并说明当t ea ων>>时,电子遵守麦克斯韦尔分布。

解:课件6.6节。

等离子体物理学导论ppt课件

等离子体物理学导论ppt课件

3、等离子体响应时间: 静态等离子体的德拜长度,主要取决于低温成分的德 拜长度。在较快的过程中,离子不能响应其变化,在 鞘层内不能随时达到热平衡的玻尔兹曼分布,只起到 常数本底作用,此时等离子体的德拜长度只由电子成 份决定。 等离子体的响应时间: 1)、建立德拜屏蔽所需要的时间 2)、等离子体对外加电荷扰动的响应时间 3)、电子以平均的热速度跨越鞘层空间所
)1/ 2 , lD
(lD2i
l ) 2 1/ 2 De
提示:
A1:是的,排空同号电荷,调整粒子密度 A2: 低温成份(稳态过程)、
由电子德拜长度决定(短时间尺度运动过程)
4、德拜屏蔽是一个统计意义上的概念,表现在上述推导过程
中使用的热平衡分布特征,电势的连续性等概念成立的前
提是: 德拜球内存在足够多的粒子
德拜屏蔽概念的几个要点: 1、电屏蔽、维持准中性 2、基本尺度:空间尺度 3、响应时间:时间尺度 4、统计意义:等离子体参数
等离子体概念成立的两个判据: 时空尺度、统计意义
后面还有一个,共同保障集体效应的发挥!
三、 等离子体Langmuir振荡: 等离子体振荡示意图
x=0
物理图像:密度扰动电荷分离(大于德拜半径尺度)电场 驱动粒子(电子、离子)运动“过冲”运动 往返振荡等离子体最重要的本征频率: 电子、离子振荡频率
1. 捕获与约束 逃逸与屏蔽 (反抗约束) 由自由能与捕获能平衡决定! 德拜长度: 1、随数密度增加而减小,即更 小范围内便可获得足够多的屏蔽用的粒子
2、随温度升高而增大:温度代表粒子 自由能,零温度则屏蔽电子缩为薄壳
德拜屏蔽是两个过程竞争的结果: 约束与逃逸 (反抗约束) 屏蔽与准中性 由自由能与相互作用能平衡决定!
消除流行的错误的温度概念: 荧光灯管内的电子温度为20,000K 日冕气体温度高达百万度,却烧不开一杯水

等离子体物理基础期末考试(含答案)

等离子体物理基础期末考试(含答案)

版权所有,违者必究!!中文版低温等离子体作业一. 氩等离子体密度103210n cm -=⨯, 电子温度 1.0e T eV =, 离子温度0.026i T eV =, 存在恒定均匀磁场B = 800 Gauss, 求 (1) 德拜半径;(2) 电子等离子体频率和离子等离子体频率; (3) 电子回旋频率和离子回旋频率; (4) 电子回旋半径和离子回旋半径。

解:1、1/2302()8.310()e iD e i T T mm T T neελ-==⨯+, 2、氩原子量为40,221/21/200()8.0,()29pe pi e ine ne GHz MHz m m ωωεε====,3、14,0.19e i e ieB eB GHz MHz m m Ω==Ω== 4、设粒子运动与磁场垂直24.210, 1.3e e i i ce ci m v m v r mm r mm qB qB -===⨯===二、一个长度为2L 的柱对称磁镜约束装置,沿轴线磁场分布为220()(1/)B z B z L =+,并满足空间缓变条件。

求:(1)带电粒子能被约束住需满足的条件。

(2)估计逃逸粒子占全部粒子的比例。

解:1、由B(z)分布,可以求出02m B B =,由磁矩守恒得22001122m mmv mv B B ⊥⊥=,即0m v ⊥⊥= (1) 当粒子能被约束时,由粒子能量守恒有0m v v ⊥≥,因此带电粒子能被约束住的条件是在磁镜中央,粒子速度满足002v v ⊥≥2、逃逸粒子百分比201sin 129.3%2P d d πθϕθθπ===⎰⎰ (2)三、 在高频电场0cos E E t ω=中,仅考虑电子与中性粒子的弹性碰撞,并且碰撞频率/t t ea ea v νλ=正比于速度。

求电子的速度分布函数,电子平均动能,并说明当t ea ων>>时,电子遵守麦克斯韦尔分布。

解:课件6.6节。

等离子体物理基础期末考试(含答案)解析

等离子体物理基础期末考试(含答案)解析

版权所有,违者必究!!中文版低温等离子体作业一. 氩等离子体密度103210n cm -=⨯, 电子温度 1.0e T eV =, 离子温度0.026i T eV =, 存在恒定均匀磁场B = 800 Gauss, 求 (1) 德拜半径;(2) 电子等离子体频率和离子等离子体频率; (3) 电子回旋频率和离子回旋频率; (4) 电子回旋半径和离子回旋半径。

解:1、1/2302()8.310()e iD e i T T mm T T neελ-==⨯+, 2、氩原子量为40,221/21/200()8.0,()29pe pi e ine ne GHz MHz m m ωωεε====,3、14,0.19e i e ieB eB GHz MHz m m Ω==Ω== 4、设粒子运动与磁场垂直24.210, 1.3e e i i ce ci m v m v r mm r mm qB qB -===⨯===二、一个长度为2L 的柱对称磁镜约束装置,沿轴线磁场分布为220()(1/)B z B z L =+,并满足空间缓变条件。

求:(1)带电粒子能被约束住需满足的条件。

(2)估计逃逸粒子占全部粒子的比例。

解:1、由B(z)分布,可以求出02m B B =,由磁矩守恒得22001122m mmv mv B B ⊥⊥=,即0m v ⊥⊥= (1) 当粒子能被约束时,由粒子能量守恒有0m v v ⊥≥,因此带电粒子能被约束住的条件是在磁镜中央,粒子速度满足002v v ⊥≥2、逃逸粒子百分比201sin 129.3%2P d d πθϕθθπ===⎰⎰ (2)三、 在高频电场0cos E E t ω=中,仅考虑电子与中性粒子的弹性碰撞,并且碰撞频率/t t ea ea v νλ=正比于速度。

求电子的速度分布函数,电子平均动能,并说明当t ea ων>>时,电子遵守麦克斯韦尔分布。

解:课件6.6节。

等离子体物理ppt课件

等离子体物理ppt课件
v
sin2 sin2 0
B
B0
Bm
B0
sin2 0
磁镜
W W const W//
v
v//
Loss Cone
sin2 0c
B0 Bmc
0a 0c , 则Bmc Bma
临界投射角 0 c
c arcsin 1/
sin2 c B0 / BM 1/ 0 c 粒子被反射,约束在两 磁镜中 0 c 粒子穿过两磁镜,可能 逃逸
y
1
2
rc
rL
r
0
rL B B
r rc rL v vd vL v//
vdB
W qB 3
B B
曲率漂移
vdRc
FRc B qB2
mv/2/ qB2
Rc B Rc2
mv/2/ qB2
B
bˆ Rc2

梯度+曲率联合漂移
vB c
m qB4
(v/2/
v2 2
)
B
(
dB 0 dt
. . .B
. .
.r .
.
. ..
.
2rE
dB dt
ds
dB r2
dt
缓变
漂移方向沿径向,向内
E r dB 2 dt
vdBt
r 2B
dB dt
收缩或向外扩张的螺旋 线。
非均匀电场
非均匀电场
Finite-larmor-radius Effect
非均匀电场
运动主体仍为回旋运动,叠加上电场漂移、电 场不均匀性导致的速度扰动;
可视为对原EXB漂移的修正项;
修正项与电场垂直方向的二阶微商相关; 电漂移修正项与粒子种类(回旋半径)有关电荷 分离电场。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

版权所有,违者必究!!中文版低温等离子体作业一. 氩等离子体密度103210n cm -=⨯, 电子温度 1.0e T eV =, 离子温度0.026i T eV =, 存在恒定均匀磁场B = 800 Gauss, 求(1) 德拜半径;(2) 电子等离子体频率和离子等离子体频率; (3) 电子回旋频率和离子回旋频率; (4) 电子回旋半径和离子回旋半径。

解:1、1/2302()8.310()e iD e i T T mm T T neελ-==⨯+, 2、氩原子量为40,221/21/200()8.0,()29pe pi e ine ne GHz MHz m m ωωεε====,3、14,0.19e i e ieB eB GHz MHz m m Ω==Ω== 4、设粒子运动与磁场垂直24.210, 1.3e e i i ce ci m v m v r mm r mm qB qB -===⨯===二、一个长度为2L 的柱对称磁镜约束装置,沿轴线磁场分布为220()(1/)B z B z L =+,并满足空间缓变条件。

求:(1)带电粒子能被约束住需满足的条件。

(2)估计逃逸粒子占全部粒子的比例。

解:1、由B(z)分布,可以求出02m B B =,由磁矩守恒得22001122m m mv mv B B ⊥⊥=,即02m v ⊥⊥= (1) 当粒子能被约束时,由粒子能量守恒有0m v v ⊥≥,因此带电粒子能被约束住的条件是在磁镜中央,粒子速度满足00v ⊥≥2、逃逸粒子百分比201sin 129.3%22P d d πθϕθθπ==-=⎰⎰ (2)三、 在高频电场0cos E E t ω=中,仅考虑电子与中性粒子的弹性碰撞,并且碰撞频率/t t ea eav νλ=正比于速度。

求电子的速度分布函数,电子平均动能,并说明当tea ων>>时,电子遵守麦克斯韦尔分布。

解:课件6.6节。

电子分布函数满足2200010220011cos 1()(())(1.1)32cos (1.2)t a ea e a t ea e f eE t T f v f v vf t m v v v v m v eE t f f f tm v ωκνων∂∂∂∂⎧-=+⎪∂∂∂∂⎪⎨∂∂⎪-=-⎪∂∂⎩因为0f 的弛豫时间远远大于1f 的弛豫时间,因此近似认为0f 不随时间改变,1f 具有ω的频率,即111120 (2.1)(,)()cos ()sin (2.2)f t f v t f v t f v t ωω∂⎧=⎪∂⎨⎪=+⎩(2.2)代入(1.2)中,得0011121112()cos ()sin cos ttea ea e eE df f f t f f t t m dvωνωωνωω+--= (3)对比cos t ω和sin t ω的系数,(3)解得000011122222,()()tea t t e ea e ea eE df eE df f f m dv m dvνωωνων==++ (4) (4)代入(1.1)得2222000222222((1cos 2)()sin 2())6t ea t t e ea ea e E v df df d d v t t m v dv dv dv dvνωωωωνων-++++ 20021(())2t a ea a T f v vf v v m vκν∂∂=+∂∂ (5) 对(5)求时间平均得22220000222221()(())62t t ea a ea t e ea a e E v df T f d v vf m v dv dv v v m v νκνων∂∂-=++∂∂ (6) 引入有效电场2220222()t eaefft ea E E νων=+代入(6)得 222200021()(())32eff t a ea t e ea a e E v df T f d v vf dv m dv v m vκνν∂∂-=+∂∂ (7)对(7)两端积分,得2200022203eff a t e ea a e E df T f vf m dv m vνκ∂++=∂ (8) 所以电子分布函数为 0222200exp()/3()ve t ae ea m vdvf A T e E m κων=-++⎰ (9) 其中A 为归一化系数,电子动能为4002()e e K m f v v dv π∞=⎰(10)当tea ων>>时,0222200exp()/3()ve t ae ea m vdvf A T e E m κων=-++⎰ 22200exp()/3ve ae m vdvA T e E m κω≈-+⎰222/23/202()e ,23e e m v T e e a e e m e E T T T m πκω-==+ (11) 为麦克斯韦分布。

四、设一长柱形放电室,放电由轴向电场维持,有均匀磁场沿着柱轴方向,求:(1)径向双极性电场和双极扩散系数;(2)电子和离子扩散系数相等时,磁场满足的条件; (3)当磁场满足什么条件时,双极性电场指向柱轴。

解:课件8.5节。

1、粒子定向速度u 满足 nu E D nμ⊥⊥⊥∇=- (1) 其中/c eB m ω=,211(/)c m mem μωνν⊥=+,211(/)c m m T D m ωνν⊥=+。

双极性扩散中,电子密度等于离子密度,电子通量等于离子通量,根据(1),因此径向方向上有i i i i i nu nE D n μ⊥⊥⊥Γ==-∇e e e e e nE D n nu μ⊥⊥⊥=--∇==Γ (2) 解方程(2)得径向双极性电场i e i e D D nE nμμ⊥⊥⊥⊥-∇=+ (3)代入(2)得到e i i ei eD D n μμμμ⊥⊥⊥⊥⊥⊥+Γ=-∇+ (4)因此径向双极扩散系数为e i i ea i eD D D μμμμ⊥⊥⊥⊥⊥⊥⊥+=+。

2、电子和离子扩散系数分别为 211(/)i i i i i i T D m eB m νν⊥=+ 211(/)e e e e e e T D m eB m νν⊥==+ (5)解方程(5)得22()i i e e e i i i e e i i i e e em m T m T m e B m T m T νννννν-=- (6)注意到i e m m >>,因此磁场满足22i i e e eim m T B e T νν=。

3、双极性电场指向柱轴等价于22222222222222220i i i e e ei ei i e e i i e ei ei i e e T m T m D D m e B m e B n nE em em n n m e B m e B ννννννμμνν⊥⊥⊥⊥⊥--++∇∇==<++++ (7)当考虑,,i e e i i i e e m m T T Tm T m >>>>>>时,(7)简化为2222i i e e e i i i m m T e B Tm ννν< (8) (8)成立即双极性电场指向柱轴的条件是22i i e e eim m T B e T νν>。

五、如果温度梯度效应不能忽略, 推导无磁场时双极扩散系数和双极性电场。

解:粒子运动方程0m qnE p mn u ν-∇-= (1) 若等离子体温度有梯度,即p T n n T ∇=∇+∇,有m m m q T n T Tu E m m n m Tννν∇∇=--(2) 即/nu nE D n Dn T T μΓ==-∇-∇ (3) 其中,m mq TD m m μνν==。

双极性扩散中,电子密度等于离子密度,电子通量等于离子通量,因此有//i i i i e e e e nE D n Dn T T nE D n D n T T μμΓ=-∇-∇=--∇-∇=Γ (4) 由方程(4)解得双极性电场满足 i e i e i e i e D D D D n TE n Tμμμμ--∇∇=+++ (5) 将(5)带入(4),得 /e i i e e i i ei e i e i eD D D D n n T T μμμμμμμμ++Γ=Γ=-∇-∇++ (6)因此双极性扩散系数为e i i ea i eD D D μμμμ+=+。

六、推导出无碰撞鞘层Child 定律和玻姆鞘层判据。

解:课件9.1节。

在无碰撞鞘层中作如下假设:电子具有麦克斯韦分布;离子温度为0K ;等离子体-鞘层边界处坐标为0,电场电势为0,此处电子离子密度相等,离子速度为s u 。

根据粒子能量守恒得221122s Mu Mu e φ=- (1) 根据粒子通量守恒得i s s n u n u = (2) 解得,1/222(1)i s se n n Mu -Φ=-。

电子满足玻尔兹曼分布/e T e s n n e Φ=,带入泊松方程得 2/1/22201((1/)),2T s s s s en d e eE Mu dx εΦ-Φ=--ΦE = (3) 上式两端乘d dx Φ并对x 积分,注意有00|0,|0x x d dx==ΦΦ==,得/1/20()((1/))T s s en d d d d dx e dx dx dx dx dxεΦ-ΦΦΦ=--ΦE ⎰⎰2/1/201()(2(1/)2)2T s s s s en d Te T E E dx εΦΦ=-+-ΦE - (4) (4)要保证右端为正,当||0Φ>>时显然成立。

当||Φ较小时,对其线形展开得,22221124se e T E ΦΦ≥化简得玻姆鞘层判据1/2()s B eT u u M≥=。

当阴极鞘层的负偏压较大时,/0eT e s n n e Φ=≈,s E <<Φ,此时(4)近似等于21/21/2012()2()()2s s en u d e dx Mε-Φ=-Φ (5) 记0s s J en u =,(5)两边开方再积分,注意边界条件00|0,|0x x d dx==ΦΦ==得 3/41/21/40032()()()2J ex Mε--Φ= (6) (6)中带入边界条件0()s V Φ=-,化简得无碰撞鞘层Child 定律3/21/2000242()9V e J M s ε=七、设一无碰撞朗谬尔鞘层厚度为S ,电压为V ,证明:一个初始能量为零的离子穿过鞘层到达极板所需时间为03/t s v =,这里1/20(2/)v eV m =。

解:朗缪尔鞘层中电势的分布为 3/41/21/4032()()2J ex mε---Φ= (1) Child 定律为3/21/20242()9e V J m sε=,带入(1)得鞘层电势分布满足 4/3()xV sΦ=- (2)由粒子能量守恒得212mv e =-Φ (3) 带入得(2),化简得2/30()dx xv v dt s== (4) 对于方程(4)将含x 项移到左边,两边乘dt 再积分,注意到初始条件0|0t x ==,得2/31/33s x t v = (5) 当粒子到达极板时,有x s =,带入(5)得03/t s v =八、 一个截面为正方形(边长为a )长方体放电容器内,纵向电场维持了定态等离子体,设直接电离项为i nn tδνδ=,并忽略温度梯度效应,求: (1)在截面内等离子体密度分布和电离平衡条件:(2)设纵向电流密度为e j en E μ=,给出穿过放电室截面的总电流表达式。

相关文档
最新文档