初中圆的知识点总结
九年级数学圆的知识点总结大全

圆是数学中的一个基本几何概念,九年级数学中关于圆的知识点如下:一、圆的定义和要素:1.圆的定义:由平面上离一个确定点(圆心)的距离相等的点的全体,构成一个平面图形,称为圆。
2.圆的要素:圆心、半径、直径、弧、弦、切线、割线、扇形、弓形等。
二、圆的性质:1.圆的任意两点之间的距离相等。
2.圆的半径是圆上任意一点到圆心的距离。
3.圆的直径是通过圆心的一条线段,直径的长度等于半径的两倍。
4.圆的弧是圆上两点之间的一段曲线,圆的圆心角对应的弧长是圆的周长的一部分。
5.圆的弦是圆上的两点间的线段。
6.圆的切线是与圆只有一个交点的直线。
7.圆的割线是与圆有两个交点的直线。
8.圆的相似圆是指具有相同圆心,半径成比例的圆。
9.圆与其他几何图形的关系,如圆与直线、圆与多边形等。
三、圆的图形和公式:1.圆的标准方程:(x-a)²+(y-b)²=r²,其中(a,b)为圆心坐标,r为半径。
2.圆的一般方程:x²+y²+Dx+Ey+F=0,对应一般方程的圆心坐标为(-D/2,-E/2),半径为√((D²+E²)/4-F)。
3.圆的表示方法:各种符号和字母的含义及表示。
四、圆的计算题:1.圆的周长:C=2πr,其中C为周长,r为半径。
2.圆的面积:A=πr²,其中A为面积,r为半径。
3.圆的弧长公式:L=2πr(θ/360°),其中L为弧长,r为半径,θ为圆心角的度数。
4.扇形的面积公式:A=(θ/360°)πr²,其中A为扇形的面积,r为半径,θ为圆心角的度数。
5. 弓形的面积公式:A=(θ/360°)πr²-hr,其中A为弓形的面积,r为半径,θ为弧对应的圆心角的度数,h为弓形的高。
五、圆的证明题:1.圆上的弦垂直于直径。
2.圆上的垂直于弦的直径。
3.圆的半径与切线垂直。
六、圆的应用:1.圆的模拟应用,如钟表等。
九年级_圆_全章知识点总结

九年级_圆_全章知识点总结1、圆的定义:在同一平面内,线段OP 绕它固定的一个端点O ,另一端点P 所经过的 叫做圆,定点O 叫做 ,线段OP 叫做圆的 ,以点O 为圆心的圆记作 ,读作圆O 。
2、弦和直径:连接圆上任意 叫做弦,其中经过圆心的弦叫做 , 是圆中最长的弦。
3、弧:圆上任意 叫做圆弧,简称弧。
圆的任意一条直径的两个端点把圆分成的两条弧,每一条弧都叫做 。
小于半圆的弧叫做 ,用弧两端的字母上加上“⌒”就可表示出来,大于半圆的弧叫做 ,用弧两端的字母和中间的字母,再加上“⌒”就可表示出来。
4、等圆:半径相等的两个圆叫做等圆;也可以说能够完全重合的两个圆叫做等圆。
5、点与圆的三种位置关系:若点P 到圆心O 的距离为d ,⊙O 的半径为R ,则:点P 在⊙O 外;点P 在⊙O 上;点P 在⊙O 内。
6、线段垂直平分线上的点 距离相等;到线段两端点距离相等的点在 上 7、过一点可作 个圆。
过两点可作 个圆,以这两点之间的线段的 上任意一点为圆心即可。
8、过 的三点确定一个圆。
9、经过三角形三个顶点的圆叫做三角形的 ,外接圆的圆心叫做三角形的 ,这个三角形叫做圆的 。
三角形的外心是三角形三条边的 例1、有下列七个命题:① 直径是弦;② 经过三个点一定可以作圆;③ 三角形的外心到三角形各顶点的距离都相等;④ 半径相等的两个半圆是等弧;⑤三角形的三个顶点在同一个圆上;⑥ 三角形的外心在三角形的内部;⑦过圆心的线段叫做圆的直径。
其中正确的有 (填序号)。
例2、⊙O 的半径为5,圆心O 在坐标原点上,点P 的坐标为(4,2),则点P 与⊙O 的位置关系是( ) A .点P 在⊙O 内 B .点P 在⊙O 上 C .点P 在⊙O 外 例3、已知矩形ABCD 的边AB=3cm ,AD=4cm ,若以A 点为圆心作⊙A ,使B 、C 、D 三点中至少有一个点在圆内且至少有一个点在圆外,则⊙A 的半径r 的取值范围是 . 例4、如果⊙O 所在平面内一点P 到⊙O 上的点的最大距离为7,最小距离为1,那么此圆的半径为 1、圆是轴对称图形, 都是它的对称轴2、垂径定理:垂直于弦的直径 ,并且平分3、垂径定理的推论:平分弦( )的直径垂直于弦,并且平分 例5、如图1,直径CE 垂直于弦AB ,CD=1,且AB+CD=CE ,求圆的半径。
中考圆的知识点总结总结

中考圆的知识点总结总结一、圆的定义和性质1. 圆的定义圆是一个平面上和一个确定点的距离都相等的点的集合。
这个确定点就是圆心,而圆心到圆上的任意点的距离就是半径。
2. 圆的性质(1)圆心角圆心角是以圆心为顶点的角,它的两条边分别是圆周上的两条弦。
圆心角的度数等于对应的弧所对的圆周的度数。
如果圆心角的度数为360度,那么这个角就是周角。
(2)弧圆上的一段弧是圆周的一部分。
圆的周长就是圆周的长度,可以用角度和弧度来表示。
(3)切线和切点切线是一个直线,它与圆相切于一个点。
在圆上,切线与半径的夹角为90度。
(4)同位角同位角是两条平行线被一条截线所切割而形成的一对内角和一对外角。
同位角的性质也可以应用到圆上。
(5)相似两个或者更多的圆是相似的,如果它们有着相同的形状但是不同的尺寸。
相似的圆的半径之比等于它们的直径之比。
二、圆的相关定理1. 圆周角定理圆周角等于圆心角的一半。
2. 圆的面积和周长圆的面积等于πr^2,圆的周长等于2πr,其中r是圆的半径,π是一个无理数,约等于3.14159。
3. 弦长定理在同一个圆上,相交弦的两个切点到圆心的距离相等。
4. 弧长定理同样的圆上,相对的圆周弧长相等。
5. 切线定理切线和半径的夹角为90度。
6. 弧上的角定理同样的圆上,一个圆周弧所对的圆心角等于这个弧上的其他角的和。
7. 线段对定理在一个圆上,两条相交的弧所对的线段互为比例。
三、圆的应用1. 圆的周长和面积的应用圆的周长和面积是经常在实际生活中用到的数学概念。
比如在工程测量中,需要计算环形的周长和面积。
2. 圆的图形补充圆的图形补充,包括扇形、环形等概念,也是圆的知识点之一。
3. 圆的运动学应用在运动学中,圆的运动规律和路径也是一个重要的应用。
四、典型例题下面列举一些典型的中考圆的例题,帮助大家更好地复习和巩固知识。
1. 如果一条切线和一条半径分割了一个角为30度的圆心角,那么这条切线和半径的夹角是多少度?A. 60度B. 45度C. 30度D. 15度答案:A. 60度2. 已知圆的半径为8cm,求圆的面积和周长。
九年级圆的知识点总结

九年级圆的知识点总结一、圆的基本定义1. 圆的定义:平面上所有与给定点(圆心)距离相等的点的集合。
2. 圆心(O):圆心是圆的中心点,所有圆上的点到圆心的距离都等于半径。
3. 半径(r):圆心到圆上任意一点的距离。
4. 直径(d):通过圆心的最长弦,是半径的两倍长度。
5. 弦(c):连接圆上任意两点的线段。
6. 弧(a):圆上两点之间的圆周部分。
7. 优弧:大于半圆的弧。
8. 劣弧:小于半圆的弧。
9. 半圆:圆的一半,由直径所界定的弧。
10. 切线(t):与圆只有一个公共点的直线。
二、圆的性质1. 所有半径的长度相等。
2. 直径是圆内最长的弦。
3. 圆的任意两点之间的弧,优弧总是大于劣弧。
4. 切线与半径相交于圆外的一点,形成直角。
5. 圆周角定理:圆周上任意一点引出的两条半径与圆周所形成的角,其大小是圆心角的一半。
6. 圆心角定理:同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
三、圆的计算公式1. 圆的周长(C):C = πd = 2πr2. 圆的面积(A):A = πr²3. 扇形面积:S = (θ/360) × πr²,其中θ是扇形的中心角的度数。
4. 弓形面积:S = (θ/360) × πr² - (θ/360) × rθ/2,其中θ是弓形的中心角的度数。
四、圆的应用问题1. 圆与直线的关系:相交、相切、相离。
2. 圆与圆的关系:内含、外离、相交、内切、外切。
3. 圆的切线问题:求切线长度、切点坐标等。
4. 圆的弦长问题:根据圆心距、半径、弦心距等求弦长。
5. 圆的面积问题:根据圆的半径、直径、周长等求面积。
五、圆的作图方法1. 用圆规画圆:确定圆心和半径,旋转圆规即可画出圆。
2. 作圆的切线:通过圆外一点作圆的切线,需要利用圆心到切点的垂线与切线垂直的性质。
3. 作圆的中垂线:连接圆上任意两点,作其中点的垂线,即为圆的中垂线。
初中数学圆的知识点总结

初中数学圆的知识点总结初中数学圆的知识点总结【一】一、圆1、圆的有关性质在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫圆,固定的端点O 叫圆心,线段OA叫半径。
由圆的意义可知:圆上各点到定点〔圆心O〕的间隔等于定长的点都在圆上。
就是说:圆是到定点的间隔等于定长的点的集合,圆的内部可以看作是到圆。
心的间隔小于半径的点的集合。
圆的外部可以看作是到圆心的间隔大于半径的点的集合。
连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。
圆上任意两点间的局部叫圆弧,简称弧。
圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧;小于半圆的弧叫劣弧。
由弦及其所对的弧组成的圆形叫弓形。
圆心一样,半径不相等的两个圆叫同心圆。
可以重合的两个圆叫等圆。
同圆或等圆的半径相等。
在同圆或等圆中,可以互相重合的弧叫等弧。
二、过三点的圆l、过三点的圆过三点的圆的作法:利用中垂线找圆心定理不在同一直线上的三个点确定一个圆。
经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。
2、反证法反证法的三个步骤:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾得出假设不正确,从而肯定命题的结论正确。
例如:求证三角形中最多只有一个角是钝角。
证明:设有两个以上是钝角那么两个钝角之和》180°与三角形内角和等于180°矛盾。
不可能有二个以上是钝角。
即最多只能有一个是钝角。
三、垂直于弦的直径圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推理1:平分弦〔不是直径〕的直径垂直于弦,并且平分弦所对两条弧。
弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一个条弧。
推理2:圆两条平行弦所夹的弧相等。
四、圆心角、弧、弦、弦心距之间的关系圆是以圆心为对称中心的中心对称图形。
九年级圆的知识点详细总结归纳

九年级圆的知识点详细总结归纳一、圆的定义和关键概念圆是一个平面上的简单闭曲线,由与一个固定点的所有点到该点的距离相等的点组成。
下面是一些重要的圆的关键概念:1. 圆心 (Center):圆心是圆的中心点,标记为O。
2. 圆周 (Circumference):圆的周长,也称为圆周,用C表示。
3. 直径 (Diameter):直径是通过圆心的、连接圆上两点的线段。
直径的长度是圆直径的两倍。
直径用d表示。
4. 半径 (Radius):半径是从圆心到圆上任意一点的线段。
半径的长度是直径的一半。
半径用r表示。
5. 弧 (Arc):圆上两点之间的一段路径叫做弧。
6. 弦 (Chord):圆上两点之间的线段叫做弦。
7. 切线 (Tangent):切线是切于圆的一条直线,且与圆仅有一个交点。
二、圆的性质和定理圆的性质和定理是研究圆的重要基础,下面是一些常见的圆的性质和定理:1. 直径定理:直径是最长的弦,且它把一个圆分成两个半圆。
2. 弧长定理:一个圆的弧长是根据圆的半径和弧度来计算的。
弧长等于半径乘以弧的弧度。
3. 弧心角定理:圆心角是以圆心为顶点的角,它的弧度等于弧长与半径的比值。
4. 切线定理:切线与半径的关系是垂直。
5. 切线和半径的性质:当一条直线与圆相切时,与切点相连的半径垂直于切线。
6. 切割定理:如果一个弦垂直于一个半径,那么它将被切分成两个互为正方向的弧。
7. 切割角度定理:互不相交的弧它们对应的圆心角相等,相交的弧,它们对应切线切割的角相等。
8. 重合弧定理:在同一个圆上,两个重合的弧对应的圆心角相等。
三、圆的应用圆在日常生活和实际问题中有很多应用,下面是一些常见的圆的应用:1. 圆的测量:通过测量圆的直径或半径可以计算圆的周长和面积。
2. 圆的构造:通过给定圆的半径或直径可以构造圆。
3. 圆的几何关系:圆与直线、圆与圆之间有各种几何关系,如相离、相切、相交等。
4. 圆的运动学:在物理学中,圆的运动学广泛应用于描述物体的圆周运动和周期性运动。
初中数学共圆知识点总结

初中数学共圆知识点总结一、圆的基本概念1. 圆的定义:圆是平面内到定点的距离等于定长的点的集合。
2. 圆的元素:圆心、半径、直径、弧、弦、切线等。
3. 圆的性质:在同一个平面内,到一个定点的距离相等的所有点构成的集合就是一个圆。
二、圆的三要素1. 圆心:圆上所有点到定点O的距离都相等的这个定点O叫做圆心。
2. 半径:定点O到圆周上某一点的距离叫做半径,通常用r表示。
3. 直径:穿过圆心且两端在圆上的线段叫做直径,直径的长度等于半径的两倍。
三、圆的常见定理1. 圆的同位角定理:同位角相等。
2. 圆的交角定理:同弧或同圆周角的交角相等。
3. 切线定理:切线与半径垂直,切点到圆心的距离等于半径。
4. 弧长定理:圆的弧长等于圆心角的度数乘以π/180再乘以半径的长度。
5. 圆内接四边形的性质:内接四边形的对角线相互垂直,相交于一点。
对角线相等,且相等于两两相对的两条边的和。
6. 圆的切线性质:切线到圆的切点的两条半径是平分切线的外角。
四、圆的重要定理1. 圆的周长和面积计算公式- 圆的周长:C=2πr(r为半径)- 圆的面积:S=πr²(r为半径)2. 圆锥的体积计算- 圆锥的体积:V=1/3*πr²h(r为底面半径,h为高)五、圆的应用1. 圆的绘制:使用圆规和圆规尺绘制圆。
2. 圆的运用:如汽车的方向盘、水管的弯曲、计算机的图标等都需要用到圆的相关知识。
六、共圆定理1. 共圆的条件:三个或更多的点在同一个圆周上,这些点被称作共圆点。
若三个或更多的点在同一个圆周上,这些点满足同一条件,或者是同种东西的属性,或者是满足某种规律2. 共圆的判定及应用:当三个或更多点在同一个圆周上,可以利用共圆的性质(比如相等角、相等弧等)来解决实际问题。
七、圆中的其他定理1. 钩定理:相等的圆周角所对应的弧相等2. 等角定理:等角所对应的弧相等3. 等弧定理:等弧所对应的角相等八、共圆的应用1. 共圆的应用:在几何题中,常用共圆的性质来解题,例如,利用共圆相交弦的性质解题。
九年级数学圆的知识点总结大全

一、圆的定义和性质1.圆的定义:平面上到定点的距离等于定长的点的集合。
2.圆的要素:圆心、半径、圆周。
3.圆的性质:(1)半径相等的两个圆是同心圆;(2)同圆中,圆心角等于圆周角的1/2;(3)同弧上的两条弦所对的圆心角相等;(4)圆心角相等的弧相等;(5)相等弧所对的弦相等;(6)正多边形的内角和是定值,因此内接于一个圆的正多边形的各个内角相等;(7)直径是弦中最长的。
二、弧与圆周角1.弧的定义:圆上两点间的弧是以这两点为端点的两条互不相交的圆弧中,长的那一段。
2.弧的性质:(1)圆周角所对的弧是唯一确定的;(2)全周角所对的弧是定长的。
3.圆周角的定义:以圆心为端点的两条互不相交的射线所夹的角。
4.圆周角的度量:可以用角的度数来衡量。
三、切线与弦1.切线的定义:切线是与圆只有一个公共点的直线。
2.切线与半径的关系:切线与半径的关系是切线⊥半径。
3.弦的定义:两点之间的线段叫做弦。
4.弦的性质:(1)圆内的弦比它们所对的圆心角小,而且与一个圆心角的两个弧所对的弧一样;(2)相等的弦所对的圆心角相等。
四、相交弦定理1.弦上的点:如果一个点在弦上,则这个点到两个端点的距离相等。
2.相交弦定理:如果两个弦相交于圆内的一个点,则这两个弦上的两个点一定分别在另一个弦上的两侧。
五、余弦定理1.面积的性质:圆内、圆外的面积相等,夹在一个圆内的圆周弧的面积也相等。
2.余弦定理:在一个圆上,任意两条弧所对的圆心角的余弦值相等。
六、正多边形的面积公式1.正六边形的面积:正六边形的面积=3×(边长)²×√3÷22.正八边形的面积:正八边形的面积=2×(边长)²×√23.正十二边形的面积:正十二边形的面积=3×(边长)²×√34. 正十六边形的面积:正十六边形的面积=4×(边长)²×tan(22.5°)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学关于圆的知识点总结
考点一、圆的相关概念
1、圆的定义
在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。
2、圆的几何表示
以点O为圆心的圆记作“⊙O”,读作“圆O”
考点二、弦、弧等与圆有关的定义
(1)弦
连接圆上任意两点的线段叫做弦。
(如图中的AB)
(2)直径
经过圆心的弦叫做直径。
(如途中的CD)
直径等于半径的2倍。
(3)半圆
圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
(4)弧、优弧、劣弧
圆上任意两点间的部分叫做圆弧,简称弧。
弧用符号“⌒”表示,以A,B为端点的弧记作“”,读作“圆弧AB”或“弧AB”。
大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示)
考点三、垂径定理及其推论(重要)
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
*推论2:圆的两条平行弦所夹的弧相等。
考点四、圆的对称性
1、圆的轴对称性
圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
2、圆的中心对称性
圆是以圆心为对称中心的中心对称图形。
考点五、弧、弦、弦心距、圆心角之间的关系定理
1、圆心角
顶点在圆心的角叫做圆心角。
2、弦心距
从圆心到弦的距离叫做弦心距。
3、弧、弦、弦心距、圆心角之间的关系定理
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。
推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
考点六、圆周角定理及其推论
1、圆周角
顶点在圆上,并且两边都和圆相交的角叫做圆周角。
2、圆周角定理(重要)
一条弧所对的圆周角等于它所对的圆心角的一半。
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
推论2(△):半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
考点七、点和圆的位置关系
设⊙O的半径是r,点P到圆心O的距离为d
则有:d<r⇔点P在⊙O内;
d=r⇔点P在⊙O上;
d>r⇔点P在⊙O外。
考点八、直线与圆的位置关系
直线和圆有三种位置关系,具体如下:
(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点;
(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,
(3)相离:直线和圆没有公共点时,叫做直线和圆相离。
如果⊙O的半径为r,圆心
O到直线l的距离为d,那么:
直线l与⊙O相交⇔d<r;
直线l与⊙O相切⇔d=r;
直线l与⊙O相离⇔d>r;
考点九、圆内接四边形
圆的内接四边形定理:圆的内接四边形的对角互补(重要),外角等于它的内对角。
即:在⊙O中,∵四边ABCD是内接四边形
∴∠C+∠BAD=180︒∠B+∠D=180︒
∠DAE=∠C
考点十、切线的性质与判定定理
1、切线的判定定理:过半径外端且垂直于半径的直线是切线;
两个条件:过半径外端且垂直半径,二者缺一不可即:∵MN⊥OA且MN过半径OA 外端∴MN是⊙O的切线2、性质定理:切线垂直于过切点的半径(如上图)(记住理解即可,不会考证明题)
考点十一、切线长定理
切线长定理:从圆外一点引圆的两条切线,它们的切线长
相等,这点和圆心的连线平分两条切线的夹角。
即:∵PA、PB是的两条切线∴PA=PB;PO平分∠BPA(用三角形全等证明)
考点十二、弧长和扇形面积
1、弧长公式
半径为R的圆中,n°的圆心角所对的弧长l的计算公式:
2、扇形面积公式
其中n是扇形的圆心角度数,R是扇形的半径,l是扇形的弧长。
3、圆锥的侧面积
其中l是圆锥的母线长,r是圆锥的地面半径。
考点十三、圆幂定理(一般不会考)
1、相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。
即:在⊙O中,∵弦AB、CD相交于点P,
∴PA⋅PB=PC⋅PD
2、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
即:在⊙O中,∵PA是切线,PB是割线
∴PA2=PC⋅PB
3、割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如上图)。
即:在⊙O中,∵PB、PE是割线∴PC⋅PB=PD⋅PE。