上海市进才中学2020高三数学上学期第一次月考试题(含解析)

合集下载

上海市2020〖人教版〗高三数学复习试卷第一次联考试卷文科数学

上海市2020〖人教版〗高三数学复习试卷第一次联考试卷文科数学

上海市2020年〖人教版〗高三数学复习试卷第一次联考试卷文科数学创作人:百里安娜 创作日期:202X.04.01 审核人: 北堂王会创作单位: 明德智语学校一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数()3i -1i 的共轭复数....是( )A .3i -B .3i + C.3i--D .3i -+2.已知集合)},1ln(|{},02|{2x y x B x x x A -==≤--=则=⋂B A ( )A .()2,1B .(]2,1C .[)1,1-D .()1,1-3. 已知向量a =13(,),b =(3,)m ,若向量a ,b 的夹角为6π,则实数m =( )A .23 B. 0 C . 3D .3-4.已知函数()f x 是奇函数,且当0x >时,()e x f x =,则(1)f -=( )A .1eB .1e- C .e D .e - 5.如图是某几何体的三视图,其中正视图为正方形,俯视图 是腰长为2的等腰直角三角形, 则该几何体的体积是( ).A .83 B. 823 C. 43D. 423 6.等比数列中,,则数列的前项和等于( )A.4B.3C.2D.17.已知ABC ∆中,3,2==AC AB ,且ABC ∆的面积为23,则=∠BAC ( )A . 150B . 120C . 60或 120D . 30或 1508.如图,大正方形的面积是 34,四个全等直角三角形围成一个小正方形,直角三角形的最短边长为3,向大正方形内抛撒一枚幸运小花朵,则小花朵落在小正方形内的概率为( )A .117B .217C .317D .417 9.已知双曲线22221x y a b-=的一个焦点与抛物线2410y =的焦点重10,则双曲线的方程为( ) A .2219y x -= B .221x y -= 5 C .22199x y -= D .2219x y -=10.函数548422++-++=x x x x y 的最大值是( )A .1B .3C .31D .522-(二)选做题(14~15题,考生只能从中选做一题.) 11.函数3)12(-=x y 的图象在)1,0(-处的切线的斜率是__________.12. 右图是一个算法的流程图,则最后输出的________13.由直线1y x =+上的一点向圆22(3)1x y -+=引切线,则切线长的最小值为__________14. (坐标系与参数方程选做题)设曲线C 的参数方程为4cos 14sin x a y θθ=+⎧⎨=+⎩(θ是参数,0>a ),直线l 的极坐标方程为3cos 4sin 5ρθρθ+=,若曲线C 与直线l 只有一个公共点,则实数a 的值是_____.15.(几何证明选讲选做题)如图,⊙O 上一点C在直径AB 上的射影为D ,且4CD =,8BD =,则⊙O 的半径等于_______.三、解答题(本大题共 6小题,满分 80 分.解答须写出文字说明、证明过程或演算步骤) 16.(本题满分12分)设函数。

上海市2020〖人教版〗高三数学复习试卷第一学期月考试题数学测试题

上海市2020〖人教版〗高三数学复习试卷第一学期月考试题数学测试题

上海市2020年〖人教版〗高三数学复习试卷第一学期月考试题数学测试题第I 卷(选择题)一、单选题1()B C A R 的元素个数为( )(A) 0(B) 1 (C) 2 (D)32.函数()y f x =是定义在R 上的奇函数且(1)y f x =+也是奇函数,若(3)0f =,则函数()y f x =在区间(0,8)内的零点个数至少有( )A 、4B 、5C 、6D 、7 3.C ∆AB 中,若)sinC sin cos =A +A B ,则( ) A . 3πB =B . 2b a c =+C . C ∆AB 是直角三角形D . 222a b c =+或2C B =A+4.定义在R 上的函数)(x f 满足0)()2(<'+x f x ,又,,)3(ln f c =,则( )A .c b a <<B .a c b <<C .b a c <<D .a b c <<5.在ABC ∆中,BC 边上的中线AD 的长为2,点P 是ABC ∆所在平面上的任意一点,则PA PB PA PC ⋅+⋅的最小值为( )A . 1B . 2C . -2D . -16.已知函数()f x 是定义在R 上的增函数,函数()1y f x =-的图像关于()1,0对称,若对任意x ,y R ∈,不等式()()2262180f x x f y y -++-<恒成立,则当3x >时,22x y +的取值范围是( )A .()3,7B .()13,7C .()9,49D .()13,497.已知,现有下列命题:①;②;③若,且,则有,其中的所有正确命题的序号是( )A . ①②B . ②③C . ①③D . ①②③ 8.已知非零向量,a b满足||3||a b =,且关于x 的函数3211()||22f x x a x a bx =++⋅为R 上增函数,则,a b 夹角的取值范围是( ) A 、[0,]2π B 、[0,]3πC 、(,]32ππD 、2(,]33ππ9.设f(x),g(x)是定义在R 上的恒大于0的可导函数,且f ′(x)g(x)-f(x)g ′(x)<0,则当a <x <b 时有( )A . f(x)g(x)>f(b)g(b)B . f(x)g(a)>f(a)g(x)C . f(x)g(b) > f(b) g(x)D . f(x) g(x)>f(a)g (a)10.已知函数()()sin f x A ωx φ=+002πA ωφ⎛⎫>>< ⎪⎝⎭,,的部分图象如图所示,若将()f x 图像上的所有点向右平移6π个单位得到函数()g x 的图像,则函数()g x 的单调递增区间为( )A .Z k k k ∈⎥⎦⎤⎢⎣⎡+-,4,4ππππ B .Z k k k ∈⎥⎦⎤⎢⎣⎡+-,42,42ππππC .Z k k k ∈⎥⎦⎤⎢⎣⎡+-,6,3ππππ D .Z k k k ∈⎥⎦⎤⎢⎣⎡+-,62,32ππππ11.已知向量a =,b =,其中x ∈.令函数f (x )=a ·b ,若c >f (x )恒成立,则实数c 的取值范围为A . (1,+∞)B . (0,+∞)C . (−1,+∞)D . (2,+∞) 12.在ABC ∆中,角A ,B ,C 的对边分别是a ,b ,c ,BH 为AC 边上的高,5BH =,若2015120aBC bCA cAB ++=,则H 到AB 边的距离为( ) A .2 B .3 C .1 D .4第II 卷(非选择题)二、填空题13.已知向量)3,2(=a,)2,1(-=b ,若 b n a m +与 ba 2-共线,则nm 等于__________14.已知函数()33f x x x =-的图象与直线y a =有三个不同的交点,则a 的取值范围是_______. 15.函数的定义域为_____________.16.设函数x x x f sin 1)(-=在0x x =处取极值,则)2cos 1)(1(020x x ++=. 三、解答题 17.已知是同一平面的三个向量,其中.(1)若且,求的坐标;(2)若,且,求的夹角.18.(本小题10分)已知函数()23sin()cos()sin 244f x x x x a ππ=++++的最大值为1.(1)求函数()f x 的单调递增区间;(2)将()f x 6π()g x 的图象,若方程()g x =m在x ∈[0,]2π上有解,求实数m 的取值范围.19.已知某服装厂每天的固定成本是30000元,每天最大规模的生产量是m 件.每生产一件服装,成本增加100元,生产x 件服装的收入函数是21()4003R x x x=-+,记()L x ,()P x 分别为每天生产x 件服装的利润和平均利...润.( )=总利润平均利润总产量.(1)当500m =时,每天生产量x 为多少时,利润()L x 有最大值;(2)每天生产量x 为多少时,平均利润....()P x 有最大值,并求()P x 的最大值.20.(本小题满分14分)已知()()2,ln 23+-+==x ax x x g x x x f . (1)求函数()x f 的单调区间;(2)求函数()x f 在 [],2t t +()0t >上的最小值;(3)对一切的()+∞∈,0x ,()()22'+≤x g x f 恒成立,求实数a 的取值范围. 21.已知△ABC 3tan tan tan 3A B A B --=(I )求∠C 的大小;(Ⅱ)设角A ,B ,C 的对边依次为,,a b c ,若2c =,且△ABC 是锐角三角形,求22a b +的取值范围. 22.已知函数()()()ln ,20x f x x x g x mx m m=+=+->与,其中e 是自然对数的底数.(1)求曲线()f x 在1x =处的切线方程;(2)若对任意的()()212121,,,2x x e f x g x ⎡⎤∈≤⎢⎥⎣⎦恒成立,求实数m 的取值范围. 高三数学文参考答案一、单选题1()B C A R 的元素个数为( ) A 0 B 1 C 2D 32.函数()y f x =是定义在R 上的奇函数且(1)y f x =+也是奇函数,若(3)0f =,则函数()y f x =在区间(0,8)内的零点个数至少有( )A 、4B 、5C 、6D 、7 3.C ∆AB 中,若)sinC sin cos =A +A B ,则( ) A . 3πB =B . 2b a c =+C . C ∆AB 是直角三角形D . 222a b c =+或2C B =A+4.定义在R 上的函数)(x f 满足0)()2(<'+x f x ,又,))31((3.0f b =,)3(ln f c =,则( )A .c b a <<B .a c b <<C .b a c <<D .a b c <<5.在ABC ∆中,BC 边上的中线AD 的长为2,点P 是ABC ∆所在平面上的任意一点,则PA PB PA PC ⋅+⋅的最小值为( ) A . 1 B . 2 C . -2 D . -16.已知函数()f x 是定义在R 上的增函数,函数()1y f x =-的图像关于()1,0对称,若对任意x ,y R ∈,不等式()()2262180f x x f y y -++-<恒成立,则当3x >时,22x y +的取值范围是( )A .()3,7B .()13,7C .()9,49D .()13,497.已知,现有下列命题:①;②;③若,且,则有,其中的所有正确命题的序号是( )A . ①②B . ②③C . ①③D . ①②③ 8.已知非零向量,a b满足||3||a b =,且关于x 的函数3211()||22f x x a x a bx =++⋅为R 上增函数,则,a b 夹角的取值范围是( ) A 、[0,]2π B 、[0,]3πC 、(,]32ππ D 、2(,]33ππ9.设f(x),g(x)是定义在R 上的恒大于0的可导函数,且f ′(x)g(x)-f(x)g ′(x)<0,则当a <x <b 时有( )A . f(x)g(x)>f(b)g(b)B . f(x)g(a)>f(a)g(x)C . f(x)g(b) > f(b) g(x)D . f(x) g(x)>f(a)g (a)10.已知函数()()sin f x A ωx φ=+002πA ωφ⎛⎫>>< ⎪⎝⎭,,的部分图象如图所示,若将()f x 图像上的所有点向右平移6π个单位得到函数()g x 的图像,则函数()g x 的单调递增区间为( )A .Z k k k ∈⎥⎦⎤⎢⎣⎡+-,4,4ππππ B .Z k k k ∈⎥⎦⎤⎢⎣⎡+-,42,42ππππC .Z k k k ∈⎥⎦⎤⎢⎣⎡+-,6,3ππππ D .Z k k k ∈⎥⎦⎤⎢⎣⎡+-,62,32ππππ11.已知向量a =,b =,其中x ∈.令函数f (x )=a ·b ,若c >f (x )恒成立,则实数c 的取值范围为A . (1,+∞)B . (0,+∞)C . (−1,+∞)D . (2,+∞) 12.在ABC ∆中,角A ,B ,C 的对边分别是a ,b ,c ,BH 为AC 边上的高,5BH =,若2015120aBC bCA cAB ++=,则H 到AB 边的距离为( ) A .2 B .3 C .1 D .4 二、填空题13.已知向量)3,2(=a,)2,1(-=b,若 b n a m+与 b a2-共线,则 nm等于-___________14.已知函数()33f x x x =-的图象与直线y a =有三个不同的交点,则a 的取值范围是_______. 15.函数的定义域为_____________.16.设函数x x x f sin 1)(-=在0x x =处取极值,则)2cos 1)(1(020x x ++=.三、解答题 17.已知是同一平面的三个向量,其中.(1)若且,求的坐标;(2)若,且,求的夹角.18.(本小题10分)已知函数()23sin()cos()sin 244f x x x x a ππ=++++的最大值为1.(1)求函数()f x 的单调递增区间;(2)将()f x 6π()g x 的图象,若方程()g x =m在x ∈[0,]2π上有解,求实数m 的取值范围.19.已知某服装厂每天的固定成本是30000元,每天最大规模的生产量是m 件.每生产一件服装,成本增加100元,生产x 件服装的收入函数是21()4003R x x x=-+,记()L x ,()P x 分别为每天生产x 件服装的利润和平均利...润.( )=总利润平均利润总产量.(1)当500m =时,每天生产量x 为多少时,利润()L x 有最大值;(2)每天生产量x 为多少时,平均利润....()P x 有最大值,并求()P x 的最大值.20.(本小题满分14分)已知()()2,ln 23+-+==x ax x x g x x x f . (1)求函数()x f 的单调区间;(2)求函数()x f 在 [],2t t +()0t >上的最小值;(3)对一切的()+∞∈,0x ,()()22'+≤x g x f 恒成立,求实数a 的取值范围. 21.已知△ABCtan tan tan A B A B --= (I )求∠C 的大小;(Ⅱ)设角A ,B ,C 的对边依次为,,a b c ,若2c =,且△ABC 是锐角三角形,求22a b +的取值范围. 22.已知函数()()()ln ,20x f x x x g x mx m m=+=+->与,其中e 是自然对数的底数.(1)求曲线()f x 在1x =处的切线方程;(2)若对任意的()()212121,,,2x x e f x g x ⎡⎤∈≤⎢⎥⎣⎦恒成立,求实数m 的取值范围. 参考答案1.C 【解析】试题分析:化简得{}0,1A =,1|202B x x x ⎧⎫=><<⎨⎬⎩⎭或考点:解不等式与集合的交并补运算点评:本题考察了指数不等式与对数不等式的求解,求解时结合函数单调性;两集合的交集是由两集合的相同的元素构成的集合 2.D【解析】由题意得()(),(2)(),(2)(),f x f x f x f x f x f x -=--=-∴-=周期为2.(3)(1)(5)(7)0f f f f ====,(2)(0)(4)(6)0f f f f ====。

上海市进才中学2024届高三上学期10月月考数学试题

上海市进才中学2024届高三上学期10月月考数学试题

【详解】因为
S7
= 14
,所以有
7(a1 + 2
a7 )
= 14
Þ
a1
+
a7
=
4
Þ
a3
+
a5
=
4,
故答案为: 4 3. -3 【分析】利用复数相等即可求出结果.
【详解】因为 (1+ ai)i = i + ai2 = -a + i = 3 + i ,
Hale Waihona Puke 则由复数相等可得: -a = 3 ,
即 a = -3 .
二、单选题 13.下列函数中,既是定义域内单调递增函数,又是奇函数的为( )
A. f ( x) = tanx
B.
f
(x)
=
-
1 x
C. f ( x) = x - cosx
D. f ( x) = ex - e-x
14.已知 x > y > z 且 x + y + z = 0 ,则下列不等式恒成立的是( )
标均为整数的点);命题②:曲线 C 上任意一点到原点的距离都不大于 2 2 .下列判断
正确的是( ) A.①为真命题,②为假命题 C.①②均为假命题
B.①为假命题,②为真命题 D.①②均为真命题
三、解答题 17.如图,在四棱锥 O - ABCD 中,底面 ABCD 是矩形,其中 AB = 1, AD = 2 , OA ^
底面 ABCD , OA = 2 , M 为 OA 的中点, N 为 BC 的中点.
(1)证明:直线 MN / / 平面 OCD ; (2)求点 B 到平面 OCD 的距离.
18.1.已知函数

上海市2020〖苏科版〗高三数学复习试卷12月月考理数试题1

上海市2020〖苏科版〗高三数学复习试卷12月月考理数试题1

上海市2020年〖苏科版〗高三数学复习试卷12月月考理数试题创作人:百里第次 创作日期:202X.04.01 审核人: 北堂进行创作单位: 明德智语学校本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间120分钟.第I 卷(选择题 共60分)一.选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}21110,24,2x M x x N x x Z +⎧⎫=-≤=<<∈⎨⎬⎩⎭,则MN =( )A.{}1B.{}1,0-C.{}1,0,1-D.∅2.抛物线24y x =的焦点到准线的距离为( ) A.14B.12C.2D.43.已知命题:p 对任意x R ∈,有cos 1x ≤,则( ) A.:p ⌝存在x R ∈,使cos 1x > B.:p ⌝对任意x R ∈,有cos 1x > C.:p ⌝存在x R ∈,使cos 1x ≥D.:p ⌝对任意x R ∈,有cos 1x ≥4.若()2,1P 为圆()22125x y -+=的弦AB 的中点,则直线AB 的方程为( ) A.10x y --= B.230x y --= C.30x y +-=D.250x y +-=5.等比数列{}n a 的前n 项和为nS ,且1234,2,a a a 成等差数列,若11a =,则4S =( )A.7B.8C.15D.166.已知函数()()()sin 20f x x ϕϕπ=+<<,若将函数()y f x =的图像向左平移6π个单位后所得图像对应的函数为偶函数,则实数ϕ=( ) A.56πB.23πC.3πD.6π7.已知(),P x y 为区域22400y x x a ⎧-≤⎨≤≤⎩内的任意一点,当该区域的面积为2时,2z x y =+的最大值是( ))A.5B.0C.2D.228.已知抛物线C 的顶点是椭圆22143x y +=的中心,焦点与该椭圆的右焦点2F 重合,若抛物线C 与该椭圆在第一象限的交点为P ,椭圆的左焦点为1F ,则1PF =( )A.23B.73C.53D.29.已知函数()ln tan 0,2f x x παα⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭的导函数为()'f x ,若使得()()00'30f x f x -=成立的01x <,则实数α的取值范围为( )A.,62ππ⎛⎫ ⎪⎝⎭B.0,3π⎛⎫⎪⎝⎭C.,64ππ⎛⎫⎪⎝⎭D.,32ππ⎛⎫⎪⎝⎭10.正三角形ABC 内一点M 满足,45CM mCA nCB MCA =+∠=,则m n的值为( )A.31-B.31+C.312+ D.312- 11.已知双曲线()2222:1,0x y C a b a b-=>的左.右焦点分别为1F ,2F ,过2F 的直线与双曲线C 的右支相交于,P Q 两点,若1PQ PF ⊥,且1PF PQ=,则双曲线的离心率e =( )A.21+B.221+C.522+ D.522-12.已知数列{}n a 满足:1263,3,9138n n n n n n a a a a a ++=-≤-≥⋅,则2015a =( )A.20153322+B.201538C.20153382+D.201532第II 卷(非选择题 共90分)二.填空题:本大题共4小题,每小题5分,共20分.把答案填写在答题卡相对应位置上.13.已知向量()()1,1,2,1a x x b =-+=-,若//a b ,则实数x =.14.若实数,x y 满足0,0x y >>,且440x y +=,则lg lg x y +的最大值为.15.已知()sin 2cos f x x x =+,若函数()()g x f x m =-在()0,x π∈上有两个不同零点α.β,则()cos αβ+=.16.设点()()1122,,,A x y B x y 是椭圆2214x y +=上两点,若过点,A B且斜率分别为1212,44x x y y 的两直线交于点P ,且直线OA 与直线OB 的斜率之积为14-,()6,0E ,则PE的最小值为.三.解答题:本大题共70分,解答应写出文字说明.证明过程或演算步骤. 17.(本小题满分12分)设等差数列{}n a 的前n 项和为n S ,3416a a +=,763S =. (1)求数列{}n a 的通项公式; (2)设数列11n n a a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求证:12n T <.18.(本小题满分12分)在ABC ∆中,已知角A .B .C 的对边分别为,,a b c ,且1tan tan 12cos cos A C A C=+.(1)求B 的大小;(2)若212BA BC b ⋅=,试判断ABC ∆的形状.19.(本小题满分12分)已知抛物线()2:20C y px p =>的焦点为()1,0F ,抛物线2:2E x py =的焦点为M . (1)若过点M 的直线l 与抛物线C 有且只有一个交点,求直线l 的方程; (2)若直线MF 与抛物线C 交于A .B 两点,求OAB ∆的面积. 20.(本小题满分12分)已知椭圆()2222:10x y C a b a b +=>>的离心率为12,左.右焦点分别是1F ,2F ,点P 为椭圆C 上任意一点,且12PF F ∆面积最大值为3.(1)求椭圆C 的方程;(2)过2F 作垂直于x 轴的直线l 交椭圆于A .B 两点(点A 在第一象限),M .N是椭圆上位于直线l 两侧的动点,若MAB NAB ∠=∠,求证:直线MN 的斜率为定值.21.(本小题满分12分) 已知函数()(),ln x f x e g x x m ==+. (1)当1m =-时,求函数()()()f x F x x g x x=+⋅在()0,+∞上的极值;(2)若2m =,求证:当()0,x ∈+∞时,()()310f xg x >+. (参考数据:ln 20.693,ln3 1.099,ln5 1.609,ln 7 1.946====)请考生在第22.23.24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号.22.(本小题满分10分)选修4-1:几何证明选讲已知ABC ∆中,,AB AC D =为ABC ∆外接圆劣弧AC 上的点(不与点A .C 重合),延长BD E 至,延长AC BC 交的延长线于F . (1)求证:CDF EDF ∠=∠;(2)求证:AB AC DF AD FC FB ⋅⋅=⋅⋅.23.(本小题满分10分)选修4-4:极坐标系与参数方程在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知曲线12cos :3sin x C y αα=-+⎧⎨=+⎩(α为参数),28cos :x C y θθ=⎧⎪⎨=⎪⎩(θ为参数).(1)将12,C C 的方程化为普通方程,并说明它们分别表示什么曲线;(2)若1C 上的点P 对应的参数为2πα=,Q 为2C 上的动点,求PQ 中点M 到直线l :cos 3πρθ⎛⎫-= ⎪⎝⎭.24.(本小题满分10分)选修4-5:不等式选讲 已知函数()32f x x =+.(1)解不等式()41f x x <--;(2)已知()21,0m n m n +=>,若()()1230x a f x a mn--≤+>恒成立,求实数a 的取值范围.。

2020-2021学年上海市浦东新区进才中学高三上学期期中数学试卷 (解析版)

2020-2021学年上海市浦东新区进才中学高三上学期期中数学试卷 (解析版)

2020-2021学年上海市浦东新区进才中学高三(上)期中数学试卷一、填空题(共12小题).1.(4分)集合U=R,集合A={x|x﹣3>0},B={x|x+1>0},则B∩∁U A=.2.(4分)已知角α的终边过点(3,﹣4),则sinα=.3.(4分)函数f(x)=的定义域是.4.(4分)(2x﹣1)6的展开式中含x3的项的系数为.5.(4分)设等差数列{a n}的前n项之和S n满足S10﹣S5=40,那么a8=.6.(4分)在△ABC中,已知tan A=1,tan B=2,则tan C=.7.(5分)方程cos(3x+)=0在[0,π]上的解的个数为.8.(5分)若实数x,y满足x2+y2=1,则xy的取值范围是.9.(5分)已知定义在[﹣a,a]上的函数f(x)=cos x﹣sin x是减函数,其中a>0,则当a 取最大值时,f(x)的值域是.10.(5分)设a、b∈R,且a≠2、b>0,若定义在区间(﹣b,b)上的函数f(x)=lg 是奇函数,则a+b的值可以是.(写出一个值即可)11.(5分)已知等比数列{a n}的首项为2,公比为﹣,其前n项和记为S n.若对任意的n∈N*,均有A≤3S n﹣≤B恒成立,则B﹣A的最小值为.12.(5分)已知函数f(x)=,若函数g(x)=f(x)﹣|kx2﹣2x|(k∈R)恰有4个不同的零点,则k的取值范围是.二、选择题(共4小题).13.(5分)对于任意实数a,b,c,d,下列命题正确的是()A.若a>b,则ac2>bc2B.若ac2>bc2,则a>bC.若a>b,则D.若a>b>0,c>d,则ac>bd 14.(5分)关于函数f(x)=sin x+,下列观点正确的是()A.f(x)的图象关于直线x=0对称B.f(x)的图象关于直线对称C.f(x)的图象关于直线对称D.f(x)的图象关于直线x=π对称15.(5分)设函数y=f(x)存在反函数y=f﹣1(x),且函数y=x﹣f(x)的图象过点(1,3),则函数y=f﹣1(x)+3的图象一定经过定点()A.(1,1)B.(3,1)C.(﹣2,4)D.(﹣2,1)16.(5分)已知a1,a2,a3,a4均为正数,且a1+a2+a3+a4=10,以下有两个命题:命题一:a1,a2,a3,a4中至少有一个数小于3;命题二:若a1a2a3a4=7,则a1,a2,a3,a4中至少有一个数不大于1.关于这两个命题正误的判断正确的是()A.命题一错误、命题二错误B.命题一错误、命题二正确C.命题一正确、命题二错误D.命题一正确、命题二正确三、解答题(满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(14分)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,正方形ABCD的边长为2,PA=4,设E为侧棱PC的中点.(1)求正四棱锥E﹣ABCD的体积V;(2)求直线BE与平面PCD所成角θ的大小.18.(14分)已知f(x)=ax2﹣(a+1)x,g(x)=﹣a+13x,其中a∈R.(1)当a<0时,解关于x的不等式f(x)<0;(2)若f(x)<g(x)在x∈[2,3]时恒成立,求实数a的取值范围.19.(14分)在△ABC中,已知tan A=.(1)若△ABC外接圆的直径长为,求BC的值;(2)若△ABC为锐角三角形,其面积为6,求BC的取值范围.20.(16分)已知{a n}为等差数列,前n项和为,{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4+a1,S16=16b4.(1)求{a n}和{b n}的通项公式;(2)求数列{a n•b n}的前n项和;(3)设集合,,将A∪B的所有元素从小到大依次排列构成一个数列{c n},记U n为数列{c n}的前n项和,求|U n﹣2020|的最小值.21.(18分)设f(x)是定义在D上的函数,若对任何实数α∈(0,1)以及D中的任意两数x1、x2,恒有f(αx1+(1﹣α)x2)≤αf(x1)+(1﹣α)f(x2),则称f(x)为定义在D上的C函数.(1)判断函数f(x)=x2是否是定义域上的C函数,说明理由;(2)若f(x)是R上的C函数,设a n=f(n),n=0,1,2,…,m,其中m是给定的正整数,a0=0,a m=2m,记S f=a1+a2+…+a m,对满足条件的函数f(x),试求S f的最大值;(3)若f(x)是定义域为R的函数,最小正周期为T,试证明f(x)不是R上的C函数.参考答案一、填空题(本大题满分54分)本大题共有12题,1-6题每题4分,7-12题每题5分,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分或5分,否则一律得零分.1.(4分)集合U=R,集合A={x|x﹣3>0},B={x|x+1>0},则B∩∁U A=(﹣1,3].解:∵集合U=R,集合A={x|x﹣3>0}={x|x>3},B={x|x+1>0}={x|x>﹣1},∴∁U A={x|x≤3},∴B∩∁U A={x|﹣1<x≤3}=(﹣1,3].故答案为:(﹣1,3].2.(4分)已知角α的终边过点(3,﹣4),则sinα=.解:∵角α的终边过点(3,﹣4),∴x=3,y=﹣4,r=5,∴sinα==﹣,故答案为:.3.(4分)函数f(x)=的定义域是[﹣1,2].解:由题意得:3﹣|1﹣2x|≥0,即|2x﹣1|≤3,故﹣3≤2x﹣1≤3,解得:﹣1≤x≤2,故函数的定义域是[﹣1,2],故答案为:[﹣1,2].4.(4分)(2x﹣1)6的展开式中含x3的项的系数为﹣160.解:(2x﹣1)6的展开式的通项公式为T r+1=•(﹣1)r•(2x)6﹣r,令6﹣r=3,可得r=3,故展开式中含x3的项的系数为﹣•23=﹣160,故答案为:﹣160.5.(4分)设等差数列{a n}的前n项之和S n满足S10﹣S5=40,那么a8=8.解:由S10﹣S5=a6+a7+…+a10=(a6+a10)+(a7+a9)+a8=5a8=40,所以a8=8.故答案为:86.(4分)在△ABC中,已知tan A=1,tan B=2,则tan C=3.解:在△ABC中,∵已知tan A=1,tan B=2,∴tan C=tan[π﹣(A+B)]=﹣tan(A+B)=﹣=﹣=3,故答案为:3.7.(5分)方程cos(3x+)=0在[0,π]上的解的个数为3.解:由cos(3x+)=0,可得3x+=kπ+,k∈Z,解得x=+,k∈Z,可得在[0,π]上的解为,,,共3个解.故答案为:3.8.(5分)若实数x,y满足x2+y2=1,则xy的取值范围是[﹣,].【解答】因为x2+y2=1,所以可设x=cosθ,y=sinθ,则xy=cosθsinθ=sin2θ∈[﹣,]故答案为[﹣,]9.(5分)已知定义在[﹣a,a]上的函数f(x)=cos x﹣sin x是减函数,其中a>0,则当a 取最大值时,f(x)的值域是[0,].解:∵定义在[﹣a,a]上的函数f(x)=cos x﹣sin x=cos(x+)是减函数,其中a >0,∴x+∈[﹣a+,a+],∴﹣a+≥0,且a+≤π,求得0<a≤,故a的最大值为,则当a取最大值时,x+∈[0,],f(x)=cos(x+)的值域为[0,],故答案为:[0,].10.(5分)设a、b∈R,且a≠2、b>0,若定义在区间(﹣b,b)上的函数f(x)=lg是奇函数,则a+b的值可以是﹣2.(写出一个值即可)解:根据题意,函数f(x)=lg是奇函数,则有f(﹣x)+f(x)=0,即lg+lg=lg=0,则有a2=4,解可得a=±2,又由a≠2,则a=﹣2,则f(x)=lg,有>0,解可得:﹣<x<,即函数的定义域为(﹣,),即0<b≤,故有﹣2≤a+b≤﹣,故答案为:﹣2,(答案不唯一)11.(5分)已知等比数列{a n}的首项为2,公比为﹣,其前n项和记为S n.若对任意的n∈N*,均有A≤3S n﹣≤B恒成立,则B﹣A的最小值为.解:S n==﹣•(﹣)n,①n为奇数时,S n=+•()n,可知:S n单调递减,且S n=,∴<S n≤S1=2;②n为偶数时,S n=﹣•()n,可知:S n单调递增,且S n=,∴=S2≤S n<,∴S n的最大值与最小值分别为:2,,考虑到函数y=3t﹣在(0,+∞)上单调递增,∴A≤(3S n﹣)min=3×﹣=,B≥(3S n﹣)max=3×2﹣=,∴B﹣A的最小值=﹣=,故答案为:.12.(5分)已知函数f(x)=,若函数g(x)=f(x)﹣|kx2﹣2x|(k∈R)恰有4个不同的零点,则k的取值范围是(﹣∞,0)∪(2,+∞).解:若函数g(x)=f(x)﹣|kx2﹣2x|(k∈R)恰有4个零点,则f(x)=|kx2﹣2x|有四个根,即y=f(x)与y=h(x)=|kx2﹣2x|有四个交点,当k=0时,y=f(x)与y=|﹣2x|=2|x|图象如下:两图象只有两个交点,不符合题意;当k<0时,y=|kx2﹣2x|与x轴交于两点x1=0,x2=(x2<x1),图象如图所示:当x=时,函数y=|kx2﹣2x|的函数值为﹣,函数y=﹣x的函数值为﹣,∴两图象有4个交点,符合题意;当k>0时,y=|kx2﹣2x|与x轴交于两点x1=0,x2=(x2>x1),在[0,)内两函数图象有两个交点,则若有四个交点,只需y=x3与y=kx2﹣2x在(,+∞)内有两个交点即可,即x3=kx2﹣2x在(,+∞)还有两个根,也就是k=x+在(,+∞)内有两个根,函数y=x+≥2,(当且仅当x=时,取等号),∴0<<,且k>2,得k>2,综上所述,k的取值范围为(﹣∞,0)∪(2,+∞).故答案为:(﹣∞,0)∪(2,+∞).二、选择题(本大题满分20分)本大题共有4题,每题有且仅有一个正确。

上海市进才中学2020届高三数学上学期第一次月考试题(含解析)

上海市进才中学2020届高三数学上学期第一次月考试题(含解析)

上海市进才中学2020届高三数学上学期第一次月考试题(含解析)一、填空题1.函数⎪⎭⎫⎝⎛-=3sin πωx y (0>ω)的最小正周期是π,则=ω . 2.若集合{}21<-=x x A ,⎭⎬⎫⎩⎨⎧<+-=042x x x B ,则=B A I .3.方程1)3(lg lg =++x x 的解=x .4.已知幂函数()x f y =存在反函数,若其反函数的图像经过点⎪⎭⎫ ⎝⎛9,31,则该幂函数的解析式()x f = .5.函数)2cos()(ϕ+=x x f 的图像向左平移3π单位后为奇函数,则ϕ的最小正值为 . 6.若集合C B A 、、满足A B B C =U I ,则下列结论:①A C ⊆;②C A ⊆;③A C ≠;④A =∅中一定成立的有 .(填写你认为正确的命题序号)7.已知偶函数()x f 在区间[)+∞,0单调递增,若关于x 的不等式()⎪⎭⎫⎝⎛<-3112f x f 的x 的取值范围是 .8.当10≤≤x 时,如果关于x 的不等式2||<-a x x 恒成立,那么a 的取值范围是 . 9.若函数lg(1)1()sin 0x x f x xx ⎧->=⎨<⎩,则()x f y =图像上关于原点O 对称的点共有 对.10.已知c b a ,,都是实数,若函数()⎪⎩⎪⎨⎧<<+≤=c x a b xa x x x f 12的反函数的定义域是()+∞∞-,,则c 的所有取值构成的集合是 .11.对于实数x ,定义x 〈〉为不小于实数x 的最小整数,如 2.83〈〉=,1=-,44〈〉=.若x R ∈,则方程13122x x 〈+〉=-的根为 . 12.已知集合[][]9,41,+++=t t t t A Y ,A ∉0,存在正数λ,使得对任意A a ∈,都有A a∈λ,则t 的值是 .二、选择题(本大题满分20分)本大题共有4题,每题有且仅有一个正确.考生应在答题纸的相应编号上,填上正确的答案,选对得5分,否则一律得零分.13.函数()f x 的图像无论经过怎样平移或沿直线翻折,函数()f x 的图像都不能与函数12log y x =的图像重合,则函数()f x 可以是 ( )A .x y )21(= B . )2(log 2x y = C . )1(log 2+=x y D . 122-=x y14.ABC ∆中“cos sin cos sin A A B B +=+”是“其为等腰三角形”的 ( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既不充分也不必要条件 15.已知实数0,0a b >>,对于定义在R 上的函数)(x f ,有下述命题:①“)(x f 是奇函数”的充要条件是“函数()f x a -的图像关于点(,0)A a 对称”; ②“)(x f 是偶函数”的充要条件是“函数()f x a -的图像关于直线x a =对称”; ③“2a 是()f x 的一个周期”的充要条件是“对任意的x ∈R ,都有()()f x a f x -=-”; ④ “函数()y f x a =-与()y f b x =-的图像关于y 轴对称”的充要条件是“a b =” 其中正确命题的序号是( )A .①②B .②③C .①④D .③④ 16.存在函数()x f 满足,对任意R x ∈都有( )A .()x x f sin 2sin =B .()x x x f +=22sinC .()112+=+x x f D .()122+=+x x x f三、解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. 已知函数()b ax x x f --=232,其中R b a ∈,.(1)若不等式()0≤x f 的解集是[]6,0,求a 与b 的值; (2)若a b 3=,求同时满足下列条件的a 的取值范围.①对任意的R x ∈都有()0≥x f 恒成立; ②存在实数x ,使得()a x f 322-≤成立.18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知函数bx ax x f ++=1)(2的图像过点)2,1(,且函数图像又关于原点对称.(1)求函数)(x f 的解析式;(2)若关于x 的不等式)4()2()(-+->t x t x f x 在),0(∞+上恒成立,求实数t 的取值范围.19.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知A B 、分别在射线CM CN 、(不含端点C )上运动,23MCN ∠=π,在ABC ∆中,角A 、B 、C 所对的边分别是,,a b c .(1)若,,a b c 依次成等差数列,且公差为2.求c 的值;(2)若c =ABC ∠=θ,试用θ表示ABC ∆的周长,并求周长的最大值.20.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知()122+-=x m x x f 定义在实数集R 上的函数,把方程()x x f 1=称为函数()x f 的特征方程,特征方程的两个实根βα,(βα<)称为()x f 的特征根. (1)讨论函数()f x 的奇偶性,并说明理由; (2)求()()αβf f -的表达式;(3)把函数()x f y =,[]βα,∈x 的最大值记作()x f m ax ,最小值记作()x f min .令()()()x f x f m g m in m ax -=,若()12+≤m m g λ恒成立,求λ的取值范围.21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分. 设n 为正整数,集合(){}{}n k t t t t A kn,...,2,1,1,0,,...,,21=∈==αα.对于集合A 中的任意元素()n x x x ,...,,21=α和()n y y y ,...,,21=β. 记()()()()[]n n n n y x y x y x y x y x y x M --+++--++--+=...21,22221111βα. (1)当3=n 时,若()0,1,1=α,()1,1,0=β,求()αα,M 和()βα,M 的值;(2)当4=n 时,设B 是A 的子集,且满足:对于B 中的任意元素βα,,当βα,相同时,()βα,M 是奇数;当βα,不同时,()βα,M 是偶数.求集合B 中元素个数的最大值;(3)给定不小于2的n ,设B 是A 的子集,且满足:对于B 中的任意两个不同的元素βα,,()0,=βαM .写出一个集合B ,使其元素个数最多,并说明理由.上海市进才中学2020届高三数学第一次月考试卷一、填空题 1.函数⎪⎭⎫⎝⎛-=3sin πωx y (0>ω)的最小正周期是π,则=ω 2 . 【解析】:2||T πω=2.若集合{}21<-=x x A ,⎭⎬⎫⎩⎨⎧<+-=042x x x B ,则=B A I ()2,1-.【解析】:(1,3)(4,2)A B =-=-3.方程1)3(lg lg =++x x 的解=x 2 .【解析】:0(3)10x x x >⎧⎨+=⎩4.已知幂函数()x f y =存在反函数,若其反函数的图像经过点⎪⎭⎫ ⎝⎛9,31,则该幂函数的解析式()x f =21-x.【解析】:11111()9(9)93332f f αα-=⇒=⇒=⇒=-5.函数)2cos()(ϕ+=x x f 的图像向左平移3π单位后为奇函数,则ϕ的最小正值为 56π.【解析】:min 52(21),,0326k k Z πππϕϕϕ⨯+=-∈>⇒=6.若集合C B A 、、满足A B B C =U I ,则下列结论:①A C ⊆;②C A ⊆;③A C ≠;④A =∅中一定成立的有 ① .(填写你认为正确的命题序号) 【解析】:,A A B A B AA AB BC C A C⇒⊆⇒⊆⊆⊆⊆⊆U I U I7.已知偶函数()x f 在区间[)+∞,0单调递增,若关于x 的不等式()⎪⎭⎫⎝⎛<-3112f x f 的x 的取值范围是⎪⎭⎫⎝⎛32,31. 【解析】:111|21|21333x x -<⇒-<-< 8.当10≤≤x 时,如果关于x 的不等式2||<-a x x 恒成立,那么a 的取值范围是)3,1(-. 【解析】:22222(1)01||x x a x a x a x x x x x x<≤⇒-<⇒-<-<⇒-<<+ max min 222201()11,()1311x x x x x <≤⇒-=-=-+=+=或图像法(2)0||2x x x a =⇒-<成立9.若函数lg(1)1()sin 0x x f x xx ⎧->=⎨<⎩,则()x f y =图像上关于原点O 对称的点共有 4对.10.已知c b a ,,都是实数,若函数()⎪⎩⎪⎨⎧<<+≤=c x a b xa x x x f 12的反函数的定义域是()+∞∞-,,则c 的所有取值构成的集合是{}0. 【解析】:1b x+ 能取到-∞0c ⇒= 或图像法11.对于实数x ,定义x 〈〉为不小于实数x 的最小整数,如 2.83〈〉=,1=-,44〈〉=.若x R ∈,则方程13122x x 〈+〉=-的根为97,44--.【解析】:1123223131(1)224n n x n Z x n ++-=∈⇒+=⨯+=++ 117102331452142n n x n o n r +<+>=⇒+-<≤⇒-<≤-⇒=-- 179245244x or x or ⇒-=--⇒=-- 12.已知集合[][]9,41,+++=t t t t A Y ,A ∉0,存在正数λ,使得对任意A a ∈,都有A a∈λ,则t 的值是 3,1- .【解析】:(1)0[,1][4,9]t y x t t t t t xλ>⇒=∈++++U 递减941(1)(4)(9)1149t t t t t t t t t t t t t λλλλ⎧≤+⎪⎪⎪≥+⎪+⇒⇒++=+⇒=⎨⎪≤+⎪+⎪⎪≥+⎩ 11(2)104(1)(4)(9)39449t t t t t t t t t t t t t t t λλλλ⎧≤+⎪⎪⎪≥⎪++<<+⇒+=++⇒=-⎨⎪≤+⎪+⎪⎪≥++⎩(3)90t +<⇒同一,无解二、选择题(本大题满分20分)本大题共有4题,每题有且仅有一个正确.考生应在答题纸的相应编号上,填上正确的答案,选对得5分,否则一律得零分.13.函数()f x 的图像无论经过怎样平移或沿直线翻折,函数()f x 的图像都不能与函数12log y x =的图像重合,则函数()f x 可以是 ( D )A .x y )21(= B . )2(log 2x y = C . )1(log 2+=x y D . 122-=x y【解析】:21()22x D y x -=⇒压缩了14.ABC ∆中“cos sin cos sin A A B B +=+”是“其为等腰三角形”的 ( D ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既不充分也不必要条件 【解析】:sin()sin()44A B A B or A B ππ+=+⇒=+=(2),,A B B C or A C ===15.已知实数0,0a b >>,对于定义在R 上的函数)(x f ,有下述命题:①“)(x f 是奇函数”的充要条件是“函数()f x a -的图像关于点(,0)A a 对称”; ②“)(x f 是偶函数”的充要条件是“函数()f x a -的图像关于直线x a =对称”; ③“2a 是()f x 的一个周期”的充要条件是“对任意的x ∈R ,都有()()f x a f x -=-”; ④ “函数()y f x a =-与()y f b x =-的图像关于y 轴对称”的充要条件是“a b =”其中正确命题的序号是( A )A .①②B .②③C .①④D .③④ 【解析】:(3)()3f x =(4)()sin (2)sin ,(4)sin f x x f x x f x x ππ=-=-=-16.存在函数()x f 满足,对任意R x ∈都有( D )A .()x x f sin 2sin =B .()x x x f +=22sinC .()112+=+x x f D .()122+=+x x x f 【解析】:()(0)(sin0)sin00(0)(sin )sin12A f f f f NO ππ======⇒2()(0)(sin0)000(0)(sin )()22B f f f f NO πππ==+===+⇒2()(2)(11)|11|2,(2)((1)1)|11|0C f f f f NO =+=+==-+=-+=⇒21221112221122()()(2)|1|()(2)|21||1|D f t f x x x f t f x x x x x x t x x =+=+=+=-+=⇒++==-+-三、解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. 已知函数()b ax x x f --=232,其中R b a ∈,.(1)若不等式()0≤x f 的解集是[]6,0,求a 与b 的值; (2)若a b 3=,求同时满足下列条件的a 的取值范围.①对任意的R x ∈都有()0≥x f 恒成立; ②存在实数x ,使得()a x f 322-≤成立. 【解析】:(1)0,9==b a ;(2)[][]0,16,9---∈Y a .18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知函数bx ax x f ++=1)(2的图像过点)2,1(,且函数图像又关于原点对称.(1)求函数)(x f 的解析式;(2)若关于x 的不等式)4()2()(-+->t x t x f x 在),0(∞+上恒成立,求实数t 的取值范围.【解析】:(1)依题意,函数)(x f 的图象过点)2,1(和)2,1(--.所以⎩⎨⎧==⇒⎩⎨⎧=+=-⎪⎩⎪⎨⎧-=+-+=-=++=011212211)2(211)1(b a b a b a b a f b a f ,故x x x f 1)(2+=. (2)不等式)4()2()(-+->t x t x f x 可化为t x x x )1(522+>++.即1522+++<x x x t 对一切的),0(∞+∈x 恒成立.因为41411522≥+++=+++x x x x x ,当且仅当1=x 时等号成立,所以4<t . 19.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知A B 、分别在射线CM CN 、(不含端点C )上运动,23MCN ∠=π,在ABC ∆中,角A 、B 、C 所对的边分别是,,a b c .(1)若,,a b c 依次成等差数列,且公差为2.求c 的值;(2)若c =ABC ∠=θ,试用θ表示ABC ∆的周长,并求周长的最大值. 【解析】:(1)Q ,,a b c 成等差,且公差为2,∴a c =1cos 2C =-, ∴()()()()2224212422c c c c c -+--=---, 恒等变形得 2914c c -+∴7c =(2)在ABC ∆中,sin sin sin AC BC ABABC BAC ACB==∠∠∠,∴2sin sinsin 33ACBC πθθ===⎛⎫- ⎪⎝⎭,2sin AC θ=,2sin BC =∴ABC ∆的周长()f θAC BC AB =++2sin 2sin 3πθθ⎛⎫=+- ⎪⎝⎭12sin 2θθ⎡⎤=⎢⎥⎢⎥⎣⎦2sin 3πθ⎛⎫=+ ⎪⎝⎭Q 0,3πθ⎛⎫∈ ⎪⎝⎭,∴2333πππθ<+<, ∴当32ππθ+=即6πθ=时,()f θ取得最大值220.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分. 已知()122+-=x m x x f 定义在实数集R 上的函数,把方程()x x f 1=称为函数()x f 的特征方程,特征方程的两个实根βα,(βα<)称为()x f 的特征根.(1)讨论函数()f x 的奇偶性,并说明理由; (2)求()()αβf f -的表达式;(3)把函数()x f y =,[]βα,∈x 的最大值记作()x f m ax ,最小值记作()x f min .令()()()x f x f m g m in m ax -=,若()12+≤m m g λ恒成立,求λ的取值范围. 【解析】:(1)0=m 时,()122+=x x x f 是奇函数;0≠m 时,()122+-=x mx x f 是非奇非偶函数.证明:当0=m 时,()()()x f x xx f -=+--=-12,故()x f 是奇函数; 当0≠m 时,举反例说明. (2)()0112=--⇒=mx x xx f ,由042>+=∆m ,所以方程必有两个不等实根. m =+βα,1-=αβ,()()()()[]()()112212122222+++-+-=+--+-=-βααββααβααββαβm m m f f ()44442222+=+++=m m m m. 11()()f f αββαβαβααβ--=-==-=(3)首先证明函数()x f 在[]βα,∈x 上是单调递增函数. 设任意的21,x x 满足βα<<<21x x ,()()()()[]()()11221212212221211221122212+++-+-=+--+-=-x x x x x x m x x x m x x m x x f x f , 因为()02010121221222121<-+-+⇒⎪⎩⎪⎨⎧<--<--x x m x x mx x mx x x , 所以()()012>-x f x f ,故()x f 在[]βα,∈x 内单调递增, 可得,()42+=m m g ,1422+≤+m m λ恒成立13114222++=++≥⇒m m m λ恒成立所以,2≥λ【说明】单调性不证明,只是说明单调性不扣分.不说明单调性直接给出结论扣2分.21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.设n 为正整数,集合(){}{}n k t t t t A kn ,...,2,1,1,0,,...,,21=∈==αα.对于集合A 中的任意元素()n x x x ,...,,21=α和()n y y y ,...,,21=β.记()()()()[]n n n n y x y x y x y x y x y x M --+++--++--+= (2)1,22221111βα. (1)当3=n 时,若()0,1,1=α,()1,1,0=β,求()αα,M 和()βα,M 的值;(2)当4=n 时,设B 是A 的子集,且满足:对于B 中的任意元素βα,,当βα,相同时,()βα,M 是奇数;当βα,不同时,()βα,M 是偶数.求集合B 中元素个数的最大值;(3)给定不小于2的n ,设B 是A 的子集,且满足:对于B 中的任意两个不同的元素βα,,()0,=βαM .写出一个集合B ,使其元素个数最多,并说明理由.【解析】:(1)()0,1,1=α,()1,1,0=β,()2,=ααM ,()1,=βαM ;(2)设,()B x x x x ∈=4321,,,α,则()4321,x x x x M +++=αα,由题意知,{}1,0,,,4321∈x x x x ,且()αα,M 为奇数,所以,4321,,,x x x x 中1的个数为1或3,所以,()()()()()()()(){}0,1,1,1,1,0,1,1,1,1,0,1,1,1,1,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1⊆B , 将上述集合中的元素分成如下四组:()()0,1,1,1,0,0,0,1;()()1,0,1,1,0,0,1,0;()()1,1,0,1,0,1,0,0;()()1,1,1,0,1,0,0,0,经验证,对于每组中两个元素βα,,均有()1,=βαM ,所以每组中的两个元素不可能同时是集合是集合B 的元素,所以集合B 中元素的个数不超过4,又集合()()()(){}1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1满足条件,所以集合B 中元素个数的最大值为4.(3)设()(){}0...,1,,...,,,...,,1212121=====∈=-k k k k k x x x x A x x x x x x S ,n k ,...,2,1= (){}0...,...,,21211=====+n n n x x x x x x S ,则121...+=n S S S A Y Y Y , 对于()1,...,2,1-=n k S k 中的不同元素βα,,经验证,()1,≥βαM ,所以,()1,...,2,1-=n k S k 中的两个元素不可能同时是集合B 的元素,所以,B 中元素的个数不超过1+n ,取()k n k S x x x e ∈=,...,,21且0...1===+n k x x (1,...,2,1-=n k ). 令()1121,...,,+-=n n n S S e e e B Y Y ,则集合B 的元素个数为1+n ,且满足条件. 故B 是一个满足条件且元素个数最多的集合.。

上海市进才中学高三数学测试题(1)

上海市进才中学高三数学测试题(1)

上海市进才中学高三数学测试题(1)一、填空题(每小题4分,本题满分48分)1.复数)12(cos 2sin -+=θθi z 是纯虚数,则θ= . 2. 设4)cos()sin()(++++=βπαπx b x a x f ,且5)2003(=f ,则)2004(f = .3.已知正ABC ∆的边长为32,则到三个顶点的距离都为1的平面有_________个.4.已知α、β是方程02ln ln 22=--x x 的两个根,则=+αββαlog log _________.5.如果)(x f 是定义在)3,3(-上的偶函数,且当03≤<-x 时,)(x f 的图象如图所示,那么不等式0sin )(<x x f 的解集为 .6.规定记号“∆”表示一种运算,即+∈++=∆R b a b a b a b a 、,. 若31=∆k ,则函数()x k x f ∆=的值域是___________.7.已知32cos 2,cos sin ,43sin ππx x -依次成等比数列,则x 在区间[)π2,0内的解集为 .8. 已知数列}{n a 中,1562+=n n a n ,则数列}{n a 的最大项是第 项. 9.有一组数据:)(,,,,321321n n x x x x x x x x ≤≤≤≤ ,它们的算术平均值为10,若去掉其中最大的n x ,余下数据的算术平均值为9;若去掉其中最小的1x ,余下数据的算术平均值为11. 则1x 关于n 的表达式为__________;n x 关于n 的表达式为_______. 10.椭圆192522=+y x 上到两个焦点距离之积最小的点的坐标是________________. 11. 设{}4,3,2,1=I ,A 与B 是I 的子集,若{}3,2=B A ,则称),(B A 为一个“理想配集”,那么符合此条件的“理想配集”的个数是 .(规定),(B A 与),(A B 是两个不同的“理想配集”)12.已知集合A 、B 、C ,{}直线=A ,{}平面=B ,B A C =,若A a ∈,B b ∈,C c ∈,下列命题中: ①c a b c b a //⇒⎩⎨⎧⊥⊥;②c a b c b a ⊥⇒⎩⎨⎧⊥//;③c a b c b a //////⇒⎩⎨⎧;④c a b c b a ⊥⇒⎩⎨⎧⊥// 正确命题的序号为__________(注:把你认为正确的序号都填上)二、选择题(每小题4分,本题满分12分)13.已知非零向量b a ,,则222||||||b a b a -=+是a 与b 垂直的( )(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件14.若q p n m <<,,且⎩⎨⎧<-->--0))((0))((n q m q n p m p ,则m 、n 、p 、q 的大小顺序是 ( ) (A )m <p <q <n (B )p <m <q <n (C )m <p <n <q (D )p <m <n <q15.关于x 的方程02cos cos cos 22=--C B A x x 有一个根为1,则△ABC 中一定有( ) (A )B A = (B )C A = (C )C B = (D )2π=+B A16.函数x x y 22-=在区间],[b a 上的值域是]3,1[-,则点),(b a 的轨迹是图中的线段( )(A )AB 和AD (B )AB 和CD(C )AD 和BC (D )AC 和BDx y o -3 -1三、解答题(本题满分86分)17.若复数1z 与2z 在复平面上所对应的点关于y 轴对称,且2,)31()3(121=+=-z i z i z ,求1z .(本题12分)18.三角形ABC 中,三个内角A 、B 、C 的对边分别为c b a 、、,若ac b c a +=+222且2:)13(:+=c a ,求角C 的大小. (本题14分)19.长方体1111D C B A ABCD -中,1==BC AB ,21=AA ,E 是侧棱1BB 的中点.(1)求证:直线⊥AE 平面E D A 11;(本题15分)(2)求三棱锥E D A A 11-的体积; (3)求二面角11A AD E --的平面角的大小.20.学校食堂改建一个开水房,计划用电炉或煤炭烧水,但用煤时也要用电鼓风及时排气,用煤烧开水每吨开水费用为S 元,用电炉烧开水每吨开水费用为P 元52.05++=n m S , n n P -+=76202.10其中m 为每吨煤的价格,n 为每百度电的价格. 如果烧煤时的费用不超过用电炉时的费用,则用煤烧水,否则就用电炉烧水. (本题14分)(1)如果两种方法烧水费用相同,试将每吨煤的价格表示为每百度电价的函数;(2)如果每百度电价不低于60元,则用煤烧时每吨煤的最高价是多少?21. 已知椭圆)0(122222>=+b b y b x (本题15分) (1) 若圆320)1()2(22=-+-y x 与椭圆相交于A 、B 两点且线段AB 恰为圆的直径,求椭圆方程;(2) 设L 为过椭圆右焦点F 的直线,交椭圆于M 、N 两点,且L 的倾斜角为600. 求NFMF 的值.22.(理科)已知二次函数),()(2R b a b ax x x f ∈++=的定义域为]1,1[-,且|)(|x f 的最大值为M . (本题16分)(Ⅰ)试证明M b ≤+|1|; (Ⅱ)试证明21≥M ; (Ⅲ)当21=M 时,试求出)(x f 的解析式. A B C D E A 1 B 1 C 1D 1高三数学测试题(1) 参考答案一、填空题 1. Z k k ∈+,2ππ; 2. 3; 3.8; 4.4-; 5.)1,0()1,3( --; 6.),1(+∞; 7.⎭⎬⎫⎩⎨⎧1217,1213,125,12ππππ 8. 12、13; 9.9;11+-n n ; 10.(±5,0); 11. 9; 12.② 二、选择题13.C ; 14.B ; 15.A ; 16. B三、解答题17.⎩⎨⎧-==⇒∴-=⇒⎩⎨⎧=+++-=-+∴112)31)(()3)((22b a b a b a i bi a i bi a 或⎩⎨⎧=-=11b a ,则i z -=1或i z +-=1 18.由212222222=-++=+ac b c a ac b c a 可得=cos B ,故B =600,A +C =1200. 于是sin A =sin(1200-C )=C C sin 21cos 23+,又由正弦定理有:213sin sin +==c a C A , 从而可推出sin C =cos C ,得C =450.19.(1)依题意:E A AE 1⊥,11D A AE ⊥,则⊥AE 平面E D A 11.(2).312212131311111=⨯⨯⨯⨯=⋅⋅=∆-AE S V E D A E D A A (3)取1AA 的中点O ,连OE ,则1AA EO ⊥、11D A EO ⊥,所以⊥EO 平面11A ADD .过O 在平面11A ADD 中作1AD OF ⊥,交1AD 于F ,连EF ,则EF AD ⊥1,所以EFO ∠为二面角11A AD E --的平面角.在AFO ∆中,.sin 55111=⋅=∠⋅=AD D A OA OAF OA OF .5=∠∴EFO tg20.(1)由题意得:n n n m -+=++76202.1052.05,即17642--+=n n m )760(≤<n .(2)由S ≤P 得153)176(2151764)76(22+---=+-+--≤n n n m ∵60 ≤n ≤76,∴0≤n -76≤4 ∴当n -76=1时,153max =m ,此时n =75. 答:每吨煤的最高价为153元.21.(1)181622=+y x (2)∴7249+=NF MF 或7249-=NF MF .22.(Ⅰ)证明:∵|1||)1(|b a f M +-=-≥, |1||)1(|b a f M ++=≥|1||1|2b a b a M ++++-≥|1|2|)1()1(|b b a b a +=++++-≥∴|1|b M +≥(Ⅱ)证明:依题意,|)1(|-≥f M ,|)0(|f M ≥, |)1(|f M ≥又|1||)1(|b a f +-=-,|1||)1(|b a f ++=,|||)0(|b f =∴|1||)1(|4b a f M +-=-≥|1|||2|1|b a b b a +++++-=2|)1(2)1(|=+++-+-≥b a b b a ∴21≥M(Ⅲ)依21=M 时,21|||)0(|≤=b f ,2121≤≤-b ① 同理21211≤++≤-b a ② 21211≤+-≤-b a ③ ②+③得:2123-≤≤-b ④ 由①、④得:21-=b . 当21-=b 时,分别代入②、③得:01001=⇒⎩⎨⎧≤≤≤≤-a a a ,因此212)(-=x x f .。

上海市浦东新区进才中学高三(上)第一次月考数学试卷

上海市浦东新区进才中学高三(上)第一次月考数学试卷

一、填空题(每小题4分,共48分)1.集合A={x||x|<2}的一个非空真子集是.2.若(a﹣2i)i=b﹣i,其中a,b∈R,i是虚数单位,则a+b=.3.在等差数列{a n}中,a5=3,a6=﹣2,则a3+a4+…+a8=.4.若是单位向量,且,则向量的夹角α=.5.若,,则tanα=.6.设函数,那么f﹣1(10)=.7.无穷等比数列{a n}中,a1+a2=3(a3+a4)≠0,a5=1,则=.8.若A、B分别是椭圆与x、y正半轴的交点,F是右焦点,且△AFB 的面积为,则实数a=.9.2004年元月9日,第十届全国运动会筹备委员会正式成立,由二名主任和6名副主任组成主席团成员.若章程规定:表决一项决议必须在二名主任都同意,且副主任同意的人数超过半数才能通过.一次主席团全体成员表决一项决议,结果有6人同意,则决议通过的概率是(结果用分数表示).10.如图,正方体ABCD﹣A1B1C1D1的棱长为a,将该正方体沿对角面BB1D1D切成两块,再将这两块拼接成一个不是正方体的四棱柱,那么所得四棱柱的全面积为.11.若a>1,不等式的解集为[2,+∞),则实数a=.12.若一系列函数的解析式相同,值域相同,但其定义域不同,则称这一系列函数为“同族函数”,试问解析式为y=x2,值域为{1,2}的“同族函数”共有个.二、选择题(每小题4分,共16分)13.满足“对任意实数x,y,f(x•y)=f(x)•f(y)都成立”的函数可以是()A.f(x)=3x B.f(x)=log3x C.f(x)=x3D.14.在下列条件中,可判断平面α与β平行的是()A.α、β都垂直于平面rB.α内存在不共线的三点到β的距离相等C.l,m是α内两条直线,且l∥β,m∥βD.l,m是两条异面直线,且l∥α,m∥α,l∥β,m∥β15.已知农民收入由工资性收入和其他收入两部分构成.2003年某地区农民人均收入为3150元(其中工资性收入为1800元,其他收入为1350元),预计该地区自2004年起的5年内,农民的工资性收入将以6%的年增长率增长,其他收入每年增加160元.根据以上数据,2008年该地区农民人均收入介于()A.4200元~4400元B.4400元~4600元C.4600元~4800元D.4800元~5000元16.同时具有性质:“(1)最小正周期是π;(2)图象关于直线对称;(3)在区间上是增函数”的一个函数是()A.B.C.D.三、解答题(本大题共6小题,满分86分)17.若复数z满足:(2+i)z为纯虚数,且z﹣2的模等于2,求复数z.18.(1)解关于x的不等式:(a2+a﹣1)x>a2(1+x)+a﹣2(a∈R);(2)如果x=a2﹣4在上述不等式的解集中,求实数a的取值范围.19.设正三棱柱ABC﹣A1B1C1所有的棱长都等于2,M是AB的中点.(1)求异面直线A1M与BC1所成的角;(2)求四棱锥M﹣ACC1A1的体积.20.设,,P(x,y)是曲线C上任意一点,且满足.O为坐标原点,直线l:x﹣y﹣1=0与曲线C交于不同两点A和B.(1)求;(2)设点M(2,0),求MP的中点Q的轨迹方程.21.(16分)已知函数的定义域为(0,1](a为实数).(1)当a=﹣1时,求函数y=f(x)的值域;(2)当a>0时,判断函数y=f(x)的单调性并给予证明;(3)若f(x)>5在定义域上恒成立,求实数a的取值范围.22.(18分)函数f(x)是定义在[0,1]上的增函数,满足且f(1)=1,在每个区间(i=1,2…)上,y=f(x)的图象都是斜率为同一常数k的直线的一部分.(1)求f(0)及,的值,并归纳出的表达式(2)设直线,,x轴及y=f(x)的图象围成的矩形的面积为a i(i=1,2…),记,求S(k)的表达式,并写出其定义域和最小值.2007-2008学年上海市浦东新区进才中学高三(上)第一次月考数学试卷参考答案一、填空题(每小题4分,共48分)1.集合A={x||x|<2}的一个非空真子集是[0,1] .【分析】解绝对值不等式|x|<2,可以求出集合A,由于集合A是一个无限集,故它有无限多个非空真子集,写出满足条件的一个即可得到答案.解:∵A={x||x|<2}=(﹣2,2)若[a,b]⊊A则不妨令a=0,b=1则集合[0,1]满足要求故答案为:[0,1].【点评】本题考查的知识点是绝对值不等式的解法,子集与真子集的定义,其中解绝对值不等式,求出集合A是解答本题的关键.2.若(a﹣2i)i=b﹣i,其中a,b∈R,i是虚数单位,则a+b=1.【分析】先化简方程,利用复数相等的条件,求出a、b的值,可求a+b解:因为(a﹣2i)i=b﹣i 所以2+ai=b﹣i,可得b=2 a=﹣1 所以a+b=1.故答案为:1.【点评】本题考查复数相等的条件,是基础题.3.在等差数列{a n}中,a5=3,a6=﹣2,则a3+a4+…+a8=3.【分析】利用等差数列的性质:下标之和相等的两项的和相等及等差中项的性质即可解决.解:∵{a n}为等差数列,a5=3,a6=﹣2,∵m+n=p+q(m、n、p、q∈N*),a m+a n=a p+a q,∴a3+a4+…+a8=(a3+a8)+(a4+a7)+(a5+a6)=3(a5+a6)=3.故答案为:3.【点评】本题考查等差数列的性质,考查学生理解应用等差数列性质的能力,属于基础题.4.若是单位向量,且,则向量的夹角α=.【分析】由向量数量积的公式可得:,再结合题中的条件,即可得到cosα=﹣,进而求出答案.解:由向量数量积的公式可得:,因为是单位向量,即,所以cosα=﹣,所以.故答案为:.【点评】本题主要考查利用向量的数量积公式求两个向量的夹角,此题属于基础题型,只要计算仔细认真这样的题不会丢分.5.若,,则tanα=.【分析】利用诱导公式对已知可得sinα的值,结合,利用同角三角函数间的基本关系可求得cosα的值,然后由求出的sinα和cosα的值,再利用同角三角函数的基本关系即可求出tanα的值.解:由诱导公式可得:,∴sinα=﹣,,∴,∴=﹣.故答案为:﹣【点评】本题主要考查了诱导公式、同角基本关系在求解三角函数中的应用,属于基础试题,解题的关键是灵活利用公式.6.设函数,那么f﹣1(10)=3,﹣5.【分析】求f﹣1(10)的值,即解方程f(x)=10,分两段求解即可.解:求f﹣1(10)的值,即解方程f(x)=10,当x≥0时,f(x)=x2+1=10,x=3当x<0时,f(x)=﹣2x=10,x=﹣5,综上,f﹣1(10)=3或﹣5故答案为:3或﹣5【点评】本题考查分段函数求值、反函数与原函数的关系,难度不大.7.无穷等比数列{a n}中,a1+a2=3(a3+a4)≠0,a5=1,则=.【分析】由已知,结合等比数列的通项公式可得,可得,=9,而==,代入可求解:由a1+a2=3(a3+a4)≠0,a5=1,可得,=9则===故答案为:【点评】本题主要考查了等比数列的通项公式及求和公式的应用,数列极限的求解,属于公式的基本应用.8.若A、B分别是椭圆与x、y正半轴的交点,F是右焦点,且△AFB 的面积为,则实数a=.【分析】由题设条件及椭圆的性质知△AFB的面积,故可以将椭圆的标准方程,求出椭圆短轴的长度与焦距,两者乘积的一半即△AFB的面积.解:椭圆,故半长轴长=,b=1,由a2=b2+c2,可解得c=a,△AFB的面积为S=cb=×=,⇒a=故答案为:.【点评】本题考查椭圆的简单性质,解题的关键是根据题设条件得出a,b,c三个量之间的关系,由此关系求出椭圆的焦距与短轴的长度,由公式求出△AFB的面积.9.2004年元月9日,第十届全国运动会筹备委员会正式成立,由二名主任和6名副主任组成主席团成员.若章程规定:表决一项决议必须在二名主任都同意,且副主任同意的人数超过半数才能通过.一次主席团全体成员表决一项决议,结果有6人同意,则决议通过的概率是(结果用分数表示).【分析】先利用排列组合的知识求出6人同意的所求基本事件种数,然后求出决议通过的基本事件种数,最后利用古典概型的概率公式计算即可.解:一次主席团全体成员表决一项决议,结果有6人同意,情况有C86=28种;决议通过的情况有C22•C64=15种∴一次主席团全体成员表决一项决议,结果有6人同意,则决议通过的概率是故答案为:【点评】本题主要考查了概率的应用,以及利用古典概型的概率公式计算概率,解题的关键是不不重复不遗漏,属于基础题.10.如图,正方体ABCD﹣A1B1C1D1的棱长为a,将该正方体沿对角面BB1D1D切成两块,再将这两块拼接成一个不是正方体的四棱柱,那么所得四棱柱的全面积为.【分析】这两块拼接成一个不是正方体的四棱柱,是由全等的两个正方形,两个全等的平行四边形,这四个面积相等,和两个求得的矩形,求出面积之和即可.解:新四棱柱的表面是四个正方形,与两个矩形(长为,宽为1)故全面积为.故答案为:【点评】本题考查棱柱的表面积,考查学生空间想象能力,是基础题.11.若a>1,不等式的解集为[2,+∞),则实数a=2.【分析】由底数a大于1,得到对数函数y=log a x为增函数,又y=3x也为增函数,设不等式左边为函数f(x),可得f(x)为增函数,由自变量x的最小值为2,且根据已知的不等式得到f(x)的最小值为5,即f(2)=5,列出关于a的方程,求出方程的解即可得到a的值.解:∵a>1,∴y=log a x为增函数,又y=3x也为增函数,设f(x)=,则f(x)为增函数,由题意得到x≥2,且,∴f(x)的最小值为f(2)==5,化简得:log a2=1,则实数a=2.故答案为:2【点评】此题考查了其他不等式的解法,涉及的知识有对数函数、指数函数的单调性,以及对数的运算法则,利用了转化的思想,是高考中常考的基本题型.12.若一系列函数的解析式相同,值域相同,但其定义域不同,则称这一系列函数为“同族函数”,试问解析式为y=x2,值域为{1,2}的“同族函数”共有9个.【分析】1的原象是正负1;2的原象是正负.值域为{1,2},由此来判断解析式为y=x2,值域为{1,2}的“同族函数”的个数.解:1的原象是正负1;2的原象是正负.值域为{1,2},所以y=x2的同族函数只有9个,定义域分别为{1,},{﹣,﹣1},{,﹣1},{﹣,1},{﹣,﹣1,1},{,﹣1,1},{﹣,,﹣1},{﹣,,1},{﹣,,1,﹣1},共9个故答案为:9.【点评】本题考查函数的构成个数,解题时要认真审题,仔细求解.二、选择题(每小题4分,共16分)13.满足“对任意实数x,y,f(x•y)=f(x)•f(y)都成立”的函数可以是()A.f(x)=3x B.f(x)=log3x C.f(x)=x3D.【分析】由题设中“对任意实数x,y,f(x•y)=f(x)•f(y)都成立”这个条件知此法则对应的函数应是一个幂函数,由此特征选择正确选项即可解:由题意“对任意实数x,y,f(x•y)=f(x)•f(y)都成立”,知此函数应是一个幂函数考察四个选项,只有C中的f(x)=x3是一个幂函数,故C是正确答案故选:C.【点评】本题考查幂函数的性质,是一个抽象判断题,解题的关键是熟练掌握幂函数的性质,能由题设条件中所给的运算法则得出函数的类型来,考查了判断的能力及对基础知识掌握的熟练程度,属于基础概念考查题14.在下列条件中,可判断平面α与β平行的是()A.α、β都垂直于平面rB.α内存在不共线的三点到β的距离相等C.l,m是α内两条直线,且l∥β,m∥βD.l,m是两条异面直线,且l∥α,m∥α,l∥β,m∥β【分析】通过举反例推断A、B、C是错误的,即可得到结果.解:A中:教室的墙角的两个平面都垂直底面,但是不平行,错误.B中:如果这三个点在平面的两侧,满足不共线的三点到β的距离相等,这两个平面相交,B错误.C中:如果这两条直线平行,那么平面α与β可能相交,所以C错误.故选:D.【点评】本题考查平面与平面平行的判定,考查空间想象能力,是基础题.15.已知农民收入由工资性收入和其他收入两部分构成.2003年某地区农民人均收入为3150元(其中工资性收入为1800元,其他收入为1350元),预计该地区自2004年起的5年内,农民的工资性收入将以6%的年增长率增长,其他收入每年增加160元.根据以上数据,2008年该地区农民人均收入介于()A.4200元~4400元B.4400元~4600元C.4600元~4800元D.4800元~5000元【分析】根据题意算出2004年农民收入;算出2005年农民收入;根据数列的特点总结出规律得到2008年的农民收入,估算出范围即可.解:由题知:2004年农民收入=1800×(1+6%)+(1350+160);2005年农民收入=1800×(1+6%)2+(1350+2×160);…所以2008年农民收入=1800×(1+6%)5+(1350+5×160)≈4559故选:B.【点评】考查学生利用数列解决数学问题的能力,以及会根据条件归纳总结出一般性规律的能力.16.同时具有性质:“(1)最小正周期是π;(2)图象关于直线对称;(3)在区间上是增函数”的一个函数是()A.B.C.D.【分析】由周期公式判断A不对,利用余弦函数的对称轴判断B不对,由余弦函数的单调性判断D不对,利用正弦函数的性质判断C正确.解:A、由得,函数的周期为4π,故A不对;B、的对称轴方程是:(k∈z),把代入解得:k=,故B不对;C、由解析式知:函数的周期是π,且对称轴方程是(k∈z),把代入解得:k=1,即此方程是函数的对称轴,由﹣≤x≤0得,,即函数在区间上是增函数,故C 正确;D、由﹣≤x≤0得,,即函数在区间上是减函数,故D不对.故选:C.【点评】本题考查了三角函数的性质应用,根据正弦(余弦)函数的周期、对称轴和单调性进行判断,对于选择题可以用代入法,考查了整体思想.三、解答题(本大题共6小题,满分86分)17.若复数z满足:(2+i)z为纯虚数,且z﹣2的模等于2,求复数z.【分析】设z=a+bi(a,b∈R)代入(2+i)z,按照多项式乘法展开,实部为0,虚部不为0;z﹣2的模等于2,解混合组,求出a,b即可.解:设z=a+bi(a,b∈R)因为(2+i)z=(2a﹣b)+(a+2b)i为纯虚数所以解得故复数【点评】本题考查复数的概念,复数的模,考查计算能力,是基础题.18.(1)解关于x的不等式:(a2+a﹣1)x>a2(1+x)+a﹣2(a∈R);(2)如果x=a2﹣4在上述不等式的解集中,求实数a的取值范围.【分析】(1)把原不等式右边的未知项移项到左边进行合并,同时右边的式子分解因式,然后根据a﹣1大于0,a﹣1等于0及a﹣1小于0三种情况,根据不等式的基本性质把x 的系数化为1,分别求出原不等式相应的解集即可;(2)解法一:分两种情况:a大于1时,根据相应的解集列出关于a的不等式组;同理a 小于1时列出相应的不等式组,求出两不等式组解集的并集即可得到a的范围;解法二:把x=a2﹣4代入原不等式中化简,得到关于a的不等式,画出相应的图形,根据图形即可得到满足题意的a的取值范围.解:(1)(a2+a﹣1)x>a2(1+x)+a﹣2,(a2+a﹣1)x﹣a2x>a2+a﹣2,(a﹣1)x>a2+a﹣2,(a﹣1)x>(a﹣1)(a+2),当a>1时,解集为{x|x>a+2};当a=1时,解集为∅;当a<1时,解集为{x|x<a+2};(2)解法一:由题意,或,分别化为:或,解得:a>3或﹣2<a<1,则实数a的取值范围为(﹣2,1)∪(3,+∞);解法二:将x=a2﹣4代入原不等式,并整理得:(a+2)(a﹣1)(a﹣3)>0,根据题意画出图形,如图所示:根据图形得:实数a的取值范围为(﹣2,1)∪(3,+∞).【点评】此题考查了其他不等式的解法,利用了分类讨论及数形结合的思想,第二小题有两种解法:一种是利用转化的思想,讨论a大于1和a小于1,根据第一问求出的解集列出相应的不等式组;另一种是直接把x的值代入原不等式,借助图形来求解.19.设正三棱柱ABC﹣A1B1C1所有的棱长都等于2,M是AB的中点.(1)求异面直线A1M与BC1所成的角;(2)求四棱锥M﹣ACC1A1的体积.【分析】(1)取A1B1中点N,连接BN、C1N,则BN∥A1M,∠NBC1就是异面直线A1M与BC1所成的角,由余弦定理求出cos∠NBC1的值,即可得到异面直线A1M与BC1所成的角大小.(2)作MP⊥AC于P,则MP⊥平面,利用棱锥的体积求得结果.【解答】(1)取A1B1中点N,连接BN、C1N,则BN∥A1M,∠NBC1就是异面直线A1M与BC1所成的角.因为,由余弦定理可得3=5+8﹣4cos∠NBC1 ,∴cos∠NBC1=,所以异面直线A1M与BC1所成的角大小为.(2)作MP⊥AC于P,则MP⊥平面.故四棱锥M﹣ACC1A1的体积.【点评】本题考查异面直线所成的角的定义和求法,求棱锥的体积,找出异面直线所成的角,是解题的关键.20.设,,P(x,y)是曲线C上任意一点,且满足.O为坐标原点,直线l:x﹣y﹣1=0与曲线C交于不同两点A和B.(1)求;(2)设点M(2,0),求MP的中点Q的轨迹方程.【分析】(1)利用向量的数量积公式,可得椭圆方程,将直线方程与椭圆方程联立,利用根与系数的关系,可求答案;(2)假设点Q的坐标,利用Q是MP的中点,寻找坐标间的关系,从而可解.解:(1)曲线C为椭圆.设A(x1,y1)、B(x2,y2)是直线与椭圆的交点,将y=x﹣1代入,消去y,得3x2﹣2x﹣3=0.则,y1y2=(x1﹣1)(x2﹣1)=x1x2﹣(x1+x2)+1,∴.(2)设Q(x,y),则P(2x﹣2,2y),得,则2(x﹣1)2+y2=1即为所求.【点评】本题主要考查向量的数量积运算,考查代入法求轨迹方程,关键是寻找动点与已知点坐标之间的关系.21.(16分)已知函数的定义域为(0,1](a为实数).(1)当a=﹣1时,求函数y=f(x)的值域;(2)当a>0时,判断函数y=f(x)的单调性并给予证明;(3)若f(x)>5在定义域上恒成立,求实数a的取值范围.【分析】(1)将a的值代入函数解析式,利用基本不等式求出函数的值域.(2)当a>0时,y=f(x)在(0,1]上为单调递增函数,再利用定义证明;(3)当x∈(0,1]时,f(x)>5在定义域上恒成立,等价于a<2x2﹣5x在x∈(0,1]时恒成立,求函数.g(x)=2x2﹣5x的最小值即可.解:(1)当a=﹣1时,,∵x∈(0,1],∴,当且仅当,∴函数y=f(x)的值域为.(2)当a>0时,y=f(x)在(0,1]上为单调递增函数.证明如下:任取x1,x2∈(0,1],且x1<x2,则f(x1)﹣f(x2)=,所以y=f(x)在(0,1]上为单调递增函数.(3)当x∈(0,1]时,f(x)>5在定义域上恒成立,即a<2x2﹣5x在x∈(0,1]时恒成立.设g(x)=2x2﹣5x,当x∈(0,1]时,g(x)∈[﹣3,0),只要a<﹣3即可,即a的取值范围是(﹣∞,﹣3).【点评】本题主要考查函数的值域,考查函数的单调性及恒成立问题,有一定的综合性.22.(18分)函数f(x)是定义在[0,1]上的增函数,满足且f(1)=1,在每个区间(i=1,2…)上,y=f(x)的图象都是斜率为同一常数k的直线的一部分.(1)求f(0)及,的值,并归纳出的表达式(2)设直线,,x轴及y=f(x)的图象围成的矩形的面积为a i(i=1,2…),记,求S(k)的表达式,并写出其定义域和最小值.【分析】(1)f(0)=2f(0),得f(0)=0及f(1)=1归纳总结得f()=即可;(2)当时=所以{a n}是首项为,公比为的等比数列,所以S(k)的定义域为0<k≤1,当k=1时取得最小值即可.解:(1)由f(0)=2f(0),得f(0)=0,由及f(1)=1,得,同理,,归纳得,(2)当时=,所以{a n}是首项为,公比为的等比数列,所以S(k)的定义域为0<k≤1,当k=1时取得最小值.【点评】本小题主要考查函数、数列等基本知识,考查分析问题和解决问题的能力.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海市进才中学2020届高三数学上学期第一次月考试题(含解析)一、填空题1.函数⎪⎭⎫⎝⎛-=3sin πωx y (0>ω)的最小正周期是π,则=ω . 2.若集合{}21<-=x x A ,⎭⎬⎫⎩⎨⎧<+-=042x x x B ,则=B A I .3.方程1)3(lg lg =++x x 的解=x .4.已知幂函数()x f y =存在反函数,若其反函数的图像经过点⎪⎭⎫ ⎝⎛9,31,则该幂函数的解析式()x f = .5.函数)2cos()(ϕ+=x x f 的图像向左平移3π单位后为奇函数,则ϕ的最小正值为 . 6.若集合C B A 、、满足A B B C =U I ,则下列结论:①A C ⊆;②C A ⊆;③A C ≠;④A =∅中一定成立的有 .(填写你认为正确的命题序号)7.已知偶函数()x f 在区间[)+∞,0单调递增,若关于x 的不等式()⎪⎭⎫⎝⎛<-3112f x f 的x 的取值范围是 .8.当10≤≤x 时,如果关于x 的不等式2||<-a x x 恒成立,那么a 的取值范围是 . 9.若函数lg(1)1()sin 0x x f x xx ⎧->=⎨<⎩,则()x f y =图像上关于原点O 对称的点共有 对.10.已知c b a ,,都是实数,若函数()⎪⎩⎪⎨⎧<<+≤=c x a b xa x x x f 12的反函数的定义域是()+∞∞-,,则c 的所有取值构成的集合是 .11.对于实数x ,定义x 〈〉为不小于实数x 的最小整数,如 2.83〈〉=,1=-,44〈〉=.若x R ∈,则方程13122x x 〈+〉=-的根为 . 12.已知集合[][]9,41,+++=t t t t A Y ,A ∉0,存在正数λ,使得对任意A a ∈,都有A a∈λ,则t 的值是 .二、选择题(本大题满分20分)本大题共有4题,每题有且仅有一个正确.考生应在答题纸的相应编号上,填上正确的答案,选对得5分,否则一律得零分.13.函数()f x 的图像无论经过怎样平移或沿直线翻折,函数()f x 的图像都不能与函数12log y x =的图像重合,则函数()f x 可以是 ( )A .x y )21(= B . )2(log 2x y = C . )1(log 2+=x y D . 122-=x y14.ABC ∆中“cos sin cos sin A A B B +=+”是“其为等腰三角形”的 ( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既不充分也不必要条件 15.已知实数0,0a b >>,对于定义在R 上的函数)(x f ,有下述命题:①“)(x f 是奇函数”的充要条件是“函数()f x a -的图像关于点(,0)A a 对称”; ②“)(x f 是偶函数”的充要条件是“函数()f x a -的图像关于直线x a =对称”; ③“2a 是()f x 的一个周期”的充要条件是“对任意的x ∈R ,都有()()f x a f x -=-”; ④ “函数()y f x a =-与()y f b x =-的图像关于y 轴对称”的充要条件是“a b =” 其中正确命题的序号是( )A .①②B .②③C .①④D .③④ 16.存在函数()x f 满足,对任意R x ∈都有( )A .()x x f sin 2sin =B .()x x x f +=22sinC .()112+=+x x f D .()122+=+x x x f三、解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. 已知函数()b ax x x f --=232,其中R b a ∈,.(1)若不等式()0≤x f 的解集是[]6,0,求a 与b 的值; (2)若a b 3=,求同时满足下列条件的a 的取值范围.①对任意的R x ∈都有()0≥x f 恒成立; ②存在实数x ,使得()a x f 322-≤成立.18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知函数bx ax x f ++=1)(2的图像过点)2,1(,且函数图像又关于原点对称.(1)求函数)(x f 的解析式;(2)若关于x 的不等式)4()2()(-+->t x t x f x 在),0(∞+上恒成立,求实数t 的取值范围.19.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知A B 、分别在射线CM CN 、(不含端点C )上运动,23MCN ∠=π,在ABC ∆中,角A 、B 、C 所对的边分别是,,a b c .(1)若,,a b c 依次成等差数列,且公差为2.求c 的值;(2)若c =ABC ∠=θ,试用θ表示ABC ∆的周长,并求周长的最大值.20.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知()122+-=x m x x f 定义在实数集R 上的函数,把方程()x x f 1=称为函数()x f 的特征方程,特征方程的两个实根βα,(βα<)称为()x f 的特征根. (1)讨论函数()f x 的奇偶性,并说明理由; (2)求()()αβf f -的表达式;(3)把函数()x f y =,[]βα,∈x 的最大值记作()x f m ax ,最小值记作()x f min .令()()()x f x f m g m in m ax -=,若()12+≤m m g λ恒成立,求λ的取值范围.21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分. 设n 为正整数,集合(){}{}n k t t t t A kn,...,2,1,1,0,,...,,21=∈==αα.对于集合A 中的任意元素()n x x x ,...,,21=α和()n y y y ,...,,21=β. 记()()()()[]n n n n y x y x y x y x y x y x M --+++--++--+=...21,22221111βα. (1)当3=n 时,若()0,1,1=α,()1,1,0=β,求()αα,M 和()βα,M 的值;(2)当4=n 时,设B 是A 的子集,且满足:对于B 中的任意元素βα,,当βα,相同时,()βα,M 是奇数;当βα,不同时,()βα,M 是偶数.求集合B 中元素个数的最大值;(3)给定不小于2的n ,设B 是A 的子集,且满足:对于B 中的任意两个不同的元素βα,,()0,=βαM .写出一个集合B ,使其元素个数最多,并说明理由.上海市进才中学2020届高三数学第一次月考试卷一、填空题 1.函数⎪⎭⎫⎝⎛-=3sin πωx y (0>ω)的最小正周期是π,则=ω 2 . 【解析】:2||T πω=2.若集合{}21<-=x x A ,⎭⎬⎫⎩⎨⎧<+-=042x x x B ,则=B A I ()2,1-.【解析】:(1,3)(4,2)A B =-=-3.方程1)3(lg lg =++x x 的解=x 2 .【解析】:0(3)10x x x >⎧⎨+=⎩4.已知幂函数()x f y =存在反函数,若其反函数的图像经过点⎪⎭⎫ ⎝⎛9,31,则该幂函数的解析式()x f =21-x.【解析】:11111()9(9)93332f f αα-=⇒=⇒=⇒=-5.函数)2cos()(ϕ+=x x f 的图像向左平移3π单位后为奇函数,则ϕ的最小正值为 56π.【解析】:min 52(21),,0326k k Z πππϕϕϕ⨯+=-∈>⇒=6.若集合C B A 、、满足A B B C =U I ,则下列结论:①A C ⊆;②C A ⊆;③A C ≠;④A =∅中一定成立的有 ① .(填写你认为正确的命题序号) 【解析】:,A A B A B AA AB BC C A C⇒⊆⇒⊆⊆⊆⊆⊆U I U I7.已知偶函数()x f 在区间[)+∞,0单调递增,若关于x 的不等式()⎪⎭⎫⎝⎛<-3112f x f 的x 的取值范围是⎪⎭⎫⎝⎛32,31. 【解析】:111|21|21333x x -<⇒-<-< 8.当10≤≤x 时,如果关于x 的不等式2||<-a x x 恒成立,那么a 的取值范围是)3,1(-. 【解析】:22222(1)01||x x a x a x a x x x x x x<≤⇒-<⇒-<-<⇒-<<+ max min 222201()11,()1311x x x x x <≤⇒-=-=-+=+=或图像法(2)0||2x x x a =⇒-<成立9.若函数lg(1)1()sin 0x x f x xx ⎧->=⎨<⎩,则()x f y =图像上关于原点O 对称的点共有 4对.10.已知c b a ,,都是实数,若函数()⎪⎩⎪⎨⎧<<+≤=c x a b xa x x x f 12的反函数的定义域是()+∞∞-,,则c 的所有取值构成的集合是{}0. 【解析】:1b x+ 能取到-∞0c ⇒= 或图像法11.对于实数x ,定义x 〈〉为不小于实数x 的最小整数,如 2.83〈〉=,1=-,44〈〉=.若x R ∈,则方程13122x x 〈+〉=-的根为97,44--.【解析】:1123223131(1)224n n x n Z x n ++-=∈⇒+=⨯+=++ 117102331452142n n x n o n r +<+>=⇒+-<≤⇒-<≤-⇒=-- 179245244x or x or ⇒-=--⇒=-- 12.已知集合[][]9,41,+++=t t t t A Y ,A ∉0,存在正数λ,使得对任意A a ∈,都有A a∈λ,则t 的值是 3,1- .【解析】:(1)0[,1][4,9]t y x t t t t t xλ>⇒=∈++++U 递减941(1)(4)(9)1149t t t t t t t t t t t t t λλλλ⎧≤+⎪⎪⎪≥+⎪+⇒⇒++=+⇒=⎨⎪≤+⎪+⎪⎪≥+⎩ 11(2)104(1)(4)(9)39449t t t t t t t t t t t t t t t λλλλ⎧≤+⎪⎪⎪≥⎪++<<+⇒+=++⇒=-⎨⎪≤+⎪+⎪⎪≥++⎩(3)90t +<⇒同一,无解二、选择题(本大题满分20分)本大题共有4题,每题有且仅有一个正确.考生应在答题纸的相应编号上,填上正确的答案,选对得5分,否则一律得零分.13.函数()f x 的图像无论经过怎样平移或沿直线翻折,函数()f x 的图像都不能与函数12log y x =的图像重合,则函数()f x 可以是 ( D )A .x y )21(= B . )2(log 2x y = C . )1(log 2+=x y D . 122-=x y【解析】:21()22x D y x -=⇒压缩了14.ABC ∆中“cos sin cos sin A A B B +=+”是“其为等腰三角形”的 ( D ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既不充分也不必要条件 【解析】:sin()sin()44A B A B or A B ππ+=+⇒=+=(2),,A B B C or A C ===15.已知实数0,0a b >>,对于定义在R 上的函数)(x f ,有下述命题:①“)(x f 是奇函数”的充要条件是“函数()f x a -的图像关于点(,0)A a 对称”; ②“)(x f 是偶函数”的充要条件是“函数()f x a -的图像关于直线x a =对称”; ③“2a 是()f x 的一个周期”的充要条件是“对任意的x ∈R ,都有()()f x a f x -=-”; ④ “函数()y f x a =-与()y f b x =-的图像关于y 轴对称”的充要条件是“a b =”其中正确命题的序号是( A )A .①②B .②③C .①④D .③④ 【解析】:(3)()3f x =(4)()sin (2)sin ,(4)sin f x x f x x f x x ππ=-=-=-16.存在函数()x f 满足,对任意R x ∈都有( D )A .()x x f sin 2sin =B .()x x x f +=22sinC .()112+=+x x f D .()122+=+x x x f 【解析】:()(0)(sin0)sin00(0)(sin )sin12A f f f f NO ππ======⇒2()(0)(sin0)000(0)(sin )()22B f f f f NO πππ==+===+⇒2()(2)(11)|11|2,(2)((1)1)|11|0C f f f f NO =+=+==-+=-+=⇒21221112221122()()(2)|1|()(2)|21||1|D f t f x x x f t f x x x x x x t x x =+=+=+=-+=⇒++==-+-三、解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. 已知函数()b ax x x f --=232,其中R b a ∈,.(1)若不等式()0≤x f 的解集是[]6,0,求a 与b 的值; (2)若a b 3=,求同时满足下列条件的a 的取值范围.①对任意的R x ∈都有()0≥x f 恒成立; ②存在实数x ,使得()a x f 322-≤成立. 【解析】:(1)0,9==b a ;(2)[][]0,16,9---∈Y a .18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知函数bx ax x f ++=1)(2的图像过点)2,1(,且函数图像又关于原点对称.(1)求函数)(x f 的解析式;(2)若关于x 的不等式)4()2()(-+->t x t x f x 在),0(∞+上恒成立,求实数t 的取值范围.【解析】:(1)依题意,函数)(x f 的图象过点)2,1(和)2,1(--.所以⎩⎨⎧==⇒⎩⎨⎧=+=-⎪⎩⎪⎨⎧-=+-+=-=++=011212211)2(211)1(b a b a b a b a f b a f ,故x x x f 1)(2+=. (2)不等式)4()2()(-+->t x t x f x 可化为t x x x )1(522+>++.即1522+++<x x x t 对一切的),0(∞+∈x 恒成立.因为41411522≥+++=+++x x x x x ,当且仅当1=x 时等号成立,所以4<t . 19.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知A B 、分别在射线CM CN 、(不含端点C )上运动,23MCN ∠=π,在ABC ∆中,角A 、B 、C 所对的边分别是,,a b c .(1)若,,a b c 依次成等差数列,且公差为2.求c 的值;(2)若c =ABC ∠=θ,试用θ表示ABC ∆的周长,并求周长的最大值. 【解析】:(1)Q ,,a b c 成等差,且公差为2,∴a c =1cos 2C =-, ∴()()()()2224212422c c c c c -+--=---, 恒等变形得 2914c c -+∴7c =(2)在ABC ∆中,sin sin sin AC BC ABABC BAC ACB==∠∠∠,∴2sin sinsin 33ACBC πθθ===⎛⎫- ⎪⎝⎭,2sin AC θ=,2sin BC =∴ABC ∆的周长()f θAC BC AB =++2sin 2sin 3πθθ⎛⎫=+- ⎪⎝⎭12sin 2θθ⎡⎤=⎢⎥⎢⎥⎣⎦2sin 3πθ⎛⎫=+ ⎪⎝⎭Q 0,3πθ⎛⎫∈ ⎪⎝⎭,∴2333πππθ<+<, ∴当32ππθ+=即6πθ=时,()f θ取得最大值220.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分. 已知()122+-=x m x x f 定义在实数集R 上的函数,把方程()x x f 1=称为函数()x f 的特征方程,特征方程的两个实根βα,(βα<)称为()x f 的特征根.(1)讨论函数()f x 的奇偶性,并说明理由; (2)求()()αβf f -的表达式;(3)把函数()x f y =,[]βα,∈x 的最大值记作()x f m ax ,最小值记作()x f min .令()()()x f x f m g m in m ax -=,若()12+≤m m g λ恒成立,求λ的取值范围. 【解析】:(1)0=m 时,()122+=x x x f 是奇函数;0≠m 时,()122+-=x mx x f 是非奇非偶函数.证明:当0=m 时,()()()x f x xx f -=+--=-12,故()x f 是奇函数; 当0≠m 时,举反例说明. (2)()0112=--⇒=mx x xx f ,由042>+=∆m ,所以方程必有两个不等实根. m =+βα,1-=αβ,()()()()[]()()112212122222+++-+-=+--+-=-βααββααβααββαβm m m f f ()44442222+=+++=m m m m. 11()()f f αββαβαβααβ--=-==-=(3)首先证明函数()x f 在[]βα,∈x 上是单调递增函数. 设任意的21,x x 满足βα<<<21x x ,()()()()[]()()11221212212221211221122212+++-+-=+--+-=-x x x x x x m x x x m x x m x x f x f , 因为()02010121221222121<-+-+⇒⎪⎩⎪⎨⎧<--<--x x m x x mx x mx x x , 所以()()012>-x f x f ,故()x f 在[]βα,∈x 内单调递增, 可得,()42+=m m g ,1422+≤+m m λ恒成立13114222++=++≥⇒m m m λ恒成立所以,2≥λ【说明】单调性不证明,只是说明单调性不扣分.不说明单调性直接给出结论扣2分.21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.设n 为正整数,集合(){}{}n k t t t t A kn ,...,2,1,1,0,,...,,21=∈==αα.对于集合A 中的任意元素()n x x x ,...,,21=α和()n y y y ,...,,21=β.记()()()()[]n n n n y x y x y x y x y x y x M --+++--++--+= (2)1,22221111βα. (1)当3=n 时,若()0,1,1=α,()1,1,0=β,求()αα,M 和()βα,M 的值;(2)当4=n 时,设B 是A 的子集,且满足:对于B 中的任意元素βα,,当βα,相同时,()βα,M 是奇数;当βα,不同时,()βα,M 是偶数.求集合B 中元素个数的最大值;(3)给定不小于2的n ,设B 是A 的子集,且满足:对于B 中的任意两个不同的元素βα,,()0,=βαM .写出一个集合B ,使其元素个数最多,并说明理由.【解析】:(1)()0,1,1=α,()1,1,0=β,()2,=ααM ,()1,=βαM ;(2)设,()B x x x x ∈=4321,,,α,则()4321,x x x x M +++=αα,由题意知,{}1,0,,,4321∈x x x x ,且()αα,M 为奇数,所以,4321,,,x x x x 中1的个数为1或3,所以,()()()()()()()(){}0,1,1,1,1,0,1,1,1,1,0,1,1,1,1,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1⊆B , 将上述集合中的元素分成如下四组:()()0,1,1,1,0,0,0,1;()()1,0,1,1,0,0,1,0;()()1,1,0,1,0,1,0,0;()()1,1,1,0,1,0,0,0,经验证,对于每组中两个元素βα,,均有()1,=βαM ,所以每组中的两个元素不可能同时是集合是集合B 的元素,所以集合B 中元素的个数不超过4,又集合()()()(){}1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1满足条件,所以集合B 中元素个数的最大值为4.(3)设()(){}0...,1,,...,,,...,,1212121=====∈=-k k k k k x x x x A x x x x x x S ,n k ,...,2,1= (){}0...,...,,21211=====+n n n x x x x x x S ,则121...+=n S S S A Y Y Y , 对于()1,...,2,1-=n k S k 中的不同元素βα,,经验证,()1,≥βαM ,所以,()1,...,2,1-=n k S k 中的两个元素不可能同时是集合B 的元素,所以,B 中元素的个数不超过1+n ,取()k n k S x x x e ∈=,...,,21且0...1===+n k x x (1,...,2,1-=n k ). 令()1121,...,,+-=n n n S S e e e B Y Y ,则集合B 的元素个数为1+n ,且满足条件. 故B 是一个满足条件且元素个数最多的集合.。

相关文档
最新文档