高等代数-线性方程组

合集下载

高等代数课件(北大版)第三章-线性方程组§3-1

高等代数课件(北大版)第三章-线性方程组§3-1

例 解下列方程组

5 x1 2 x1

x2 x2
2x3 4x3
x4 7 2x4 1
x1 3x2 6x3 5x4 0
解:对方程组的增广矩阵作初等行变换
5 1 2 1 7 1 3 6 5 0

2 1
1 3
4 6
2 5
asn xn bs
先检查(1)中 x1的系数,若 a11,a21, ,as1全为零, 则 x1没有任何限制,即x1可取任意值,从而方程组
(1)可以看作是 x2 , , xn的方程组来解.
§3.1 2019/8/9 消元法
数学与计算科学学院
如果 x1的系数不全为零,不妨设,a11 0. 分别把第一个方程 ai1 的倍加 到第i个方程 (i 2, ,.s)
1 0



2 5
1 1
4 2
2 1
1 7

1 3 6 5 0 1 3 6 5 0


0 0
7 14
16 32
12 24
1 7



0 0
7 0
16 0
12 0
1 5

从最后一行知,原方程组无解。
§3.1 2019/8/9 消元法
数学与计算科学学院
§3.1 2019/8/9 消元法
数学与计算科学学院
再考虑方程组
a22 x2

a2 n xn b2
(4)
as2 x2 asn xn bs
显然,方程组(4)的一个解代入方程组(3)就得出(3)
的一个解;而方程组(3)的解都是方程组(4)有解。

高等代数3.6 线性方程组解的结构

高等代数3.6 线性方程组解的结构
j 1
又设 ( l1 , l2 , … , ln ) 是导出组 (1) 的一个解,即
n
aijl j 0 (i 1,2,, s) ,
j 1
显然
n
n
n
aij (k j l j ) aijk j aijl j
j 1
j 1
j 1
bi 0 bi (i 1,2,, s) .
推论 在非齐次线性方程组有解的条件下,解
是唯一的充分必要条件是它的导出组只有零解.
证明 充分性 如果方程组 (9) 有两个不同的
解,那么它的差就是导出组的一个非零解. 因此, 如果导出组只有零解,那么方程组有唯一解.
必要性 如果导出组有非零解,那么这个解 与方程组 (9) 的一个解 (因为它有解) 的和就是 (9) 的另一个解,也就是说,(9) 不止一个解. 因之, 如果方程 (9) 有唯一解,那么它的导出组只有零解.

x3 x3

4 3
, ,
x1 2 bx 2 x3 4 .
讨论方程组的解的情况与参数 a, b 的关系,有解时 求其解.
单击这里开始求解
三、直线平面间的位置关系的判断
平面和直线之间的位置关系是指平面与平面、 平面与直线、直线与直 线之间的位置关系. 由于 平面和直线在直角坐标系下的方程,是三元线性 方程 a1x1 + a2x2 + a3x3 = b 和两个三元线性方程组成 的方程组,因此,讨论它们之间的位置关系 ( 如平 行、重合、相交等 ),可用线性方程组的解的理论 阐明.
方程组 (9) 的解与它的导出组 (1) 的解之间有密 切的关系:
1) 线性方程组 (9) 的两个解的差是它的导出组 (1) 的解.

高等代数Ⅰ第二章 线性方程组测试题

高等代数Ⅰ第二章 线性方程组测试题

η1,η2 ,",ηn−1 线性无关。(10 分)
八、已知α1
=
(0,1,0),α 2
=

(−
3,2,2)
是方程组
⎪ ⎨
x1 − x2 + 2x3 = −1 3x1 + x2 + 4x3 = 1
的两个解,求此方程的
⎪⎩ax1 + bx2 + cx3 = d
一般解。(10 分)
九、设α1,α2 ,",αt 是齐次方程组②的基础解系, β1 = α2 + α3 + "+ αt , β2 = α1 + α3 +
β4
= α4
− α1 ,那么,
β
1
,
β
2
,
β
3
,
β
必线相关
4

⒉等价的向量组有相同的极大关组。
() ()
⒊设 A是n级方阵, 那么A的行向量线性无关当且仅当 A 的列向量线性无关。( )
⒋如果非齐次线性方程组①的系数矩阵的秩小于 n ,那么①的基础解系一定存在,但未
必是唯一的。
()
⒌非齐次线性方程组的任意两个解向量的和仍是它的解。
⒊设齐次线性方程组
⎪⎪⎨a21x1 ⎪
+
a22 x2 + "+ a2n xn """"
=
0

⎪⎩a s1 x1 + as2 x2 + "+ asn xn = 0
只有零解, A 表示其系数矩阵,那么( )
(A) A 的列向量线性相关;
(B) A 的列向量性无关;

高等代数04线性方程组

高等代数04线性方程组

最后一个矩阵所对应的线性方程组为 x1+ 7x3 = 1 , x26x3 = 1 . 它与原方程组同解,取 x3 = C, 得 x1 = 17C, x2 = 1+6C, x 1= 1 7C , 即原方程组解为 x2 = 1+ 6C, 其中 C 为任意实数. x3 = C , 将解写成向量形式 ( x1, x2, x3 )T = (17C , 1+6C, C )T.
定义1 定义1 由st个数cij 排成的一个 行t列的表 个数 排成的一个s行 列的表
c11 c12 L c21 c22 L L L cs1 cs 2 L c1t c2t L cst
叫作一个s行 列矩阵 c 列矩阵。 叫作一个 行t列矩阵。 ij 叫作这个矩阵的元素
注意: 注意:矩阵和行列式虽然形式上有些类似,但有完全不同的意义。 一个行列式是一些数的代数和,而一个矩阵仅仅是一个表。
例2

x1 – x2 + 5x3 – x4 = 0 , x + x2 – 2x3 + 3x4 = 0 , 求下列线性方程组的解: 1 3x1 – x2 + 8x3 + x4 = 0 , x1 + 3x2 – 9x3 + 7x4 = 0 .
1 1 1 1 1 5 0 2 7 4 3 → 0 → 0 0 2 7 4 1 7 0 4 14 8 0
并且用B表示 B 的前n列作成的矩阵。那么由定理4.2.1得: 秩A=秩B= r,秩A =秩B 现在设线性方程组(1)有解。那么或者r = m,或者r < m,而
dr+1 =L= dm = 0,这两种情形都有秩B=0,于是由(4)得,
B 反过来,设秩 A =秩B 。那么由(4)得, 的秩也是 r。由此得,或 者r = m,或者r < m 而 dr+1 =L= dm = 0 ,因而方程组(1)有解。

大一上期高等代数知识点

大一上期高等代数知识点

大一上期高等代数知识点高等代数是大一上学期的一门重要课程,主要涉及代数方程、线性代数等内容。

下面将介绍一些大一上期高等代数的核心知识点。

一、代数方程1. 一次方程与二次方程一次方程是形如ax + b = 0的方程,其中a和b为已知数。

解一次方程的方法包括等式两边同时加减同一个数,合并同类项等。

二次方程是形如ax² + bx + c = 0的方程,其中a、b、c为已知数,并且a ≠ 0。

解二次方程的方法包括配方法、因式分解和求根公式等。

2. 求根与判别式二次方程的求根公式为x = (-b ± √(b² - 4ac))/(2a),其中√表示平方根。

判别式Δ = b² - 4ac可用来判断二次方程的解的性质。

当Δ > 0时,方程有两个不相等的实数根;当Δ = 0时,方程有两个相等的实数根;当Δ < 0时,方程无实数根。

二、线性代数1. 矩阵与行列式矩阵是一个由m行n列数组成的矩形阵列,常用大写字母表示。

行列式是一个用来描述矩阵性质的数值,常用竖线符号表示。

行列式的计算包括对角线法则和展开法则等。

2. 线性方程组线性方程组是由若干个线性方程组成的方程组。

求解线性方程组的方法包括消元法、逆矩阵法等。

消元法通过行变换将线性方程组转化为相等的简化形式,从而求得方程组的解。

逆矩阵法利用矩阵的逆矩阵来求解线性方程组,前提是矩阵存在逆矩阵。

三、向量与空间1. 向量向量是用来表示方向和大小的量,常用小写字母表示。

向量的运算包括加法、减法及数量乘法等。

向量的模表示向量的大小,向量的内积和外积是常见的向量运算。

2. 空间与子空间空间是指向量所在的集合,常用R^n表示n维空间。

子空间是指在一个空间中的子集,满足一些特定条件,比如封闭性和包含零向量等。

以上是大一上期高等代数的一些核心知识点。

通过学习这些知识,我们可以理解和解决代数方程、线性方程组等问题,为后续学习打下坚实基础。

高等代数第3章线性方程组

高等代数第3章线性方程组
第 3 章
3.1 消元法
线性方程组
3.1.1 高斯消元法及矩阵表示 3.1.2 矩阵表示 3.1.3 一般情形
3.1.1 高斯消元法
分析:用消元法解下列方程组的过程. 分析:用消元法解下列方程组的过程. 引例 求解线性方程组
2 x1 − x2 − x3 + x4 = 2, x + x − 2 x + x = 4, 1 2 3 4 4 x1 − 6 x2 + 2 x3 − 2 x4 = 4, 3 x1 + 6 x2 − 9 x3 + 7 x4 = 9,
1 2
3
4 1 2
3
3
4
↔4 −23
4
用“回代”的方法求出解: 回代”的方法求出解:
x1 = x3 + 4 x2 = x3 + 3 其中 为任意取值 . 其中x3 于是解得 x = −3 4
或令x3 = c , 方程组的解可记作
x1 = c + 4 x = c + 3 2 x3 = c x 4 = −3
阶 矩 : 行 梯 阵
(1)元素全为0的行全在下方; 元素全为0的行全在下方; 行的第一个非0元素的 (2)对于非零行,第i+1行的第一个非 元素的 对于非零行, 行的第一个非 列标大于第i行的第一个非 行的第一个非0元素的列标 列标大于第 行的第一个非 元素的列标
1 0 0 0 1 −2 1 4 1 −1 1 0 0 0 1 − 3 0 0 0 0
3.1.3 一般情形
a11 x1 + a12 x 2 + L + a1n x n = b1 a x + a x +L+ a x = b 21 1 22 2 2n n 2 线性方程组 LLLLLLLLLLLL a m 1 x1 + a m 2 x 2 + L + a mn x n = bm

高等代数 线性方程组

高等代数 线性方程组
增广矩阵
9
a11 x1 a12 x2 a1 n xn 0 a x a x a x 0 21 1 22 2 2n n an1 x1 an 2 x2 ann xn 0
AX O
~ A ( A | O)
2 3 1
4 1 1
1 2 1
3 1 0
4 1 1
1 3 41 21 3
齐次方程组有非零解,则 D 0
所以 0 , 2 或 3时齐次方程组有非零解.
1 r ( 1)r r ( 1)r 0 0 0
2 3 1 3
7 1 0 1 1 0 3 r (1)r 0 1 0 0 1 3 0 0 0 0 0 0 0 0
1 2
1 2 0

4 0 3 0 4 3 3 0
k 0或k =2
7
例2 问 取何值时,齐次方程组
1 x1 2 x2 4 x3 0, 2 x1 3 x2 x3 0, x x 1 x 0, 1 2 3
有非零解? 1 解: D 2 1
3
其中c为任意常数.
例4 设有线性方程组
x1 x2 x3 1 x1 x2 x3 x x x 2 1 2 3
问取何值时 有唯一解? 有无穷多个解 无解? , ?
解:
对增广矩阵 A 作初等行变换,
A1 1
1

1
1 1 r r 1 1 1 3 2
阶梯形矩阵
行简化阶梯形矩 阵

高等代数3.5 线性方程组有解判别定理

高等代数3.5 线性方程组有解判别定理

1 , 2 , …, r 也是 1 , 2 , …, r , 的一个级大线 性无关组,因此向量 可以经 1 , 2 , …, r 线性 表出,它当然可以经1 , 2 , …, n 线性表出.
因此,方程组 (1) 有解.
证毕
这个判别条件与消元法的关系
三、一般线性方程组的解法
同解.
当 r = n 时,由克拉默法则,方程组(4)有唯一
解,也就是方程组 (1) 有唯一解.
当 r < n 时,将方程组 (4) 改写为
a11x1 a1r xr b1 a1,r1xr1 a1nxn ,
a21x1 a2r xr
b2 a x 2,r1 r1 a2nxn ,
程组的增广矩阵化为行阶梯形
1 1 1 1 1 0
A

2

3 1
2 3 1
1 0 2
0 1 1 初等行变换
1 1
2 0
1 1

1 1 1 1 1 0 0 0 3 2 1 1

0 0
0 0
0 0
0 0
0 0
00
因为系数矩阵和增广矩阵的秩均为 2 ,所以方
a11 a12 a1n
A


a21 as1
a22 as2

a2n
asn

与增广矩阵
a11 a12 a1n b1
A


a21 as1
a22 as2

a2n asn
b2
bs

有相同的秩.
证明 先证必要性. 设线性方程组 (1) 有解,
就是说, 可以经向量组 1 , 2 , …, n 线性表出. 由此立即推出,向量组1 , 2 , …, n 与1 , 2 , …, n , 等价,因而有相同的秩. 这两个向量组分别
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档