高等代数7.4 特征值与特征向量
特征值与特征向量

特征值与特征向量特征值与特征向量是线性代数中的重要概念,它们在矩阵理论、物理学、工程等领域有着广泛的应用。
本文将对特征值与特征向量进行详细讲解,并介绍它们的一些重要性质和应用。
一、特征值与特征向量的定义在线性代数中,给定一个n阶方阵A,非零向量x若满足Ax=kx,其中k为一个标量,那么我们称k为矩阵A的特征值,x为矩阵A对应于特征值k的特征向量。
特征值和特征向量是矩阵A的固有性质,它们描述了矩阵在线性变换下的一些重要特性。
二、求解特征值与特征向量要求解一个矩阵的特征值与特征向量,我们可以通过求解特征方程来实现。
特征方程是一个关于特征值的多项式方程,形式为|A-kI|=0,其中I为单位矩阵,k为特征值。
解特征方程可以得到特征值的值,然后将特征值代入到(A-kI)x=0中,求解线性方程组即可得到特征向量。
特征值与特征向量是成对存在的,对于矩阵A的每一个特征值k,都对应着一个特征向量。
一个矩阵最多有n个特征值,但是可能有重复的特征值。
三、特征值与特征向量的重要性质特征值与特征向量具有以下重要性质:1. 特征向量与特征值的个数相等,一一对应。
2. 特征值可以为实数或复数,特征向量可以为实向量或复向量。
3. 若特征值为k,则对应的特征向量不唯一,可乘以一个非零常数得到不同的特征向量。
4. 矩阵的迹等于特征值的和,行列式等于特征值的积。
特征值与特征向量的这些性质在实际问题中有着重要的应用,可以用于矩阵的对角化、求解线性方程组、图像处理、物理模型的求解等领域。
四、特征值与特征向量的应用1. 数据降维在数据处理中,我们经常会遇到维度灾难,即特征维度非常高,而样本量较小。
利用特征值与特征向量,我们可以将高维度的数据降低到低维度,从而简化计算和数据处理过程,提高算法效率。
2. 图像处理图像可以用矩阵来表示,而图像的特性往往由矩阵的特征值与特征向量来描述。
利用特征值与特征向量,我们可以进行图像的压缩、图像的特征提取、图像的增强等图像处理操作。
高等代数7-4特征值与特征向量

就是属于这个特征值 0 的全部线性无关的特征向量.
而 k11 k22 krr ,
(其中, k1,k2, ,kr P 不全为零)
就是 的属于 0 的全部特征向量.
例1.在线性空间V中,数乘变换K在任意一组基下
的矩阵都是数量矩阵kE,它的特征多项式是
E kE ( k)n .
1
n1
n
而
B( )( E A) nB0 n1(B1 B0 A) n2(B2 B1A)
(Bn1 Bn2 A) Bn1A
②
比较①、②两式,得
B0 E
B1 B0 A a1E
B2 B1 A a2E
③
Bn1 Bn2 A an1 Bn1 A an E
E
以An, An1, , A, E 依次右乘③的第一式、第二式、
2
n1
n
f ( A) 0.
4. 设 为有限维线性空间V的线性变换, f ( )是
的特征多项式,则 f ( ) 0.
零变换
1 0 2
例3. 设
A
0 0
1 1
1 0
,
求
2A8 3A5 A4 A2 4E.
解:A的特征多项式 f ( ) E A 3 2 1
用 f ( )去除 28 35 4 2 4 g(), 得
g() f ()(25 4 3 5 2 9 14) (24 2 37 10)
f ( A) 0, 2A8 3A5 A4 A2 4E 24A2 37A 10E
3 48 26
0 0
95 61
3641
一、特征值与特征向量
定义:设 是数域P上线性空间V的一个线性变换,
若对于P中的一个数 0 , 存在一个V的非零向量 ,
特征值与特征向量

特征值与特征向量在数学中,特征值和特征向量是矩阵与线性变换的重要概念。
特征值可以帮助我们理解线性变换对向量运动的影响,而特征向量则描述了这种影响的方向。
本文将介绍特征值与特征向量的定义、性质以及它们在实际问题中的应用。
一、特征值与特征向量的定义对于一个n维向量空间中的线性变换T,如果存在一个非零向量v使得T(v) = λv 成立,其中λ为一个标量,那么我们称λ为T的特征值,v为T对应于特征值λ的特征向量。
特征值和特征向量可以通过求解线性方程组来获得。
设A是一个n×n的矩阵,并且v是一个非零向量,则有Av = λv 成立。
这是一个齐次线性方程组。
解该方程组即可得到特征值和特征向量。
二、特征值与特征向量的性质1. 特征值与特征向量的存在性和唯一性对于一个n×n的矩阵A,它的特征值存在和特征向量存在的条件是相同的。
一个矩阵最多有n个不同的特征值,每个特征值对应的特征向量也可以有多个。
但是特征向量一定是线性相关的。
2. 特征值与特征向量的性质(1)特征值的和等于矩阵的迹如果A是一个n×n的矩阵,λ₁、λ₂、...、λₙ是其特征值,则有λ₁+λ₂+...+λₙ = tr(A),其中tr(A)表示矩阵A的迹。
(2)特征值的乘积等于矩阵的行列式如果A是一个n×n的矩阵,则特征值的乘积等于矩阵的行列式,即λ₁*λ₂*...*λₙ = det(A),其中det(A)表示矩阵A的行列式。
(3)特征值的倒数等于矩阵的逆矩阵的特征值如果A是一个可逆矩阵,λ₁、λ₂、...、λₙ是其特征值,则A的逆矩阵的特征值为λ₁⁻¹、λ₂⁻¹、...、λₙ⁻¹。
三、特征值与特征向量的应用特征值和特征向量在实际问题中有广泛的应用。
下面列举了其中的几个应用领域:1. 特征值分解特征值分解是将一个矩阵分解为特征值和特征向量的形式。
特征值分解在许多领域中都有广泛的应用,如信号处理、图像压缩和降维等。
特征值和特征向量的基本定义及运算

特征值和特征向量的基本定义及运算特征值和特征向量是线性代数中的两个重要概念,广泛应用于机器学习、图像处理、信号处理等领域中。
本文旨在介绍特征值和特征向量的基本定义及运算,并探讨其在实际中的应用。
一、特征值与特征向量的定义在线性代数中,矩阵是一个非常重要的概念。
一个 n × n 的矩阵 A 是由 n 行 n 列的元素组成的,并且可以用列向量的形式表示为 A = [a1, a2, ..., an]。
其中,ai 表示矩阵 A 的第 i 列的列向量。
矩阵 A 的特征向量是指一个非零向量 v,满足Av = λv,其中λ 是一个常数,称作该矩阵的特征值。
通常情况下,特征向量 v 与特征值λ 是成对出现的,即一个特征向量对应一个特征值。
二、特征值与特征向量的求解特征值和特征向量的求解是线性代数中的一个经典问题。
一般情况下,可以通过求解矩阵 A 的特征多项式来求解其特征值。
设矩阵 A 的特征多项式为f(λ) = |A - λI|,其中 I 表示单位矩阵。
则 A 的特征值即为方程f(λ) = 0 的根。
对于每个特征值λ,可通过解如下方程组来求解对应的特征向量:(A - λI)v = 0其中,v 表示特征向量,0 表示零向量。
上述方程组的解空间为 A - λI 的零空间,也称为矩阵 A 的特征子空间。
如果矩阵 A 的特征值λ 是重根,则λ 对应的特征向量有多个线性无关的向量。
此时,可求解齐次线性方程组 (A - λI)v = 0 的基础解系,从中选取线性无关的向量作为特征向量。
三、特征值与特征向量的性质特征值与特征向量有一些重要的性质,其中较为常见的包括:1. 特征值的和等于矩阵的迹设矩阵 A 的特征值为λ1, λ2, ..., λn,则有:λ1 + λ2 + ... + λn = tr(A)其中,tr(A) 表示矩阵 A 的迹,即主对角线上元素的和。
2. 特征值的积等于矩阵的行列式设矩阵 A 的特征值为λ1, λ2, ..., λn,则有:λ1 λ2 ... λn = |A|其中,|A| 表示矩阵 A 的行列式。
特征值和特征向量

特征值和特征向量特征值和特征向量是线性代数中重要的概念,广泛应用于各个领域的数学和科学问题中。
特征值和特征向量的理解和运用对于解决线性代数中的矩阵方程、特征分解以及一些实际问题有着重要的意义。
一、特征值与特征向量的定义在线性代数中,对于一个n阶方阵A,如果存在一个非零向量x,使得下式成立:A·x=λ·x其中,λ为一个复数,称为矩阵A的特征值,x称为对应于特征值的特征向量。
对于方阵A,可能存在多个特征值和对应的特征向量。
二、特征值和特征向量的性质1. 特征向量的长度无关紧要:特征向量的长度没有具体的要求,只要方向相同即可。
2. 特征向量是线性的:如果v是一个A的特征向量,那么对于任意标量k都有kv仍是A的特征向量。
3. 不同特征值对应的特征向量是线性无关的:如果λ1≠λ2,则对应的特征向量v1和v2线性无关。
三、求解特征值和特征向量的方法针对不同的方阵A,求解特征值和特征向量的方法也有所不同,常用的方法有以下几种:1. 特征方程法:令A-λI=0,其中I是单位矩阵,解方程A-λI=0可以得到方阵A的特征值λ。
然后将特征值带入方程(A-λI)x=0,求解得到方阵A对应特征值的特征向量。
2. 幂法:通过迭代的方法求解矩阵的特征值和特征向量。
先随机选择一个向量x0,然后通过迭代运算得到序列x0,Ax0,A^2x0,...,A^nx0,其中n为迭代次数。
当n足够大时,序列将收敛到A的特征向量。
3. Jacobi方法:通过迭代矩阵的相似变换,将矩阵对角化。
该方法通过交换矩阵的不同行和列来逐步减小非对角元素,最终得到对角矩阵,对角线上的元素即为特征值。
四、特征值和特征向量的应用特征值和特征向量在很多领域中都有广泛的应用,包括以下几个方面:1. 图像处理:特征值和特征向量可用于图像的降维和特征提取,通过对图像的特征向量进行分析,可以获得图像的主要特征。
2. 特征分析:特征值和特征向量可用于分析复杂系统的稳定性、动态响应和振动特性,如机械系统、电路系统等。
特征值与特征向量

特征值与特征向量特征值与特征向量是线性代数中重要的概念,它们在矩阵理论和多个领域中都有广泛的应用。
特征值与特征向量的理解对于深入理解线性代数的基础及其应用具有重要的意义。
本文将简要介绍特征值与特征向量的概念、性质及其应用,并通过示例加深理解。
1. 概念特征值和特征向量是矩阵理论中一个重要的概念。
对于一个n阶矩阵A,如果存在一个非零向量x,使得Ax=kx,其中k为一个常数,那么k称为矩阵A的特征值,x称为对应于特征值k的特征向量。
特征值与特征向量总是成对出现的,一个特征向量对应一个特征值。
2. 性质(1)特征值是矩阵的本征性质,是一个与矩阵本身相关的特征。
(2)特征向量是矩阵A的一个零空间的非零向量,表示在矩阵A 的作用下,该向量只发生一个伸缩变换,方向不变。
(3)特征值和特征向量存在一定的关系,特征值为k的特征向量与特征值为-1/k的特征向量互为相反数。
(4)特征值的个数等于矩阵的秩,特征向量的个数与矩阵的阶数相同。
3. 应用特征值与特征向量在多个学科领域具有广泛的应用,以下列举几个常见的应用案例:(1)数据降维:在机器学习和数据挖掘中,通过对数据矩阵的特征值分解,可以实现数据的降维处理,减少冗余信息,提高计算效率。
(2)图像处理:图像处理中常常利用矩阵的特征值与特征向量进行图像的压缩、滤波、边缘检测等操作。
例如,利用特征值分解进行图像去噪处理。
(3)网络分析:在网络分析中,可以利用特征值与特征向量来研究网络结构的特征,如网络的连通性、中心性等。
(4)量子力学:量子力学中的波函数也可以通过特征值和特征向量的计算得到,从而得到物理系统的某些性质。
通过以上示例,我们可以看到特征值与特征向量在多个领域中的重要性。
对于线性代数的学习,深入理解特征值与特征向量的概念、性质及其应用,对于进一步的学术研究和应用都具有重要的意义。
总结:特征值与特征向量是矩阵理论中重要的概念,它们在多个学科领域中有广泛的应用。
特征值是矩阵的本征性质,特征向量表示在矩阵作用下只发生一个伸缩变换。
特征值和特征向量

特征值和特征向量首先,我们先来了解一下矩阵。
矩阵是由一个矩形的数组组成的,其中的每个元素都可以是实数或复数。
例如,3x3的矩阵可以写为:A=[abc][def][ghi]Av=λv那么v就是矩阵A的特征向量,λ就是矩阵A的特征值。
换句话说,特征向量在矩阵的变换下只发生拉伸或缩放,而不发生旋转或扭曲。
特征值表示特征向量被拉伸或缩放的比例。
det(A - λI) = 0其中,det表示矩阵的行列式,I是单位矩阵。
通过解特征方程,我们可以求得特征值λ。
然后,我们可以将每个特征值代入原方程Av =λv中,从而求得对应的特征向量v。
1.矩阵的对角化:特征值和特征向量可以帮助我们将一个复杂的矩阵对角化,即将矩阵表示为对角矩阵的形式。
对角化后的矩阵更容易进行计算和分析,也更便于推导矩阵的性质。
2.矩阵的相似性:如果一个方阵A和B有相同的特征值和特征向量,那么A和B是相似的。
相似的矩阵在一些数学和物理问题中具有相同的性质和行为,因此,通过特征值和特征向量可以判断矩阵的相似性。
3.矩阵的主成分分析(PCA):主成分分析是一种常用的数据降维方法,它可以通过计算矩阵的特征值和特征向量,将高维数据降低到低维空间中。
通过PCA,我们可以找到数据中最重要的特征和主要方向,从而减少冗余信息。
4.矩阵的奇异值分解(SVD):奇异值分解是矩阵分解的一种重要方法,它可以将一个任意形状的矩阵表示为三个矩阵的乘积。
在奇异值分解中,矩阵的特征值和特征向量扮演了重要的角色。
5.线性变换和矩阵的谱:特征值和特征向量可以帮助我们理解和描述线性变换和矩阵的谱。
谱是矩阵A的特征值的集合,它可以提供关于矩阵的一些性质信息,比如矩阵的正定性、对称性、收敛性等。
总结起来,特征值和特征向量是矩阵理论中非常重要的概念。
它们可以帮助我们理解和描述矩阵的性质和变换,以及在许多实际问题中的应用。
特征值和特征向量的计算和应用对于数学、物理、工程和计算机科学等领域都有重要意义。
特征值与特征向量定义与计算

特征值与特征向量特征值与特征向量的概念及其计算定义1. 设A是数域P上的一个n阶矩阵,l是一个未知量,称为A的特征多项式,记ƒ(l)=| lE-A|,是一个P上的关于l的n次多项式,E是单位矩阵。
ƒ(l)=| lE-A|=l n+a1l n-1+…+a n= 0是一个n次代数方程,称为A的特征方程。
特征方程ƒ(l)=| lE-A|=0的根(如:l0) 称为A的特征根(或特征值)。
n次代数方程在复数域内有且仅有n 个根,而在实数域内不一定有根,因此特征根的多少和有无,不仅与A有关,与数域P 也有关。
以A的特征值l0代入(lE-A)X=q,得方程组(l0E-A)X=q,是一个齐次方程组,称为A的关于l0的特征方程组。
因为|l0E-A|=0,(l0E-A)X=q必存在非零解X(0),X(0) 称为A的属于l0的特征向量。
所有l0的特征向量全体构成了l0的特征向量空间。
一.特征值与特征向量的求法对于矩阵A,由AX=l0X,l0EX=AX,得:[l0E-A]X=q即齐次线性方程组有非零解的充分必要条件是:即说明特征根是特征多项式|l 0E-A| =0的根,由代数基本定理有n个复根l1, l2,…, l n,为A的n个特征根。
当特征根l i (I=1,2,…,n)求出后,(l i E-A)X=q是齐次方程,l i均会使|l i E-A|=0,(l i E-A)X=q必存在非零解,且有无穷个解向量,(l i E-A)X=q 的基础解系以及基础解系的线性组合都是A的特征向量。
例1. 求矩阵的特征值与特征向量。
解:由特征方程解得A有2重特征值l1=l2=-2,有单特征值l3=4对于特征值l1=l2=-2,解方程组(-2E-A)x=q得同解方程组x1-x2+x3=0解为x1=x2-x3 (x2,x3为自由未知量)分别令自由未知量得基础解系所以A的对应于特征值l1=l2=-2的全部特征向量为x=k1x1+k2x2 (k1,k2不全为零)可见,特征值l=-2的特征向量空间是二维的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
称为A的属于这个特征值的特征向量.
2. 求特征值与特征向量的一般步骤 i) 在V中任取一组基 1 , 2 ,, n ,写出 在这组基下
的矩阵A .
ii) 求A的特征多项式 E A 在P上的全部根它们 就是 的全部特征值.
就是 的属于 0的一个
特征向量.
1. 特征多项式的定义
设 A P nn , 是一个文字,矩阵 E A 称为
A的特征矩阵,它的行列式
a a ... a
E A
a
11
12
a
...
21
22
... ...
1n
a 2n
fA( )
a a ... a
iii) 把所求得的特征值逐个代入方程组
( E A)X 0
并求出它的一组基础解系.(它们就是属于这个特征值
的全部线性无关的特征向量在基 1 , 2 ,,下n 的坐标.)
如果特征值 0 对应方程组的基础解系为:
(c11,c12 ,,c1n ),(c21,c22 ,,c2n ),,(cr1,cr 2 ,,crn )
从本节开始,我们主要讨论,如何选择一组适当 的基,使V的某个线性变换在这组基下的矩阵就是 一个对角矩阵?
一、特征值与特征向量
定义:设 是数域P上线性空间V的一个线性变换,
若对于P中的一个数 0 , 存在一个V的非零向量 ,
使得
( ) 0 ,
则称 0为 的一个特征值,称 为 的属于特征值
A
2 2
1 2
2 1
,
求 特征值与特征向量.
解:A的特征多项式
1 2 2 E A 2 1 2 ( 1)2( 5)
2 2 1
故 的特征值为: 1 1(二重), 2 5
把 1 代入齐次方程组 ( E A)X 0, 得
2 2
x 1
x 1
2x 2
2x 2
2x 3
2x 3
0 0
2
x 1
2x 2
2x 3
0
即 x x x 0
1
2
3
它的一个基础解系为:(1,0,1), (0,1,1)
因此,属于1 的两个线性无关的特征向量为
1 1 3, 2 2 3
§1 线性变换的定义 §6 线性变换的值域与核
§2 线性变换的运算 §7 不变子空间
§3 线性变换的矩阵 §8 若当标准形简介
§4 特征值与特征向量 §9 最小多项式
§5 对角矩阵
小结与习题
一、 特征值与特征向量 二、 特征值与特征向量的求法 三、 特征子空间 四、 特征多项式的有关性质
引入
有限维线性空间V中取定一组基后,V的任一线性 变换都可以用矩阵来表示. 为了研究线性变换性质, 希望这个矩阵越简单越好,如对角矩阵.
于是
A
x0n
0
x0n
,
x01
从而
( E 0
A)
x0n
0.
即
x01 x0n
是线性方程组
(0 E
A) X
0 的解,
x01
又
0,
x0n
0,
从而 (0E A)X 0 有非零解. 所以它的系数行列式 0E A 0.
0 的特征向量.
注:① 几何意义:特征向量经线性变换后方向保持
相同 (0 0)或相反 (0 0). 0 0 时 , ( ) 0.
② 若 是 的属于特征值 0的特征向量,则 k (k P,k 0) 也是 的属于0 的特征向量.
(k ) k ( ) k(0 ) 0(k )
1, 2 ,, n 下的坐标记为
x01 x0n
,
则 ( )在基
1, 2 ,, n下的坐标为
x01
A
x0n
,
x01
而0
的坐标是
0
x0n
,
又 ( ) 0
x01 x01
以上分析说明:
若0是 的特征值,则 0E A 0. 反之,若 0 P 满足 0E A 0,
则齐次线性方程组 (0E A)X 0 有非零解.
若
( x01, x02 ,, x0n )是
( E 0
A) X
0
一个非零解,
则向量
x 01 1
x 0n n
由此知,特征向量不是被特征值所唯一确定的, 但是特征值却是被特征向量所唯一确定的,即
若 ( ) 且 ( ) ,则 .
二、特征值与特征向量的求法
分析: 设 dimV n, 1, 2 ,, n 是V的一组基,
线性变换 在这组基下的矩阵为A.
设 0是 的特征值,它的一个特征向量 在基
n1
n2
nn
称为A的特征多项式.
( fA( )是数域P上的一个n次多项式)
注:
① 若矩阵A是线性变换 关于V的一组基的矩阵, 而0是 的一个特征值,则 0是特征多项式 fA( ) 的根,即 f A(0 ) 0.
反之,若0 是A的特征多项式的根,则0就是
的一个特征值. (所以,特征值也称特征根.) ② 矩阵A的特征多项式的根有时也称为A的特征值,
的矩阵都是数量矩阵kE,它的特征多项式是
E kE ( k)n .
故数乘法变换K的特征值只有数k,且
对 V ( 0), 皆有 K ( ) k .
所以,V中任一非零向量皆为数乘变换K的特征向量.
例2.设线性变换 在基 1 , 2 , 3 下的矩阵是
1 2 2
n
则 i cij j , i 1, 2,, r j 1
就是属于这个特征值 0 的全部线性无关的特征向量.
而 k11 k22 krr ,
(其中, k1, k2 ,, kr P 不全为零)
就是 的属于 0 的全部特征向量.
例1.在线性空间V中,数乘变换K在任意一组基下