PI3K和MAPK信号通路调节细胞增殖
细胞生物学控制肌肉细胞增殖和分化的机制研究

细胞生物学控制肌肉细胞增殖和分化的机制研究肌肉细胞是人体中最重要的组织之一。
它们需要不断地生长和分化才能保持正常的功能。
肌肉细胞增殖和分化的机制一直是细胞生物学研究的热点之一。
本文将深入探讨肌肉细胞增殖和分化的调控机制。
一、肌肉细胞增殖的调控机制肌肉细胞增殖是指肌肉细胞数量的增加。
在肌肉组织损伤或重建时,肌肉细胞需要进行增殖。
过去,人们认为成年肌肉细胞失去了增殖能力,因此无法修复受伤的肌肉。
但是,近年来的研究表明,成年肌肉细胞具有一定的增殖潜力。
肌肉细胞增殖的调控机制很复杂,需要多个信号通路的共同调控。
其中,细胞周期调节是肌肉细胞增殖的关键。
细胞周期是指细胞从分裂到再生产两个完全相同的新细胞所经历的一系列阶段。
在细胞周期中,细胞将一次复制其DNA,并将其分配到两个新细胞中。
细胞周期调节基于细胞周期控制位点(CP)的调节。
CP是将一个阶段的细胞周期与另一个阶段所连接的点。
CDK复合物是CP的主要调节机制之一。
CDK复合物可以与不同的Cyclin形成复合物,促进或抑制不同细胞周期阶段的进展。
另一方面,同样的CDK也可以与不同的抑制剂结合,抑制不同阶段的生长。
APC/C是重要的抑制器,它参与细胞周期的调控,可降解Cyclin和CDK的亚基,从而抑制细胞周期的进展。
细胞周期的调控还受到一系列的生长因子和信号通路的调控。
其中,Igf-1、Wnt、Notch、HGF和TNF-α等因子参与了肌肉细胞增殖过程的调控。
信号通路中,PI3K/AKT和MAPK路径是肌肉细胞增殖的重要信号通路。
二、肌肉细胞分化的调控机制肌肉细胞分化是指干细胞向肌肉细胞方向发展的过程。
探讨肌肉细胞分化的调控机制对于肌肉组织再生和修复具有重要意义。
在肌肉细胞分化的过程中,多种因素发挥了重要的调控作用。
在分化的早期,MyoD和其他MRFs(肌肉调节因子)调节了肌肉细胞系的诱导。
MRFs促进Myogenin和其他肌肉细胞生发育相关因子的表达,促进肌肉细胞分化。
细胞生物学信号通路

细胞生物学信号通路,是指细胞对外界信号作出的反应,并将其传递至其他细胞或组织的过程。
以下是一些常见的细胞生物学信号通路:
1.MAPK信号通路:该通路是介导细胞增殖和分化的主要途径。
当细胞受到生长因子或其它外部刺激时,MAPK信号通路会被激活,引发一系列的信号传递事件,最终导致细胞增殖或分化。
2.PI3K信号通路:该通路是介导细胞生长、增殖和存活的重要途径。
当细胞受到生长因子或其它外部刺激时,PI3K信号通路会被激活,产生磷酸化的磷脂酰肌醇,从而触发一系列的信号传递事件,最终导致细胞生长、增殖或存活。
3.Notch信号通路:该通路是介导细胞分化、发育和凋亡的重要途径。
当Notch受体与配体结合时,Notch信号通路会被激活,产生一系列的信号传递事件,最终导致细胞分化、发育或凋亡。
4.Wnt信号通路:该通路是介导细胞增殖和凋亡的重要途径。
当Wnt受体与配体结合时,Wnt信号通路会被激活,产生一系列的信号传递事件,最终导致细胞增殖或凋亡。
5.TGF-β信号通路:该通路是介导细胞分化、凋亡和细胞外基质重塑的重要途径。
当TGF-β受体与配体结合时,TGF-β信号通路会被激活,产生一系列的信号传递事件,最终导致细胞分化、凋亡或细胞外基质重塑。
这些信号通路在细胞生命活动中发挥着至关重要的作用,参与了细胞的多种生理和病理过程。
细胞信号通路与疾病发生的关系

细胞信号通路与疾病发生的关系细胞信号通路是指细胞内分子间的信息传递网络,它负责维持细胞的正常生理功能,并在细胞发生变化时发挥调节作用。
每个细胞都具有一套独特的信号通路网络,这些信号通路网络的正常运转决定了细胞生理和代谢的正常程度,而当通路发生异常时则可能导致疾病的发生。
医学研究表明,细胞信号通路与疾病的关系非常密切。
生命体内的每个疾病都与某些细胞信号通路的异常有关,例如高血压、阿尔茨海默病、糖尿病等等。
下面将分别道来生命中的几个细胞通路异常与实际疾病之间的联系。
一、MAPK信号通路MAPK信号通路是细胞内最早被发现的信号传递途径之一,它负责细胞的增殖、分化、凋亡和炎症等生理活动。
当该通路异常时,它会导致许多疾病的发生。
其中比较突出的有癌症和炎症性疾病。
研究发现,当MAPK信号通路突变时,它会刺激细胞的增殖和分化,导致癌症的发生。
同时,异常的MAPK信号通路还会刺激细胞产生更多的炎性细胞,导致炎症性疾病的发生。
例如风湿性关节炎和炎症性肠病等。
二、PI3K信号通路PI3K信号通路是细胞内第二大被发现的信号传递途径,它负责调节细胞的增殖、存活和代谢。
当PI3K信号通路异常时,它会导致诸如癌症、心血管疾病和肥胖症等疾病的发生。
乳腺癌和卵巢癌等一些癌症都与PI3K信号通路异常有关。
例如,研究发现可以通过特定的基因突变活化PI3K信号通路,导致肿瘤细胞产生更加积极地生长和扩散。
此外,PI3K信号通路的活性异常也会导致心脏和其他重要器官的生长和扩张出现问题,从而引发心血管疾病的发生。
三、Wnt信号通路Wnt信号通路是一种与细胞增殖、发育和干细胞命运控制有关的信号传递系统。
当Wnt信号通路异常时,则可能导致癌症、骨质疏松和其他疾病的发生。
研究表明,当Wnt信号通路激活时,它会刺激携带该信号的细胞增殖和分化,导致癌细胞的生长和扩散。
同时,Wnt信号通路的异常还与骨质疏松等疾病的发生有关,这是由于Wnt信号通路的活性异常会导致骨质疏松细胞的功能发生变化,引发骨质疏松症状。
肺癌发展中的细胞增殖调控机制

肺癌发展中的细胞增殖调控机制在肺癌发展中的细胞增殖调控机制中,细胞增殖的异常是导致癌症形成和进展的主要因素之一。
细胞增殖调控机制的紊乱会导致肺癌细胞无限制地分裂和增殖,从而形成肿瘤。
本文将探讨肺癌发展中的细胞增殖调控机制,并介绍相关的研究进展。
一、细胞增殖调控机制的基本原理细胞增殖是细胞周期相关的过程,包括细胞周期的调控和细胞增殖信号的传导。
正常情况下,细胞增殖调控机制能够维持细胞数量的平衡,但在肺癌中,这种平衡被破坏,导致细胞无限制地增殖。
细胞周期的调控主要是通过细胞周期蛋白依赖性激酶(CDK)与细胞周期蛋白(cyclin)相互作用而实现的。
在细胞周期不同的阶段,不同的CDK和cyclin被活化或抑制,从而驱动细胞从一个阶段向下一个阶段的转变。
细胞增殖信号的传导则通过多条信号通路实现,如MAPK信号通路、PI3K/AKT信号通路等。
这些信号通路在正常情况下能够平衡细胞增殖和凋亡,但在肺癌中常被异常激活,促进肿瘤细胞的增殖。
二、肺癌中细胞增殖调控机制的紊乱1. 基因突变导致的细胞增殖异常肺癌是由多个基因异常累积而来的疾病,其中一些基因突变会导致细胞增殖调控机制的紊乱。
例如,肺癌中常见的EGFR基因突变会导致细胞增殖信号通路的异常激活,从而促进肿瘤细胞的增殖。
另外,TP53基因的突变也会导致细胞周期的紊乱,使得细胞无法正确进行DNA修复和凋亡,从而推动肺癌的发展。
2. 激素和生长因子的异常调节肺癌细胞中的受体表达异常和异常分泌的激素和生长因子会干扰细胞增殖调控机制。
例如,肺癌中雌激素受体的异常表达会促进肿瘤细胞的增殖,从而加速肿瘤的发展。
此外,EGF和PDGF等生长因子的异常激活也会导致细胞增殖信号通路的异常,进而促进肺癌的发展。
三、细胞增殖调控机制在肺癌治疗中的应用细胞增殖调控机制的异常在肺癌的治疗中提供了一些重要的靶点。
针对这些靶点的药物能够干扰细胞增殖调控机制,从而阻断肿瘤细胞的增殖。
例如,EGFR抑制剂和CDK抑制剂等药物被广泛应用于肺癌的治疗中,能够干扰异常的细胞增殖信号通路,从而抑制肿瘤细胞的增殖。
信号通路关键蛋白质分子

信号通路关键蛋白质分子信号通路是一系列相互作用的生化反应,用于传递细胞内外的信息。
关键蛋白质分子在信号通路中发挥着至关重要的作用,它们调节着信号的传导和细胞的响应。
本文将介绍几种常见的信号通路关键蛋白质分子,包括G蛋白偶联受体、酪氨酸激酶、细胞内信号传导蛋白和转录因子。
G蛋白偶联受体是一类广泛存在于生物体内的膜受体,它们通过与G蛋白结合,介导细胞对外界信号的感知和响应。
G蛋白偶联受体分为三类:Gs、Gi和Gq。
Gs蛋白激活腺苷酸环化酶,产生第二信使cAMP,进而激活蛋白激酶A,调节细胞内的代谢和信号传导。
Gi 蛋白抑制腺苷酸环化酶活性,降低cAMP水平,起到负调节的作用。
Gq蛋白则激活磷脂酶C,产生第二信使二酰甘油和肌醇三磷酸,参与细胞内信号传导。
酪氨酸激酶是一类重要的信号传导蛋白,它们通过磷酸化反应调节多种细胞过程。
酪氨酸激酶分为受体型和非受体型。
受体型酪氨酸激酶包括表皮生长因子受体(EGFR)、血小板源性生长因子受体(PDGFR)和肿瘤坏死因子受体(TNFR),它们在细胞增殖、分化和存活等过程中发挥重要作用。
非受体型酪氨酸激酶主要包括SRC 家族激酶和JAK家族激酶,它们参与免疫应答、细胞凋亡和细胞迁移等生物学过程。
细胞内信号传导蛋白是信号通路中的另一类关键分子。
它们包括蛋白激酶C(PKC)、丝裂原激活蛋白激酶(MAPK)和磷脂酰肌醇3-激酶(PI3K)等。
PKC是一类丝氨酸/苏氨酸激酶,参与细胞增殖和分化等过程。
MAPK是一类丝氨酸/苏氨酸激酶,它们通过磷酸化反应调节细胞的生长、分化和凋亡等。
PI3K是一类磷脂酰肌醇激酶,它参与细胞的增殖、存活和迁移等过程。
转录因子是一类能够结合到DNA上调节基因转录的蛋白质。
它们在信号通路中起着重要的调节作用。
转录因子包括核转录因子(NF-κB)、激活蛋白-1(AP-1)和CREB等。
NF-κB参与细胞的免疫应答和炎症反应等过程。
AP-1是由c-Jun和c-Fos等蛋白质组成的转录因子复合物,参与细胞的增殖和凋亡等过程。
细胞增殖信号通路调控机理

细胞增殖信号通路调控机理细胞增殖是生物体维持生命所必需的过程之一,人体在成长、修复、繁殖和癌症等多个方面均需要细胞增殖。
细胞增殖不仅仅涉及到称为“阀门”的基因的开关,还需要增殖信号通路的精准调控。
细胞增殖信号通路调控机理是一个重要的研究领域,在医学上具有广泛的应用前景。
1.细胞增殖信号通路的基本架构细胞增殖信号通路是一个信号转导网格,由许多元件组成。
当外来信号或细胞自身环境的信号引发细胞内的分子反应时,就会产生一系列级联反应,从而引起细胞核内的基因表达变化,最终导致细胞增殖。
其中较为典型的细胞增殖信号通路包括:MAPK信号通路、PI3K-Akt信号通路和Wnt/beta-catenin信号通路。
MAPK信号通路是由ERK、JNK和p38组成的,这些酶是在细胞外信号激活后,经过磷酸化而激活的。
PI3K-Akt信号通路是一条反应细胞的营养水平的通路,主要是指抑制自噬和促进增殖之间的平衡调节。
Wnt/beta-catenin信号通路是关键的调节发育和细胞增殖的信号通路之一。
2.蛋白激酶与细胞增殖信号通路蛋白激酶是组成细胞增殖信号通路的基本分子,在细胞内发挥重要作用。
除了MAPK并不是一类特殊的酶之外,蛋白激酶的分类非常多。
在细胞增殖信号通路中主要涉及到的激酶包括:ERK1/2、JNK、p38MAPK、AKT、mTOR、EGFR、PI3K等。
3.信号转导通路的调控细胞增殖信号通路完整的调控网络是由多个分子的相互作用而构成的。
细胞环境的变化会导致信号转导通路的扰动,进而影响到分子通路的活动。
细胞增殖信号通路的调控可以分为两种类型:内在调控和外在调控。
内在调控主要涉及到细胞分子自身的反应过程,包括蛋白酶的磷酸化、内质网的应答、RNA后期修饰和基因表达的调控等。
而外在调控则是对细胞外的刺激做出反应,从而影响信号转导通路的活动。
4.细胞增殖信号通路与疾病细胞增殖信号通路在人体生理、病理以及临床诊断和治疗中都扮演着重要的角色。
水杨酸反应名词解释药理学

水杨酸反应名词解释药理学
水杨酸反应是指在生物体内,当肽激素、荷尔蒙或其他生物活性分子通过受体向细胞层传递信号时,也就是受体酪氨酸激酶诱导下的反应。
它是一种常见的信号传导机制,由于其在多种疾病中扮演重要的作用,因而在药理学中占有重要的地位。
水杨酸反应是一种传统的放大机制,可以将有限的信号放大以便进一步传播。
解码过程通常发生在细胞核内,以改变基因表达和调控细胞凋亡、炎症反应和细胞分化等各种过程。
水杨酸反应包括信号通路激活、分子活化和细胞功能调节三大部分。
信号通路激活是水杨酸反应开始的第一步。
受体酪氨酸激酶激发细胞内三个主要信号通路:MAPK、PLCγ、PI3K/Akt和JAK/STAT信号通路。
MAPK信号通路通常调控细胞的增殖、分化、细胞周期和凋亡;PLCγ信号通路抑制逆转录病毒;PI3K/Akt信号通路参与蛋白质磷酸化,并可能调控细胞周期和凋亡;JAK/STAT信号通路主要作用于血管形成、凋亡、炎症反应和细胞分化等。
分子活化则是水杨酸反应的第二步,涉及MAPKs(如ERK、p38和JNK)的激活,以及Raf、MEK和JAK/STAT信号通路中的蛋白质互作反应,最后导致细胞功能的调节。
最后,水杨酸反应可调节细胞的功能,它的主要调节机制涉及活性氧物质的变化,以及基因组的调控、细胞周期的改变以及细胞内蛋白质合成等。
这些改变都可以影响细胞的生长调节、免疫反应、代谢变化和细胞凋亡等多种细胞活性。
因此,在药理学中,水杨酸反应可用于调节药物的作用,从而实现在疾病的治疗或预防方面的应用,是药理学研究中的重要方面。
肿瘤的细胞增殖信号通路

肿瘤的细胞增殖信号通路肿瘤是一种导致细胞无限制增殖的疾病,其发展涉及复杂的信号通路调控网络。
了解肿瘤细胞增殖信号通路的机制,可以帮助我们更好地理解肿瘤的发生与发展,并为肿瘤治疗提供新的策略。
本文将重点介绍几个与肿瘤细胞增殖密切相关的信号通路。
一、PI3K-Akt信号通路PI3K-Akt信号通路是一条重要的细胞增殖信号通路,它在多种肿瘤中起到关键作用。
该通路的激活可以促进细胞增殖、增加细胞生存能力,同时抑制细胞凋亡过程。
在正常细胞中,该通路会受到严格的调控,以防止不受控制的细胞增殖。
而在肿瘤细胞中,PI3K-Akt信号通路常常被异常激活,导致细胞无限制增殖。
二、Ras-MAPK信号通路Ras-MAPK信号通路是另一个与肿瘤细胞增殖密切相关的信号通路。
该通路的激活可以促进细胞增殖、增强细胞迁移和侵袭能力。
在正常细胞中,该通路通常处于关闭状态,只有在特定刺激下才会被激活。
然而,在某些肿瘤中,Ras基因突变或过度表达会导致该通路的异常激活,从而推动肿瘤细胞的增殖。
三、Wnt/β-catenin信号通路Wnt/β-catenin信号通路在胚胎发育和成体组织的维持中发挥着重要作用。
研究表明,该通路在多种肿瘤中也起到关键作用。
在正常细胞中,Wnt信号通路处于关闭状态。
然而,在某些肿瘤中,该通路的异常激活导致β-catenin的稳定和核定位增加,从而促进肿瘤细胞的增殖和侵袭。
四、Notch信号通路Notch信号通路是一种高度保守的跨膜受体信号通路,在细胞分化和增殖中发挥着重要作用。
该通路的激活可以启动多种细胞命运的决定,包括细胞增殖和凋亡。
在某些肿瘤中,Notch信号通路的异常激活可以导致细胞增殖能力的提高,进而促进肿瘤的发展。
总结:肿瘤的细胞增殖信号通路涉及多个复杂的信号通路网络,其中包括PI3K-Akt、Ras-MAPK、Wnt/β-catenin和Notch等信号通路。
这些信号通路的异常激活可以导致肿瘤细胞的不受控制增殖,推动肿瘤的发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
OPENORIGINAL ARTICLESelective CREB-dependent cyclin expression mediated by the PI3K and MAPK pathways supports glioma cell proliferationP Daniel 1,G Filiz 1,DV Brown 1,F Hollande 1,M Gonzales 1,2,G D’Abaco 3,N Papalexis 4,WA Phillips 5,6,J Malaterre 6,7,RG Ramsay 6,7and T Mantamadiotis 1,4The cyclic-AMP response element binding (CREB)protein has been shown to have a pivotal role in cell survival and cell proliferation.Transgenic rodent models have revealed a role for CREB in higher-order brain functions,such as memory and drug addiction behaviors.CREB overexpression in transgenic animals imparts oncogenic properties on cells in various tissues,and aberrant CREB expression is associated with tumours.It is the central position of CREB,downstream from key developmental and growthsignalling pathways,which gives CREB this ability to influence a spectrum of cellular activities,such as cell survival,growth and differentiation,in both normal and cancer cells.We show that CREB is highly expressed and constitutively activated in patient glioma tissue and that this activation closely correlates with tumour grade.The mechanism by which CREB regulates glioblastoma (GBM)tumour cell proliferation involves activities downstream from both the mitogen-activated protein kinase andphosphoinositide 3-kinase (PI3K)pathways that then modulate the expression of three key cell cycle factors,cyclin B,D and proliferating cell nuclear antigen (PCNA).Cyclin D1is highly CREB-dependent,whereas cyclin B1and PCNA are co-regulated by both CREB-dependent and -independent mechanisms.The precise regulatory network involved appears to differ depending on the tumour-suppressor phosphatase and tensin homolog status of the GBM cells,which in turn allows CREB to regulate the activity of the PI3K itself.Given that CREB sits at the hub of key cancer cell signalling pathways,understanding the role of glioma-specific CREB function may lead to improved novel combinatorial anti-tumour therapies,which can complement existing PI3K-specific drugs undergoing early phase clinical trials.Oncogenesis (2014)3,e108;doi:10.1038/oncsis.2014.21;published online 30June 2014INTRODUCTIONPatients diagnosed with malignant glioblastoma (GBM)show a median survival of 14months;a statistic largely unchanged over the past decades.For gliomas,the only drug used as part of the standard therapy is the DNA alkylating/methylating agent temozolomide,which has led to an improvement in median overall survival,ranging between 0and 7months,depending on the methylation status of the patient’s DNA repair gene,MGMT.1Attempts at targeting specific factors in GBM have so far been unsuccessful,with such attempts exemplified by clinical trials conducted recently:the use of the promising angiogenesis inhibitor bevacizumab (Avastin)2or a combination of bevacizumab and a phosphoinositide 3-kinase (PI3K)pathway inhibitor provided no benefit to patients.3Therefore there is a need to develop better approaches for treating gliomas to improve patient survival.To progress the discovery and testing of novel drugs and combinations of drugs,the understanding of the molecular genetic mechanisms and factors driving GBM development,growth and drug resistance must be clarified.Among the factors and pathways implicated in glioma development and growth,the kinases PI3K and mitogen-activated protein kinase (MAPK)are among the most studied.Highlighting the critical role of these kinases in cancer,480%of GBM patients harbour alterations such as epidermal growth factorreceptor (EGFR)amplification,EGFRvIII-activating mutation and/or downstream PIK3CA-activating mutations or phosphatase and tensin homolog (PTEN)deletions,4contributing to the hyperactivation of the downstream effectors such as extracellular signal–regulated kinase and AKT,key drivers of pathogenesis in GBM.5Although aspects of the immediate upstream and downstream components of these pathways are relatively well understood,the feedback loops and nuclear target networks controlling these pathways in GBM biology are not as well defined.As many cancer signalling pathways converge on nuclear transcription factors,which then orchestrate the expression of a tumour-promoting transcriptome,targeting these transcription factors in combination with upstream-activating factors may be an attractive approach.Indeed,this has come to the fore in terms of emerging anti-tumour strategies 6–9In cancer cells,one of the transcription factors that sit at the hub of tumour cell signalling pathways is the cyclic-AMP response element binding (CREB)protein,a serine/threonine kinase-regulated transcription factor in which phosphorylation of CREB in the N-terminal kinase-inducible domain recruits transcriptional co-activators such as CREB-binding protein and transducers of regulated CREB activity to activate CREB target gene transcription.10,11CREB has been implicated in the growth and progression of multiple cancers,including1Department of Pathology,The University of Melbourne,Parkville,Victoria,Australia;2Department of Anatomical Pathology,The Royal Melbourne Hospital,Parkville,Victoria,Australia;3NICTA Victorian Research Laboratories,Centre for Neural Engineering,The University of Melbourne,Carlton,Australia;4Laboratory of Physiology,Faculty of Medicine,University of Patras,Patras,Greece;5Surgical Oncology Research Laboratory,Peter MacCullum Cancer Centre,Melbourne,Victoria,Australia;6Sir Peter MacCallum Department of Oncology,The University of Melbourne,Parkville,Victoria,Australia and 7Differentiation and Transcription Laboratory,Peter MacCallum Cancer Centre,Melbourne,Victoria,Australia.Correspondence:Dr T Mantamadiotis,Department of Pathology,Faculty of Medicine,Dentistry and Health Sciences,The University of Melbourne,Parkville,Victoria 3010,Australia.E-mail:theom@.auReceived 3February 2014;revised 29April 2014;accepted 15May 2014Citation:Oncogenesis (2014)3,e108;doi:10.1038/oncsis.2014.21&2014Macmillan Publishers Limited All rights reserved 2157-9024//oncsisleukemia,12,13colorectal cancer 14and breast cancer.15CREB lies at the hub of multiple oncogenic signalling pathways initiated by ligand-growth factor receptor interactions such as the platelet-derived growth factor receptor and EGFR receptor tyrosine kinases and is activated by numerous downstream kinase pathways,including PI3K and MAPK,and deactivated by tumour suppressors,including PTEN.In melanoma cells harbouring BRAF(V600E)mutations,CREB is a key factor involved in MAPK pathway-mediated drug resistance 16In GBM,CREB function appears to regulate growth of tumour cells via transcriptional control of miRNA-23a 17and Nf-1.18Previous work has shown that loss of CREB function during brain development leads to neuronal death 19,20and that CREB is required for efficient neuronal stem and progenitor cell proliferation 21,22Based on these findings,we hypothesized that CREB activation is a critical step in gliomagenesis and that CREB function sits downstream of key cancer signalling pathways.We show that CREB expression and activation correlates with glioma grade and that activation occurs via both the PI3K and MAPK pathways and that CREB promotes glioma cell proliferation.Furthermore,we show that the mechanism by which CREB promotes glioma cell proliferation includes the regulation of key cell cycle factors cyclin B1,D1and proliferating cell nuclear antigen (PCNA).RESULTSCREB is constitutively activated in human GBM cells lines and human brain tumours exhibit grade-dependent pCREB expression Although CREB is expressed throughout the normal brain during all stages of life,constitutively phosphorylated CREB (pCREB)is progressively restricted to neurogenic zones.It is within these zones that neural stem/progenitor cell (NSPC)populations reside and CREB gene/expression disruption studies in mice and zebrafish show that NSPC proliferation and survival depends on CREB function.21,22Based on data showing that CREB has oncogenic roles in the hemopoietic system 12and other tissues 23and as the CREB functions required by NSPCs may be important in GBM biology,we explored CREB expression,activation and function in brain tumour tissue and cells.Assessment of CREB expression and activation in human GBM tumour cell lines using CREB and pCREB antibodies revealed that GBM tumour lines showed robust CREB and pCREB expression.Non-tumour brain tissue exhibited weaker total CREB expression and undetectable levels of pCREB (Figure 1a).Using whole GBM surgical tumour specimens prepared from formalin-fixed,paraffin-embedded tissue,we examined the mor-phological landscape of a further 15patient specimens diagnosed with grade IV GBM.GBM tumour morphologies associated with pCREB expression are shown in Figures 1b-i–vi.pCREB expression was evident in most tumour cells examined with a clustering of strong pCREB expression in highly vascularized tumour regions (Figure 1b-i)and in regions with strong nestin expression (Figure 1b-vi).pCREB-positive cell density and expression was high in hypercellular pseudopalisading regions adjacent to necrotic regions,where migrating proliferating tumour cells are seen (Figure 1b-iii,arrows).Of note,tumour morphologies corresponding to GBM regions associated with less malignant characteristics exhibited weaker pCREB expression.Giant cells in GBM showed relatively weaker pCREB expression (Figure 1b-ii,arrows),and cells in tumour regions with oligodendroglial features,characterized by the so-called ‘chicken wire’or ‘fried egg’morphology showed the weakest pCREB expression (Figures 1b-iv and -v,arrows).Interrogation of glioma tissue microarray specimens harbouring 40patient glioma tissue cores (3mm diameter)in duplicate showed that while ‘normal’non-tumour and ‘normal tissue adjacent to tumour’showed little-to-no CREB activation.By contrast,tumour tissue exhibited robust grade-dependent levels of pCREB expression (Figure 1c).Grade II tumours showed the lowest levels of pCREB,and WHO grade IV tissues exhibited the strongest pCREB positivity.Both pCREB intensity and the number of cells expressing pCREB correlated with tumour grade,where grade IV GBM showed the most intense and highest density of pCREB-positive ing a ‘þ’scale where ‘þ’is just detectable staining/1%to o 5%of cell/field positive and ‘þþþþþ’is strong dark staining/almost 100%cells/field positive,grade II tumours showed between zero and ‘þþ’;grade III tumours showed between ‘þ’and ‘þþþ’and grade IV/GBM showed between ‘þþþ’and ‘þþþþþ’.Three oligodendroglioma specimens showed ‘þ’,‘þ’and ‘þþ’,while all ‘adjacent to tumour’and ‘normal’brain tissue showed zero staining.Using the GBM cell line T98G to examine CREB activation,we show that pCREB coincides with cells in cycle.Specifically,pCREB is present in cells undergoing S-phase of the cell cycle as shown by co-labelling with PCNA and newly divided cells labelled withtheFigure 1.CREB is hyperactivated in glioma cell lines and tissue.(a )Cells from a range of human glioma cell lines were lysed and analysed from CREB expression and activation.All GBM cell lines tested showed an abundance of CREB protein,which was phosphorylated/activated.Non -tumour mouse brain tissue shows expression of CREB but no detectable pCREB.(b )Immunohisto-chemical analysis of human GBM tissue specimens show differential pCREB expression.(i)pCREB-positive tumour cells surround a tumour blood vessel;(ii)Giant cells in GBM show moderate-to-strong pCREB labelling;(iii)pseudopalidaing areas (arrows)in GBM show dense pCREB-positive tumour cells;(iv)and (v)two different patient tumours featuring oligodendroglial features show weak pCREB expression (arrows indicate oligodendroglial tumour cells);and (vi)double-labelling immunohistochemistry showed dense pCREB-positive cells (brown)surrounding foci with strong nestin expression (blue).(c )Brain tumour tissue microarray (US Biomax)with pCREB immunostaining.Top image shows the complete array with tumour grade layout indicated and cores magnified in the lower panel.CREB-mediated cell cycle factor expression in GBM cellsP Daniel et al2Oncogenesis (2014),1–10&2014Macmillan Publishers Limitednucleotide analogue bromodeoxyuridine (BrdU;Figure 2).In contrast,cells labelled with the M-phase marker phospho-histone 3(pH3)demonstrated poor colocalization to pCREB-positive cells.PI3K and MAPK but not protein kinase A (PKA)signalling pathways modulate CREB activity in GBM cellsMany signalling pathways relevant to GBM converge onto CREB,suggesting that constitutive CREB activation as observed in GBM is the result of cooperation between multiple upstream factors.To determine which pathways activate CREB,we evaluated cells grown in stimulatory and non-stimulatory conditions for differ-ences in kinase activation.Several serine/threonine kinases that are known to phosphorylate CREB at Serine133were investigated.Analysis of cell lines T98G,LN18and U118demonstrated activation of CREB,AKT and MAPK upon serum stimulation.By contrast,we did not observe activation of PKA,an activator of CREB in other cell types (Figure 3a),showing that there is a selective use of upstream components regulating CREB activity.To link the specificity of AKT and MAPK activation with CREB activation,the PI3K pathway inhibitor LY294002and the MAPK pathway inhibitor U0126were used on T98G and U118(Figures 3b and c).These cell lines were chosen for further analysis for two reasons.First,they showed the greatest CREB-dependent change in proliferation (Figures 4b and c),and second,these cell lines differ in the tumour-suppressor PTEN status,where T98G has intact PTEN function and U118is PTEN deficient.One of the PTEN’s major functions is to act as the major phosphatase that inhibits the activation of the PI3K pathway 24Significant variability was seen between the cell lines tested with respect to the contribution of either the PI3K or MAPK pathways on CREB activation.In U118cells,inhibition of the PI3K pathway resulted in no change in CREB activation,while inhibition of the MAPK pathway resulted in knockdown of CREB activation to basal ‘serum-deprived’levels,suggesting that MAPK signalling is the predominant CREB activation pathway in U118cells (Figures 3c and e).By contrast,inhibition of either or both the PI3K or MAPK pathways in T98G cells did not result in significant changes in CREB activation (Figures 3b and d),highlighting the diversity and complex interdependence between signalling pathways involved in CREB activation in GBM cells.As a further and independent measure of the contribution of the PI3K pathway to CREB activation,we used a mutant NSPC that has a constitutively activated PI3K pathway,due to the combined conditional mutation of the Pik3ca gene,which encodes for the major catalytic p110alpha subunit of PI3K,and has a conditional loss of tumour-suppressor PTEN.These NSPCs were derived from a conditional mutant mouse shown to develop tumours in various tissues tested.25–27CREB activation (pCREB)was significantly elevated along with AKT activation (pAKT),compared with parental NSPCs from the same mouse in which the PI3K pathway mutations were not activated (Figure 3f).CREB function contributes to GBM cell proliferationAs CREB is strongly associated with proliferative zones within the normal adult brain,we examined the effect of CREB knockdown on GBM cell proliferation.We tested siRNA-mediated CREB knockdown in five human GBM cell lines (T98G,U118,U373,ANGM-CSS,U87),which represent cells with an array of GBM-associated genetic alterations.The combined use of three CREB siRNAs targeting different mRNA regions allowed robust CREB expression knockdown (490%)over at least 120h (Figure 4a)in T98G cells.All five cell lines tested showed a reduction in cell proliferation (n ¼1,not shown).Further experiments were performed with selected cell lines as indicated.The greatest reduction in proliferation was seen in cell lines T98G and U118,with a 58%and 52%reduction compared with scrambled siRNA-transfected controls after 120h (Figures 4b and c).As wehaveFigure 2.CREB is activated in dividing cells.T98G cells were analysed for the colocalization of pCREB(Ser 133)with markers of cell proliferation:(a )PCNA,(b )phospho -histone (pH3),nd (c )BrdU.CREB-mediated cell cycle factor expression in GBM cells P Daniel et al3&2014Macmillan Publishers LimitedOncogenesis (2014),1–10Figure 3.The PI3K and MAPK -dependent signalling pathways but not the PKA pathway activate nuclear CREB in glioma cells.(a )GBM cell lines T98G,LN18and U118were serum starved for 24h then exposed to serum and protein lysate immunoblotted for the indicated antibodies.(b ,c )GBM cell lines T98G and U118were pretreated with a PI3K inhibitor LY294002,a MAPK inhibitor U0126or both inhibitors,and then exposed to serum,protein lysate collected after 4h and analysed for the presence of the indicated antibodies (d ,e )Quantification of the effects of inhibitor combinations on pCREB levels in T98G and U118GBM cells.*P o 0.05,**P o 0.005.(f )Western blotting showing the level of pCREB and pAKT in mouse NSPCs grown as neurospheres,with an activated Pik3ca H1047R mutation and PTEN deletion (M)or parental NSPCs with ‘wild-type’Pik3ca and PTEN (C).All western blottings were performed at least three times,and where applicable,total CREB,AKT and MAPK were imaged,then membranes were stripped and reprobed for pCREB,pAKT and pMAPKdetection.Figure 4.CREB is required for efficient human glioma cell line proliferation.(a )T98G cells were transfected with either CREB1-specific siRNA (siCREB)or scramble siRNA and then lysate analysed by western blotting for efficiency of CREB knockdown.*P ¼0.05,**P ¼0.005,***P ¼0.0005.(b ,c )Scrambled or siCREB was transfected into GBM cell lines T98G and U118,and proliferation was analysed every 24h using an MTT assay.(d ,e )Scrambled or siCREB was transfected into GBM cell lines T98G and U118,and apoptosis was determined by FACs determination of AnnexinV uptake.CREB-mediated cell cycle factor expression in GBM cellsP Daniel et al4Oncogenesis (2014),1–10&2014Macmillan Publishers Limitedpreviously shown that loss of CREB function in zebrafish and mouse brain as well as mouse neural NSPCs leads to compromized cell survival,we tested whether this was the case in GBM cells.Notably,cell survival was not affected by CREB knockdown using two different assay systems,measuring lactate dehydrogenase released from dead cells and measuring early apoptosis by measuring appearance and accumulation of Annexin V (Figures 4d and e)following CREB knockdown.Thus reduced cell numbers can be attributed to reduced proliferation.CREB knockdown leads to aberrant GBM cell cycle kinetics due to inhibition of cell cycle factor expressionTo determine the mechanism by which CREB regulates GBM cell proliferation,cell cycle parameters were measured using DNA content by flow cytometry in T98G and U118cells,which were the cell lines showing the greatest CREB-dependent decrease in proliferation.CREB knockdown increased the proportion of cells in G0/G1phase in both cell lines tested (Figures 5a and b).siCREB T98G cells also showed significantly reduced proportions in cell cycle phase distribution in S-and G2/M phases compared with control cells,whereas siCREB U118cells exhibited increased G0/G1and fewer G2/M phase cells only.To explore the molecular basis underlying disruption of the cell cycle,we measured the expression of cell cycle/proliferation factors previously reported to be transcriptionally regulated by CREB,including cyclins B1,D128and PCNA.14,29Protein expression of cyclins B1,D1and PCNA was assessed in T98G and U118cells in CREB knockdown or scrambled control siRNA-treated GBM cell lines (Figures 5c and d).Cells were serum deprived for 24h before the addition of serum to synchronize cell cycle activation,and cyclin and PCNA protein levels were determined every 12h,over 48h.The dynamics of expression seenwas consistent with the reported cyclin and PCNA expression profiles for mammalian cells,where PCNA and cyclin D1are consistently expressed throughout the cell cycle while cyclin B1expression peaks at G2/M.30Upon treatment with serum (triggering cell cycle entry),we observed inhibition of protein expression of cyclin B1,cyclin D1and PCNA in both T98G and U118cell lines as early as 12h (not shown)with maximal inhibition reached at 24h,compared with no-serum cells (Figures 5c and d).T98G cells showed a consistent and almost complete block in cyclin D1,cyclin B1and PCNA expression over 48h in CREB knockdown cells,in contrast to U118cells,which exhibited a more modest inhibition of cyclin D1,over 48h.In U118cells,cylin B1protein expression was maximally inhibited at 24h,but little effect was seen in PCNA expression (Figure 5d).Moreover,in U118cells cyclin B1inhibition was not sustained,with expression approaching control levels beyond 24h.Given that cyclin B1,D1and PCNA harbour cAMP-resonsive elements (CREB-binding sequences)in their promoters (see Supplementary Data),we tested whether CREB exerted its influence on these target genes directly;we performed reverse transcriptase–PCR (RT–PCR)at 24h following siCREB treatment to measure mRNA levels of cyclin B1,D1and PCNA.CREB knockdown robustly inhibited cyclin D1mRNA expression in both T98G and U118cells,while cyclin B1mRNA expression was significantly reduced in T98G cells only.Surprisingly,PCNA mRNA expression was unaf-fected by CREB knockdown in both cell lines (Figures 5e and f),implying that CREB exerts its affect on PCNA protein expression indirectly.The transcriptional influence CREB exerts in the expres-sion of these genes reflects the context of the cAMP-resonsive elements in their respective promoters (see Supplementary Data),with cyclin D1showing the best context with a full (8-base pair consensus)cAMP-resonsive element positioned closest to the transcription startsite.Figure 5.Knockdown of CREB alters human GBM cell cycle kinetics through regulation of cyclin B1,cyclin D1and PCNA.(a ,b )Synchronized GBM cell lines T98G and U118were treated with either siCREB or scramble control siRNA and then stimulated with serum for 24h before being analysed for cell cycle proportions using DNA-content analysis.(c ,d )Synchronized GBM cell lines T98G and U118were treated with either siCREB or scramble control siRNA,stimulated with serum and harvested every 12h for analysis for cyclin B1,cyclin D1and PCNA expression.(e ,f )Synchronized GBM cell lines T98G and U118were treated with either siCREB or scrambled control siRNA and then stimulated with serum for 24h before harvesting and analysis using qRT–PCR for CCNB1,CCND1and PCNA mRNA expression.***P o 0.0005,**P o 0.005,*P o 0.05.All western blottings were performed at least three times,and blottings for total CREB assay were imaged,then membranes were stripped and reprobed for pCREB detection.CREB-mediated cell cycle factor expression in GBM cells P Daniel et al5&2014Macmillan Publishers LimitedOncogenesis (2014),1–10Selective CREB regulation of cell cycle factors by canonical and non-canonical interations with the PI3K pathwayTo investigate the mechanism of the differential regulation of cyclin D1,cyclin B1and PCNA by CREB in T98G compared with U118cells,we looked at whether CREB knockdown affected upstream signalling components,given that previous studies have shown a link between CREB and upstream signalling components of the PI3K and MAPK pathways,such as insulin growth factor receptor (IGFR)and insulin receptor substrate-1/2(IRS-1/2).31,32Crucially,T98G and U118differ in PTEN status (T98G PTEN þandU118PTEN À),which may account for the differential CREB-mediated regulation of cell cycle factors via interaction with the MAPK and PI3K pathways.33,34Treatment of T98G cells with siCREB resulted in an almost complete block of AKT activation,which was not rescued by the addition of serum (Figure 6a).In comparison,CREB knockdown in U118cells showed reduced AKT activation only in serum-free conditions (Figure 6b).Upon the addition of serum,AKT activation in U118cells increased to levels identical to control cells (Figure 6b).To determine whether the cell-specific regulation of cyclin B1and PCNA by CREB could be due to effects on AKT activation and/or PTEN status,we used the PI3K inhibitor LY294002in conjuction with siCREB in U118cells (Figure 6c).This experiment confirmed the dependence of cyclin D1expression on CREB,with siCREB treatment alone showing almost complete attenuation of cyclin D1expression.Furthermore,the expression of cyclin B1and PCNA were found to be dependent on both CREB and PI3K signalling.Neither siCREB nor the PI3K inhibitor LY294002alone could block cyclin B1or PCNA expression in U118cells.DISCUSSIONCREB-dependent brain functions have been extensively explored with most previous studies focussed on neurological functions ranging from learning and memory,35opiate withdrawal 36to feeding behavior.37Other work has shown that CREB is critical for neuronal survival and that CREB disruption in vivo leads to a neurodegenerative phenotype 20and reduction in neural stem cell survival and proliferation 21,22In parallel,a body of evidence has accumulated showing that CREB imparts oncogenic properties on cells outside the central nervous system.23,38We focussed our investigations on defining CREB-dependent mechanisms orchestrating malignant GBM cell proliferation.Analysis of a panel of human GBM cell lines shows that CREB is not only highly expressed but also constitutively hyperactivated (Figure 1a).This is in contrast to non-tumour brain tissue,which show highly regulated and transient activation,dependent on external stimuli.11Cells in adult mouse brain showing robust constitutive phosphorylated CREB expression are enriched in the neurogenic zones,22,39so the constitutive expression of pCREB in GBM tumour cells is consistent with the generally held view that tumour cells exhibit immature stem/progenitor cell-like characteristics.In GBM tissue examined,pCREB was evident in many GBM hallmark morphological features,including near tumour angiogenic regions (Figure 1b-i),peripheral to necrotic foci characterized by pseudopalisading regions (Figure 1b-iii).This is interesting as GBM regions with pseudopalisading features harbour migrating tumour cells adjacent to hypoxic necrotic regions with high levels of pro-angiogenic factors,including hypoxia-inducible factor-1,vascular endothelial growth factor and interleukin-8,which are all CREB target genes.40–42CREB may therefore be intimately involved in regulating the angiogenic tumour niche in GBM.In one GBM tumour examined,strong pCREB-positive cells were clustered in foci exhibiting strong nestin co-labelling (Figure 1b-vi).Nestin,an intermediate filament protein,is highly expressed in immature NSPCs and,similar to pCREB,is associated with brain tumour grade 43–45This suggests that CREB may contribute to immature tumour cell biology by regulating CREB target genes involved in tumour cell growth and suppression of differentiation/promotion of immaturity;this is supported by studies showing that PI3K regulation of CREB is crucial for NSPC function.46Our data also shows that less aggressive GBM tumour subtypes,known to be associated with better survival,express lower levels of activated CREB.Giant cell GBM and oligodendroglial regions in GBM tissue show low to almost no pCREB labelling in most tumour cells (Figures 1b-iv and -v).It may be that pCREB is a biomarker associated with GBM malignancy and may also actively promote malignant properties in the more aggressive types of braincancer.Figure 6.Selective dependence of cyclin expression on CREB is determined by the PI3K pathway and tumour-suppressor PTEN status in glioma cells.(a ,b )T98G and U118cells were treated with either scramble or siCREB for 24h before exposure to serum-free or serum conditions for 12h.Cell lysate was then analysed for markers of PI3K activation.(c )U118cells were treated with either LY294002,siCREB or both,and cell lysate was then immunoblotted for cyclin B1,cyclin D1and PCNA expression changes.All western blottings were performed at least three times,and where applicable,total CREB and AKT were imaged,and then membranes were stripped and reprobed for pCREB and pAKT detection.CREB-mediated cell cycle factor expression in GBM cellsP Daniel et al6Oncogenesis (2014),1–10&2014Macmillan Publishers Limited。