三角形内外角平分线有关命题的证明及应用
三角形角平分线8大结论的证明

三角形角平分线8大结论的证明三角形的角平分线,这个话题一听就有点儿数学范儿对吧?不过别着急,今天我们就轻松聊聊这8个有趣的结论,说不定你会发现,原来三角形的角平分线竟然那么有意思,甚至可以用来解一些生活中的“小难题”呢!行了,不废话,直接进入正题,看看三角形的角平分线到底能带来什么样的神奇“魔力”。
大家应该知道,角平分线就是把三角形的一个角一分为二的那条线。
你要是把三角形的一个角想象成一个蛋糕,这个角平分线就像是把蛋糕均匀切开的刀。
看着简单吧?但是它的性质可不简单哦!你可以想象它就像三角形的“魔法杖”,有很多奇妙的地方。
第一个结论:角平分线把对边分成的两部分,比例跟两条邻边的比例是一样的。
说白了,如果你把角平分线看作一根“弓箭”,它射出的箭就是把对面的边分成的两个小段,它们的长度就像两个有着特殊关系的小伙伴,一起玩耍的时间都不多,比例一样,心照不宣。
具体来说,如果你有一个角,角平分线把对边分成了两段,那这两段的长度,就跟角平分线两边的邻边长度有个固定的比例关系。
怎么样,神奇吧?第二个结论:角平分线定理,真的是生活中的“逆天”法宝。
假设你在做一道几何题,发现角平分线正好把三角形对边分成了两个长度不等的部分,这时候你就可以运用这个定理,迅速求出两段长度的比例了,反正你心里有个定心丸。
别看它简单,这个定理其实给你解题省了不少功夫。
然后,第三个结论来了:如果三角形的角平分线穿过了对边的一点,那你就可以通过这个点找到更多的“线索”。
这就像是破案时发现了新的线索,揭开了谜底的那一刻。
通过这个点的角平分线,可以得出三角形的某些特殊关系,比如说三角形的面积、角度等等,简直就是几何学的小秘密!接着看,第四个结论是:如果三角形的三个角平分线交于一点,这个点就叫做“三角形的内心”。
哦,对了,这个内心叫做“内心点”,意思是说,无论三角形多么古怪,这三条角平分线交汇的地方就能“告诉”你整个三角形的心脏在哪儿。
这也就意味着,三角形的内心是它的“平衡点”,一种几何的“核心”!第五个结论,也是个挺酷的:角平分线可以用来求三角形的面积。
三角形角平分线的三个定理证明

三角形角平分线的三个定理证明今天我们来聊聊三角形的角平分线,不知道大家有没有听过这个名字?别着急,别皱眉头,咱们今天就用轻松的方式聊聊它的三个定理。
嗯,对了,别一听到“定理”就想着这些东西都很难。
其实说白了,就是一些数学小规律,咱们捋顺了,分分钟能掌握!三角形的角平分线,就好比一个人站在三角形的顶点,把顶点的角一分为二,这两部分就叫做“角平分线”。
所以说,角平分线其实就是把角给“平分”了。
就像咱们吃饭的时候,大家都吃的差不多,没谁吃得特别多,也没谁吃得特别少,吃到最后大家都差不多,能吃个七八分饱。
这就是角平分线的第一步,它把角“分得很均匀”。
好啦,咱们先来看看第一个定理——角平分线定理。
这个定理说的是:在一个三角形里,如果你把其中一个角分成两个相等的角,那么角平分线就会把对边分成两段,比例就和另外两个边的长度成正比。
说起来可能有点绕,不过理解一下其实很简单。
比如说你有一个三角形,角A被角平分线分成了两个相等的角,接着角平分线碰到了对边BC,这时候,角平分线把对边BC分成了两段——一段叫做BD,一段叫做DC。
于是,BD和DC的比例就跟AB和AC的比例一样。
所以,简单来说,角平分线把对边分得“恰如其分”,好像是两个好朋友,他们不争不抢,分得刚刚好。
怎么说呢?简直就是“分蛋糕分得不多不少”。
这个定理,其实很直白,理解起来就像你吃一块蛋糕,吃到自己的一块,剩下的也给大家分得差不多,公平又公正。
接下来我们来说第二个定理,角平分线的外角定理。
听着名字可能有点“高大上”,但说白了就是,三角形外面的某些角也能有它的分法。
这里的关键点是,三角形的一条角平分线延伸到外面,它和外面的对边之间有一个特殊的关系。
你看,假如角平分线从角A出发,穿过三角形的外边,这时候,外面这个角的大小恰好等于它与角平分线的内角的加和的一半。
也就是说,它跟内部的角平分线内外的配合得当,像是一对搭档,互相配合,默契十足。
所以,这个定理就像我们常说的“知己知彼,百战不殆”,内外呼应,整体协作,效果好到飞起。
三角形的角平分线定理解析

三角形的角平分线定理解析三角形的角平分线定理是指:三角形内任意一条角的角平分线,都能将该角分成两个相等的角。
这个定理在解决三角形相关问题时非常有用,可以帮助我们推导出一些重要的结论和性质。
接下来,我们将对三角形的角平分线定理进行详细的解析。
一、角平分线的定义在三角形ABC中,假设角A的角平分线与边BC相交于点D,那么我们可以称线段AD为角A的角平分线。
角平分线的作用是将角A 分成两个相等的角BAD和CAD。
二、角平分线定理的几何解析根据角平分线的定义,我们可以得出以下几何结论:1. 任意角的角平分线两端的线段长度相等。
即AD = CD。
证明:作BD与AC的延长线交于点E。
由于△ABD和△CAD中有AD = AD(公共边)、∠BAD = ∠CAD(角平分线的定义)和∠BDA = ∠CDA(共同内角),所以根据ASA(边角边)的性质可以得出△ABD ≌△CAD。
因此,AD = CD。
2. 角平分线将对边分成两个与角平分线所在边等长的线段。
即BD = CD。
证明:由于△ABD和△ACD中有∠BDA = ∠CDA(共同的内角),∠ABD = ∠ACD(角平分线的定义)和AD = AD(公共边),根据ASA(角边角)的性质可以得出△ABD ≌△ACD。
因此,BD = CD。
三、角平分线定理的应用角平分线定理不仅可以帮助我们推导出一些证明,还可以在解题过程中起到积极的作用。
下面我们通过一些例子来说明角平分线定理的应用。
例子1:给定三角形ABC,角BAD是角A的角平分线,若∠BAD = 60°,求∠ACB的度数。
解:由角平分线定理可知BD = CD,且∠BAD = ∠CAD = 60°。
由于∠BAD + ∠CAD + ∠ACB = 180°(三角形内角和定理),代入已知信息可得60° + 60° + ∠ACB = 180°,解得∠ACB = 60°。
初中数学-三角形内外角平分线有关命题的证明及应用

三角形内外角平分线一.命题的证明及应用在中考常有与三角形内外角平分线有关的题目,若平时不注意总结是很难一下子解决的.下面来一起学习一下.命题1 如图1,点D是△ABC两个内角平分线的交点,则∠D=90°+∠A.证明:如图1:∵∠1=∠,∠2=∠,∴2∠1+2∠2+∠A=180°①∠1+∠2+∠D=180°②①-②得:∠1+∠2+∠A=∠D③由②得:∠1+∠2=180°-∠D④把③代入④得:∴180°-∠D+∠A=∠D∠D=90°+∠A.点评利用角平分线的定义和三角形的内角和等于180°,不难证明.命题2 如图2,点D是△ABC两个内角平分线的交点,则∠D=90°-∠A.证明:如图2:∵DB和DC是△ABC的两条外角平分线,∴∠D=180°-∠1-∠2=180°-(∠DBE+∠DCF)=180°-(∠A+∠4+∠A+∠3)=180°-(∠A+180°)=180°-∠A-90°=90°-∠A;点评利用角平分线的定义和三角形的一个外角等于与它不相邻两外角的和以及三角形的内角和等于180°,可以证明.命题3 如图3,点E是△ABC一个内角平分线与一个外角平分线的交点,则∠E=∠A.证明:如图3:∵∠1=∠2,∠3=∠4,∠A+2∠1=2∠4①∠1+∠E=∠4②①×代入②得:∠E=∠A.点评利用角平分线的定义和三角形的一个外角等于与它不相邻两外角的和,很容易证明.命题4如图4,点E是△ABC一个内角平分线BE与一个外角平分线CE 的交点,证明:AE是△ABC的外角平分线.证明:如图3:∵BE是∠ABC的平分线,可得:EH=EFCE是∠ACD的平分线, 可得:EG=EF∴过点E分别向AB、AC、BC所在的直线引垂线,所得的垂线段相等.即EF=EG=EH∵EG=EH∴AE是△ABC的外角平分线.点评利用角平分线的性质和判定能够证明.应用上面的结论能轻松地解答一些相关的比较复杂的问题,下面来一起看.例1如图5,PB和PC是△ABC的两条外角平分线.①已知∠A=60°,请直接写出∠P的度数.②三角形的三条外角平分线所在的直线形成的三角形按角分类属于什么三角形?解析:①由命题2的结论直接得:∠P=90°-∠A=90°-×60°=60°②根据命题2的结论∠P=90°-∠A,知三角形的三条外角平分线所在的直线形成的三角形的三个角都是锐角,则该三角形是锐角三角形.点评此题直接运用命题2的结论很简单.同时要知道三角形按角分为锐角三角形、直角三角形和钝角三角形.例2如图6,在△ABC中,延长BC到D,∠ABC与∠ACD的角平分线相较于点,∠BC与∠CD 的平分线交与点,以此类推,…,若∠A=96°,则∠= 度.解析:由命题③的结论不难发现规律∠∠A .可以直接得:∠=×96°=3°.点评 此题是要找出规律的但对要有命题③的结论作为基础知识.例3(203陕西第一大题填空题第八小题,此题3分)如图7,△ABC 的外角∠ACD 的平分线CP 的内角∠ABC 平分线BP 交于点P ,若∠BPC=40°,则∠CAP=_______________.解析:此题直接运用命题4的结论可以知道AP是△ABC 的一个外角平分线,结合命题3的结论知道∠BAC=2∠BPC, CAP=(180°-∠BAC )= (180°-2∠BPC )=50°.点评 对命题3、4研究过的读者此题不难,否则将是一道在考试的时候花时间也不一定做的出来的题目. 例4 (2003年山东省)如图,在Rt △ABC 中,∠ACB=90°,∠BAC=30°,∠ACB 的平分线与∠ABC 的外角平分线交与E 点,连接AE ,则∠AEB= 度.解析:有题目和命题4的结论可以知道AE 是△ABC 的一个外角平分线, 结合命题2的结论知道∠AEB=∠ACB -∠ACB=90°-×90°=45°点评 从上面的做题过程来看题目中给出的“∠A=30°”这个条件是可以不用的.二.角平分线定理使用中的几种辅助线作法一、已知角平分线,构造三角形例题、如图所示,在△ABC 中,∠ABC=3∠C ,AD 是∠BAC 的平分线,BE ⊥AD 于F 。
角平分线定理2证明

角平分线定理2证明角平分线定理2是指在一个三角形中,如果一个角的平分线上某个点到另外两边的距离比另外一个点到两边的距离大,则该角的平分线所对应的两个小角的角平分线也相应地实现这个条件。
下面我们来证明这个定理。
设在三角形ABC中,点D和E分别是角BAC的平分线上的两个点,且满足AD > AE;点F和G分别是角BAC的平分线所对应的两个小角的角平分线上的两个点。
首先,连接BD、BE、CD、CE、AF和AG。
要证明FG是角BAC的平分线所对应的两个小角的角平分线,我们需要证明FG与AB和AC平分的两个小角分别相等。
根据角平分线的定义,我们可以得到以下等式:∠BDA = ∠ADE∠CDA = ∠AED∠CGA = ∠AGE∠CFA = ∠AFE接下来,我们要使用一些三角形的性质,来推导出角BFG和角BAG的等式,以及角CGF和角CAF的等式。
由于∠BDA = ∠ADE,且∠DEA是角DAE的平分线,根据角BDA和角ADE平分线定理,我们可以得到:∠BDA = ∠EDA由于∠CGA = ∠AGE,且∠AGE是角AEG的平分线,根据角CGA和角AGE平分线定理,我们可以得到:∠CGA = ∠EGA同样地,由于∠CFA = ∠AFE,且∠AFE是角AEF的平分线,根据角CFA和角AFE平分线定理,我们可以得到:∠CFA = ∠EFA再由于∠BFD = ∠DFA,且∠BFD是角BDF的平分线,根据角BFD和角DFA平分线定理,我们可以得到:∠BFD = ∠AFD类似地,由于∠CGE = ∠EGA,且∠CGE是角CTE的平分线,根据角CGE和角EGA平分线定理,我们可以得到:∠CGE = ∠AGE最后,由于∠CFE = ∠EFA,且∠CFE是角CEF的平分线,根据角CFE和角EFA平分线定理,我们可以得到:∠CFE = ∠AFE综上所述,我们可以得出以下结论:∠BDA = ∠EDA∠CGA = ∠EGA∠CFA = ∠EFA∠BFD = ∠AFD∠CGE = ∠AGE∠CFE = ∠AFE因此,根据角等于其对应的平分线所对应的两个小角之和的性质,我们可以得到:∠BDF + ∠BFD = ∠ADF∠CGE + ∠EGA = ∠CGA∠CFE + ∠EFA = ∠CFA进一步地,我们可以得到:∠BDF + ∠AFD = ∠ADF∠CGE + ∠AGE = ∠CGA∠CFE + ∠AFE = ∠CFA由于∠BDF = ∠AGE,∠AFD = ∠CGA,以及∠EFA =∠CFA,我们可以得到:∠ADF = ∠CGA∠CGA = ∠CFA从而可以得出结论:FG是角BAC的平分线所对应的两个小角的角平分线。
《角平分线》三角形的证明

03
角平分线在解三角形中 的应用
利用角平分线求三角形面积
要点一
结论
通过三角形的两条角平分线和对应的底边,可以快速 求出三角形的面积。
要点二
具体而言,如果我们已知三角 形的两条角平分线长度分别为 $… $S=\frac{ab}{c}\cdot S_{正方形}$,其中$S_{正方形
}$为以$c$为边长的正方形的面积。这个公式的证明可 以通过将三角形拆分为两个小的三角形,并分别求解 它们的面积得到。
THANKS
感谢观看
利用角平分线求三角形内切圆半径
结论:三角形的三条角平分线交于一点,该点到三角 形三边的距离相等,且等于三角形内切圆的半径。
三角形内切圆是与三角形三边都相切的圆,其半径可 以通过三角形的角平分线求得。具体而言,如果我们 已知三角形的三条角平分线长度分别为$a$、$b$和 $c$,那么三角形的内切圆半径$r$可以通过以下公式 求解:$r=\frac{abc}{4K}$,其中$K$为三角形的半周 长,即$K=\frac{a+b+c}{2}$。这个公式的证明可以 通过将三角形的面积表示为半周长与内切圆半径的乘 积得到。
总结词
角平分线等分底边
详细描述
在等腰三角形中,角平分线会将底边等分成两个相等的部分。因此,我们可以利用这个性质来证明一 个三角形是等腰三角形。具体来说,如果我们能证明三角形的底边被角平分线等分,并且这个角平分 线同时也是三角形的中线,那么就可以证明这是一个等腰三角形。
利用角平分线证明直角三角形
总结词
三角形的任意一条角平分线将三角形分成两个面积相等的小三角形。
02 03
关系2
三角形三个角的角平分线交于一点,这一点称为三角形的内心。三角形 的内心到三角形三边的距离相等,且内心与三角形顶点的连线平分相对 应的外角。
巧借三角形的两条内(外)角平分线夹角的模型

BBECB A巧借三角形的两条内(外)角平分线夹角的模型【基本模型】三角形的两个内(外)角平分线所夹的角与第三个角之间的数量关系 模型一:当这两个角为内角时:这个夹角等于90°与第三个角一半的和(如图1); 模型二:当这两个角为外角时:这个夹角等于90°与第三个角一半的差(如图2); 模型三:当这两个角为一内角、一外角时:这个夹角等于第三个角一半(如图3);【分析】三个结论的证明例1、 如图1,△ABC 中,BD 、CD 为两个内角平分线,试说明:∠D=90°+21∠A 。
(方法一)解:∵BD 、CD 为角平分线∴∠CBD =21∠ABC , ∠BCD =21∠ACB 。
在△BCD 中:∠D =180°-(∠CBD +∠BCD )=180°-21(∠ABC +∠ACB )=180°-21(180°-∠A )=180°-21×180°+21∠A=90°+21∠A(方法二)解:连接AD 并延长交BC 于点E 解:∵BD 、CD 为角平分线∴∠CBD =21∠ABC , ∠BCD =21∠ACB 。
∵∠BDE 是△ABD 的外角 ∴∠BDE =∠BAD+∠ABD=∠BAD+21∠ABC同理可得∠CDE =∠CAD+21∠ACB又∵∠BDC =∠BDE+∠CDE∴∠BDC =∠BAD+21∠ABC+∠CAD+21∠ACB=∠BAC+21(∠ABC+∠ACB )=∠BAC+21(180°-∠BAC )=90°+21∠BAC例2、如图,BD、CD为△ABC的两条外角平分线,试说明:∠D=90°-21∠A 。
解:∵BD 、CD 为角平分线∴∠CBD=21∠CBE∠BCD =21∠BCF又∵∠CBE 、∠BCD 为△ABC 的外角 ∴∠CBE =∠A +∠ACB ∠BCF =∠A +∠ABC∴∠CBE +∠BCF =∠A +∠ACB +∠A +∠ABC =∠A +180°在△BCD 中:∠D =180°-(∠CBD +∠BCD )=180°-(21∠CBE +21∠BCF )=180°-21(∠CBE +∠BCF )=180°-21(∠A +180°)=90°-21∠A【小结】通过对模型1、2的分析和证明,我们还能发现三角形两内角平分线的夹角和两外角平分线的夹角互补,即和为180°。
三角形内角平分线的性质定理的证明

三角形内角平分线的性质定理的证明本文介绍的是三角形内角平分线的性质定理及其证明。
该定理可以分为两个部分,即三角形内角平分线分对边为两部分,且这两部分与两邻边成比例。
现在我们将介绍四种不同的证明方法。
方法一:利用平行线作等比代换。
我们作DE//BC,DE交AC于点E。
根据已知条件∠1=∠2,我们可以得到∠2=∠3.同时,由平行线的性质可知DE=EC。
因此,我们可以得到AD/AC=DE/EC=BD/BC,即AD/BD=AC/BC。
方法二:应用平行线分线段成比例定理,等比代换中辅以等量代换。
我们作BE//DC,BE交AC的延长线于点E。
根据已知条件∠1=∠2,我们可以得到∠2=∠3.同时,由平行线的性质可知BC=CE。
因此,我们可以得到AD/AC=AE/CE=BD/BC,即AD/BD=AC/BC。
方法三:进行逆推分析。
我们可以在AC的延长线上作一个CE=BC,然后连接BE。
由于∠2=∠ACB,我们可以得到∠3=∠E。
因此,BE//DC,从而可以得到AD/AC=AE/CE=BD/BC,即AD/BD=AC/BC。
方法四:改变三角形的内角大小。
我们可以改变△ADC 的一个内角的大小,把它改造为△AEC,使之与△XXX相似并作等量代换。
在∠CAB的同侧,作∠CAE=∠B,AE与CD 的延长线交于点E。
由于∠1=∠2,我们可以得到△ACE∽△BCD。
因此,我们可以得到AD/AC=AE/CE=BD/BC,即AD/BD=AC/BC。
以上是四种不同的证明方法,它们都可以证明三角形内角平分线分对边为两部分,且这两部分与两邻边成比例的性质定理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形内外角平分线有关命题的证明及应用
在中考和一些竞赛题目中常有与三角形内外角平分线有关的题目,若平时不注意总结是很难一下子解决的.下面来一起学习一下.命题 1 如图1,点D是△ABC两个内角平分线的交点,则∠D=90°+∠A.
证明:如图1:
∵∠1=∠,∠2=∠,
∴2∠1+2∠2+∠A=180°①
∠1+∠2+∠D=180°②
①-②得:
∠1+∠2+∠A=∠D③
由②得:
∠1+∠2=180°-∠D④
把③代入④得:
∴180°-∠D+∠A=∠D
∠D=90°+∠A.
点评利用角平分线的定义和三角形的内角和等于180°,不难证明.
命题 2 如图2,点D是△ABC两个内角平分线的交点,则∠D=90°-∠A.
证明:如图2:
∵DB和DC是△ABC的两条外角平分线,
∴∠D=180°-∠1-∠2
=180°-(∠DBE+∠DCF)
=180°-(∠A+∠4+∠A+∠3)
=180°-(∠A+180°)
=180°-∠A-90°
=90°-∠A;
点评利用角平分线的定义和三角形的一个外角等于与它不相邻两外角的和以及三角形的内角和等于180°,可以证明.
命题3 如图3,点E是△ABC一个内角平分线与一个外角平分线的交点,则∠E=∠A.
证明:如图3:
∵∠1=∠2,∠3=∠4,
∠A+2∠1=2∠4①
∠1+∠E=∠4②
①×代入②得:
∠E=∠A.
点评利用角平分线的定义和三角形的一个外角等于与它不相邻两外角的和,很容易证明.
命题4如图4,点E是△ABC一个内角平分线BE与一个外角平分线CE的交点,证明:AE是△ABC的外角平分线.
证明:如图3:
∵BE是∠ABC的平分线,可得:EH=EF
CE是∠ACD的平分线, 可得:EG=EF
∴过点E分别向AB、AC、BC所在的直线引垂线,所得的垂线段相等.
即EF=EG=EH
∵EG=EH
∴AE是△ABC的外角平分线.
点评利用角平分线的性质和判定能够证明.
应用上面的结论能轻松地解答一些相关的比较复杂的问题,下面来一起看.
例1如图5,PB和PC是△ABC的两条外角平分线.
①已知∠A=60°,请直接写出∠P的度数.
②三角形的三条外角平分线所在的直线形成的三角形按角分类属于什么三角形?
解析:①由命题2的结论直接得:∠P=90°-∠A=90°-×60°=60°
②根据命题2的结论∠P=90°-∠A,知三角形的三条外角平分线所在的直线形成的三角形的三个角都是锐角,则该三角形是锐角三角形.
点评此题直接运用命题2的结论很简单.同时要知道三角形按角分为锐角三角形、直角三角形和钝角三角形.
例2如图6,在△ABC中,延长BC到D,∠ABC与∠ACD的角平分线相较于点,∠BC与∠CD的平分线交与点,以此类推,…,若∠A=96°,则∠= 度.
解析:由命题③的结论不难发现规律∠∠A.
可以直接得:∠=×96°=3°.
点评此题是要找出规律的但对要有命题③的结论作为基础知识.
例3(2011湖北鄂州市中考第一大题填空题第八小题,此题3分)如图7,△ABC的外角∠ACD的平分线CP的内角∠ABC平分线BP 交于点P,若∠BPC=40°,则∠CAP=_______________.
解析:此题直接运用命题4的结论可以知道AP是△ABC的一个外角平分线,结合命题3的结论知道∠BAC=2∠BPC, CAP=(180°-∠BAC )= (180°-2∠BPC )=50°.
点评对命题3、4研究过的读者此题不难,否则将是一道在考试的时候花时间也不一定做的出来的题目.
例4(2003年山东省“KLT快乐灵通杯”初中数学竞赛试题)如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,∠ACB的平分线与∠ABC的外角平分线交与E点,连接AE,则∠AEB= 度.
解析:有题目和命题4的结论可以知道AE是△ABC的一个外角平分线, 结合命题2的结论知道∠AEB=∠ACB-∠ACB=90°-×90°=45°
点评从上面的做题过程来看题目中给出的“∠A=30°”这个条件是可以不用的.。