初一几何——三角形内外角平分线模型

合集下载

三角形中的特殊模型-双角平分线模型(学生版)

三角形中的特殊模型-双角平分线模型(学生版)

三角形中的特殊模型-双角平分线模型模型1、双角平分线模型1)两内角平分线的夹角模型条件:如图1,在△ABC 中,∠ABC 和∠ACB 的平分线BE ,CF 交于点G ;结论:∠BGC =90°+12∠A .图1图2图32)两外角平分线的夹角模型条件:如图2,在△ABC 中,BO ,CO 是△ABC 的外角平分线;结论:∠O =90°-12∠A .3)一个内角一个外角平分线的夹角模型条件:如图3,在△ABC 中,BP 平分∠ABC ,CP 平分∠ACB 的外角,两条角平分线相交于点P ;结论:∠P =12∠A .图4图5图64)凸多边形双内角平分线的夹角模型条件:如图4,BP 、CP 平分∠ABC 、∠DCB ,两条角平分线相交于点P ;结论:2∠P =∠A +∠D 5)两内角平分线的夹角模型条件:如图5,BP 、DP 平分∠BCD 、∠CDE ,两条角平分线相交于点P ;结论:2∠P =∠A +∠B +∠E -180°6)一个内角一个外角平分线的夹角模型(累计平分线)条件:如图6,∠A =α,∠ABC ,∠ACD 的平分线相交于点P 1,∠P 1BC ,∠P 1CD 的平分线相交于点P 2,∠P 2BC,∠P2CD的平分线相交于点P3⋯⋯以此类推;结论:∠P n的度数是α2n.7)旁心模型旁心:三角形的一条内角平分线与其他两个角的外角平分线交于一点条件:如图,BD平分∠ABC,CD平分∠ACB的外角,两条角平分线相交于点D;结论:AD平分∠CAD 1(2023·绵阳市八年级课时练习)如图,在ΔABC中,∠ABC=80°,∠ACB=50°,BP平分∠ABC,CP平分∠ACB,则∠BPC=.2(2023·河南周口·八年级统考期末)如图,在四边形ABCD中,∠A+∠D=∂,∠ABC的平分线与∠BCD 的平分线交于点P,则∠P=()A.90°+12∂ B.90°-12∂ C.12∂ D.180°-12∂3(2023秋·山西太原·八年级校考期末)已知:如图,P是△ABC内一点,连接PB,PC.(1)猜想:∠BPC与∠ABP、∠ACP、∠A存在怎样的等量关系?证明你的猜想.(2)若∠A=69°,PB、PC分别是∠ABC、∠ACB的三等分线,直接利用(1)中结论,可得∠BPC的度数为.4(2023秋·成都市·八年级专题练习)如图,在△ABC中,∠B=58°,三角形两外角的角平分线交于点E,则∠AEC=.5(2023·绵阳市·八年级专题练习)如图,已知在ΔABC中,∠B、∠C的外角平分线相交于点G,若∠ABC =m°,∠ACB=n°,求∠BGC的度数.6(2023春·广西·七年级专题练习)如图,在△ABD中,∠ABD的平分线与∠ACD的外角平分线交于点E,∠A=80°,求∠E的度数7(2023春·山东泰安·七年级校考阶段练习)如图,在△ABC中,∠A=α,∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线相交于点A2,得A2;⋯;∠A2019BC与∠A2019CD的平分线相交于点A2020,得∠A2020,则∠A2020=.8(2023·河北·九年级专题练习)问题情境:如图1,点D是△ABC外的一点,点E在BC边的延长线上,BD 平分∠ABC,CD平分∠ACE.试探究∠D与∠A的数量关系.(1)特例探究:如图2,若△ABC是等边三角形,其余条件不变,则∠D=;如图3,若△ABC 是等腰三角形,顶角∠A =100°,其余条件不变,则∠D =;这两个图中,与∠A 度数的比是;(2)猜想证明:如图1,△ABC 为一般三角形,在(1)中获得的∠D 与∠A 的关系是否还成立?若成立,利用图1证明你的结论;若不成立,说明理由.9(2023·重庆·七年级专题练习)认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.探究1:如图1,在△ABC 中,O 是∠ABC 与∠ACB 的平分线BO 和CO 的交点,分析发现∠BOC =90°+12∠A ,理由如下:∵BO 和CO 分别是∠ABC 、∠ACB 的角平分线∴∠1=12∠ABC ,∠2=12∠ACB∴∠1+∠2=12(∠ABC +∠ACB )=12(180°-∠A )=90°-12∠A∴∠BOC =180°-(∠1+∠2)=180°-90°-12∠A =90°+12∠A(1)探究2:如图2中,O 是∠ABC 与外角∠ACD 的平分线BO 和CO 的交点,试分析∠BOC 与∠A 有怎样的关系?请说明理由.(2)探究3:如图3中,O 是外角∠DBC 与外角∠ECB 的平分线BO 和CO 的交点,则∠BOC 与∠A 有怎样的关系?(直接写出结论)(3)拓展:如图4,在四边形ABCD 中,O 是∠ABC 与∠DCB 的平分线BO 和CO 的交点,则∠BOC 与∠A +∠D 有怎样的关系?(直接写出结论)(4)运用:如图5,五边形ABCDE 中,∠BCD 、∠EDC 的外角分别是∠FCD 、∠GDC ,CP 、DP 分别平分∠FCD 和∠GDC 且相交于点P ,若∠A =140°,∠B =120°,∠E =90°,则∠CPD =度.课后专项训练1(2023·浙江·八年级假期作业)如图,OG 平分∠MON ,点A ,B 是射线OM ,ON 上的点,连接AB .按以下步骤作图:①以点B 为圆心,任意长为半径作弧,交AB 于点C ,交BN 于点D ;②分别以点C 和点D 为圆心,大于12CD 长为半径作弧,两弧相交于点E ;③作射线BE,交OG于点P.若∠ABN=140°,∠MON=50°,则∠OPB的度数为()A.35°B.45°C.55°D.65°2(2023·江苏·八年级月考)ΔABC中,点O是ΔABC内一点,且点O到ΔABC三边的距离相等;∠A= 40°,则∠BOC=()A.110°B.120°C.130°D.140°3(2023·成都·八年级月考)如图,ΔABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P,若∠BPC=40°,则∠CAP=()A.40°B.45°C.50°D.60°4(2023·重庆·八年级专题练习)已知,如图,△ABC中,∠ABC=48°,∠ACB=84°,点D、E分别在BA、BC延长线上,BP平分∠ABC,CP平分∠ACE,连接AP,则∠PAC的度数为()A.45°B.48°C.60°D.66°5(2023秋·绵阳市·八年级专题练习)如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是()A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°6(2022春·重庆黔江·七年级统考期末)如图,已知AB∥CD,点E在两平行线之间,连接BE,CE,∠ABE的平分线与∠BEC的平分线的反向延长线交于点F,若∠BFE=50°,则∠C等于( ).A.70°B.80°C.85°D.90°7(2022春·北京海淀·七年级校考期中)如图,在平面直角坐标系中,直线AB与y轴在正半轴、x轴正半轴分别交A、B两点,点C在BA的延长线上,AD平分∠CAO,BD平分∠ABO,则∠D的度数是()A.30°B.45°C.55°D.60°8(2023·江苏·八年级月考)如图,ΔABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P,若∠BPC=40°,则∠BAC的度数是.9(2023春·河北·七年级专题练习)如图,在△ABC中,∠ABC和∠ACB的角平分线交于点O,延长BO与∠ACB的外角平分线交于点D,若∠BOC=130°,则∠D=10(2022秋·浙江八年级课时练习)(2018育才单元考)如图,在△ABC中,∠ABC和∠ACD的角平分线交于点A1,得∠A1,∠A1BC和∠A1CD的角平分线交于点A2,得∠A2,⋯⋯,∠A n-1BC和∠A n-1CD的角平分线交于点A n,得∠A n(1)若∠A=80°,则∠A1=,∠A2=,∠A3=(2)若∠A=m°,则∠A2015=.11(2023·浙江杭州·八年级期末)如图,在四边形ABCD中,∠A+∠D=m°,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=.(用含字母m的代数式表示)12(2023春·河南·七年级专题练习)如图,点M是△ABC两个内角平分线的交点,点N是△ABC两外角平分线的交点,如果∠CMB:∠CNB=3:2,那么∠CAB=.13(2023·甘肃陇南·统考一模)在△ABC中,AB=AC,∠A=100°.点M在BC的延长线上,∠ABC 的平分线交AC于点D.∠MCA的平分线与射线BD交于点E.(1)依题意补全图形;用尺规作图法作∠MCA的平分线;(2)求∠BEC的度数.14(2023·山东八年级期中)如图,在ΔABC中,角平分线AD、BE、CF相交于点O,过点B作BG⊥CF于点G,∠OBG=1∠BAC成立吗?说明理由.215(2023·黑龙江八年级课时练习)(1)如图(1)所示,已知在△ABC中,O为∠ABC和∠ACB的平分线BO,CO的交点.试猜想∠BOC和∠A的关系,并说明理由.(2)如图(2)所示,若O为∠ABC的平分线BO和∠ACE的平分线CO的交点,则∠BOC与∠A的关系又该怎样?为什么?16(2023春·八年级单元测试)如图,∠CBF,∠ACG是△ABC的外角,∠ACG的平分线所在的直线分别与∠ABC,∠CBF的平分线BD,BE交于点D,E.(1)若∠A=70°,求∠D的度数;(2)若∠A=a,求∠E;(3)连接AD,若∠ACB=β,则∠ADB=.17(2023·福建泉州·七年级阶段练习)在ΔABC中,已知∠A=α.(1)如图1,∠ABC、∠ACB的平分线相交于点D.①当α=80°时,∠BDC度数=度(直接写出结果);②∠BDC的度数为(用含α的代数式表示);(2)如图2,若∠ABC的平分线与∠ACE角平分线交于点F,求∠BFC的度数(用含α的代数式表示).(3)在(2)的条件下,将ΔFBC以直线BC为对称轴翻折得到ΔGBC,∠GBC的角平分线与∠GCB的角平分线交于点M(如图3),求∠BMC的度数(用含α的代数式表示).18(2023·江苏盐城·七年级阶段练习)如图,△ABC的角平分线相交于P,∠A=m°,(1)若∠A=40°,求∠BPC的度数;(2)设△ABC的外角∠CBD、∠BCE的平分线相交于Q,且∠A=m°,求∠BQC的度数(3)设△ABC的外角∠CBD、∠BCE的n等分线相交于R,且∠A=m°,∠CBR=1n∠CBD,∠BCR=1n∠BCE,求∠BRC的度数19(2023·江西上饶·八年级校考阶段练习)(1)探究1:如图1,P是△ABC的内角∠ABC与∠ACB的平分线BP和CP的交点,若∠A=70∘,则∠BPC=度;(2)探究2:如图2,P是△ABC的外角∠DBC与外角∠ECB的平分线BP和CP的交点,求∠BPC与∠A 的数量关系?并说明理由.(3)拓展:如图3,P是四边形ABCD的外角∠EBC与∠BCF的平分线BP和CP的交点,设∠A+∠D=α.,直接写出∠BPC与α的数量关系;20(2023·甘肃天水·七年级统考期末)已知在△ABC中,图1,图2,图3中的△ABC的内角平分线或外角平分线交于点O,(1)如图1,点O是△ABC的两个内角平分线的交点,猜想∠O与∠A之间的数量关系,并加以证明.(2)请直接写出结果.如图2,若∠A=60°,△ABC的内角平分线与外角平分线交于点O,则∠O=;如图3,若∠A=60°,△ABC的两个外角平分线交于点O,则∠O=.。

专题06 三角形中的双角平分线模型--2024年中考数学核心几何模型重点突破(解析版)

专题06 三角形中的双角平分线模型--2024年中考数学核心几何模型重点突破(解析版)

专题06三角形中的双角平分线模型【模型1】双角平分线模型如图,已知在ABC ∆中,BO,CO 分别是ABC ∠,ACB ∠的平分线,根据角平分线的性质和三角形内角和定理,可得A O ∠+︒=∠2190。

【模型2】一内角一外角平分线模型如图,已知在ABC ∆中,BP,CP 分别是ABC ∠,ACD ∠的平分线,∴ABC PBC ∠=∠21,ACD PCA ∠=∠21,ACD ACB PCB ∠+∠=∠21,ABC A ACD ∠+∠=∠∴)(21ABC A ACB PCB ∠+∠+∠=∠;∴ABC A ACB PCB ∠+∠+∠=∠2121)(180PCB PBC P ∠+∠-︒=∠ )212121(180ABC A ACB ABC P ∠+∠+∠+∠-︒=∠∴;)21(180A ACB ABC P ∠+∠+∠-︒=∠∴;)21180(180A A P ∠+∠-︒-︒=∠∴;A P ∠=∠∴21【模型3】双外角平分线模型如图,已知在ABC ∆中,BP,CP 分别是CBE ∠,BCF ∠的平分线,根据外角定理,CBE PBC ∠=∠21,BCF PCB ∠=∠21,又ACB A CBE ∠+∠=∠,ABC A BCF ∠+∠=∠,∴)(180PCB PBC P ∠+∠-︒=∠;∴)(21180)2121(180BCF CBE BCF CBE P ∠+∠-︒=∠+∠-︒=∠;∴)(21180ABC A ACB A P ∠+∠+∠+∠-︒=∠;∴)2(21180ABC ACB A P ∠+∠+∠-︒=∠;∴)1802(21180A A P ∠-︒+∠-︒=∠;∴︒-∠-︒=∠9021180A P ;∴A P ∠-︒=∠2190;【例1】如图,在△ABC 中,∠ABC 和∠ACB 的角平分线交于点O ,延长BO 与∠ACB 的外角平分线交于点D ,若∠BOC =130°,则∠D =_____【答案】40°【分析】根据角平分线的定义结合三角形外角的性质即可得到结论.【解析】解:∵∠ABC和∠ACB的角平分线交于点O,∴∠ACO=12∠ACB,∵CD平分∠ACE,∴∠ACD=12∠ACE,∵∠ACB+∠ACE=180°,∴∠OCD=∠ACO+∠ACD=12(∠ACB+∠ACE)=12×180°=90°,∵∠BOC=130°,∴∠D=∠BOC-∠OCD=130°-90°=40°,故答案为:40°.【例2】如图,已知△ABC,O是△ABC内的一点,连接OB、OC,将∠ABO、∠ACO分别记为∠1、∠2,则∠1、∠2、∠A、∠O四个角之间的数量关系是()A.∠1+∠0=∠A+∠2B.∠1+∠2+∠A+∠O=180°C.∠1+∠2+∠A+∠O=360°D.∠1+∠2+∠A=∠O【答案】D【分析】连接AO并延长,交BC于点D,由三角形外角的性质可知∠BOD=∠BAD+∠1,∠COD=∠CAD+∠2,再把两式相加即可得出结论.【解析】解:连接AO并延长,交BC于点D,∵∠BOD是△AOB的外角,∠COD是△AOC的外角,∴∠BOD=∠BAD+∠1①,∠COD=∠CAD+∠2②,①+②得,∠BOC=(∠BAD+∠CAD)+∠1+∠2,即∠BOC=∠BAC+∠1+∠2.故选:D.【例3】(1)问题发现:如图1,在ABC 中,40A ∠=︒,ABC ∠和ACB ∠的平分线交于P ,则BPC ∠的度数是______(2)类比探究:如图2,在ABC 中,ABC ∠的平分线和ACB ∠的外角ACE ∠的角平分线交于P ,则BPC ∠与A ∠的关系是______,并说明理由.(3)类比延伸:如图3,在ABC 中,ABC ∠外角FBC ∠的角平分线和ACB ∠的外角BCE ∠的角平分线交于P ,请直接写出BPC ∠与A ∠的关系是______.【答案】(1)110°;(2)12BPC A ∠=∠;(3)1902BPC A ∠=︒-∠【分析】(1)根据三角形内角和定理求出∠ABC+∠ACB ,根据角平分线的定义、三角形内角和定理计算即可;(2)根据三角形外角的性质得到∠ACE=∠ABC+∠A 、∠PCE=∠PBC+∠BPC ,根据角平分线的定义解答;(3)根据(1)的结论然后用角分线的定义,计算即可.【解析】解:(1)∵40A ∠=︒,∴18040ABC ACB ∠+∠=︒-,∵ABC ∠和ACB ∠的平分线交于P ,∴12PBC ABC ∠=∠,12PCB ACB ∠=,∴()118090202BPC ABC ACB ∠=︒-∠+=︒+︒故答案为110°(2)12BPC A ∠=∠,证明:∵ACE ∠是ABC 的外角,PCE ∠是PBC 的外角,∴ACE ABC A∠=∠+∠PCE PBC BPC ∠=∠+∠,∵BP 平分ABC ∠,CP 平分ACE ∠,∴1122PBC ABC PCE ACE ∠=∠∠=∠,∴1122ACE ABC BPC ∠=∠+∠,∴()111222BPC ABC ACE ABC ACE ∠=∠-∠=∠-∠,∴12BPC A ∠=∠,故答案为:12BPC A ∠=∠;(3)由(1)得,1902BPC A ∠=︒-∠,故答案为:1902BPC A ∠=︒-∠.一、单选题1.如图,在△ABC 中,∠ABC 和∠ACB 的外角平分线交于点O ,设∠A =m ,则∠BOC =()A .B .C .D .【答案】B 【分析】根据三角形的内角和,可得∠ABC +∠ACB ,根据角的和差,可得∠DBC +∠BCE ,根据角平分线的定义,可得∠OBC +∠OCB ,根据三角形的内角和,可得答案.【解析】解:如图:,由三角形内角和定理,得∠ABC +∠ACB =180°-∠A =180°-m ,由角的和差,得∠DBC +∠BCE =360°-(∠ABC +∠ACB )=180°+m ,由∠ABC 和∠ACB 的外角平分线交于点O ,得∠OBC +∠OCB =12(∠DBC +∠BCE )=90°+12m ,由三角形的内角和,得∠O =180°-(∠OBC +∠OCB )=90°-12m .故选:B .2.如图:PC 、PB 是ACB ∠、ABC ∠的角平分线,40A ∠=︒,BPC ∠=()A .∠BPC =70ºB .∠BPC =140ºC .∠BPC =110ºD .∠BPC =40º【答案】C 【分析】首先根据三角形内角和定理求出ABC ACB ∠+∠的度数,再根据角平分线的性质可得12PCB ACB ∠=∠,12PBC ABC ∠=∠,进而可求PBC PCB ∠+∠的度数,再次在CBP ∆中利用三角形内角和即可求解.【解析】解:40A ∠=︒ ,18040140ABC ACB ∴∠+∠=︒-︒=︒,又BP 平分ABC ∠,CP 平分ACB ∠,12PCB ACB ∴∠=∠,12PBC ABC ∠=∠,11()1407022PBC PCB ABC ACB ∴∠+∠=∠+∠=⨯︒=︒,180()110BPC PBC PCB ∴∠=︒-∠+∠=︒.故选:C .3.如图,△ABC 中,∠E =18°,BE 平分∠ABC ,CE 平分∠ACD ,则∠A 等于()A .36°B .30°C .20°D .18°【答案】A 【分析】由三角形的一个外角等于与它不相邻的两个内角的和,得∠ACD =∠A +∠ABC ,∠ECD =∠E +∠EBC ;由角平分线的性质,得∠ECD =12(∠A +∠ABC ),∠EBC =12∠ABC ,利用等量代换,即可求得∠A 与∠E 的关系,即可得到结论.【解析】解:∵∠ACD =∠A +∠ABC ,∴∠ECD =12(∠A +∠ABC ).又∵∠ECD =∠E +∠EBC ,∴∠E +∠EBC =12(∠A +∠ABC ).∵BE 平分∠ABC ,∴∠EBC =12∠ABC ,∴12∠ABC +∠E =12(∠A +∠ABC ),∴∠E =12∠A =18°,∴∠A =36°.故选A .4.如图,ABC 中,ABC ∠与ACB ∠的平分线交于点F ,过点F 作//DE BC 交AB 于点D ,交AC 于点E ,那么下列结论:①BDF 和CEF △都是等腰三角形②DE BD CE =+;③BF CF >;④若80A ∠=︒,则130BFC ∠=︒.其中正确的有()个A .1B .2C .3D .4【答案】C【分析】根据等腰三角形的判断与性质和平行线的性质及三角形三边的关系即可求解.【解析】解:①∵BF 是∠ABC 的角平分线,CF 是∠ACB 的角平分线,∴∠ABF=∠CBF ,∠ACF=∠BCF ,∵DE ∥BC ,∴∠CBF=∠BFD ,∠BCF=∠EFC (两直线平行,内错角相等),∴∠ABF=∠BFD ,∠ACF=∠EFC ,∴DB=DF ,EF=EC ,∴△BDF 和△CEF 都是等腰三角形,∴①选项正确,符合题意;②∵DE=DF+FE ,∴DB=DF ,EF=EC ,∴DE=DB+CE ,∴②选项正确,符合题意;③根据题意不能得出BF >CF ,∴④选项不正确,不符合题意;④∵若∠A=80°,∴∠ABC+∠ACB=180°-∠A=180°-80°=100°,∵∠ABF=∠CBF ,∠ACF=∠BCF ,∴∠CBF+∠BCF=12×100°=50°,∴∠BFC=180°-∠CBF-∠BCF=180°-50°=130°,∴④选项正确,符合题意;故①②④正确.故选C5.如图,ABD ∠,ACD ∠的角平分线交于点P ,若48A ∠=︒,10D ∠=︒,则P ∠的度数()A .19︒B .20︒C .22︒D .25︒【答案】A【分析】法一:延长PC交BD于E,设AC、PB交于F,根据三角形的内角和定理得到∠A +∠ABF+∠AFB=∠P+∠PCF+∠PFC=180°推出∠P+∠PCF=∠A+∠ABF,根据三角形的外角性质得到∠P+∠PBE=∠PED,推出∠P+∠PBE=∠PCD−∠D,根据PB、PC 是角平分线得到∠PCF=∠PCD,∠ABF=∠PBE,推出2∠P=∠A−∠D,代入即可求出∠P.法二:延长DC,与AB交于点E.设AC与BP相交于O,则∠AOB=∠POC,可得∠P+1 2∠ACD=∠A+12∠ABD,代入计算即可.【解析】解:法一:延长PC交BD于E,设AC、PB交于F,∵∠A+∠ABF+∠AFB=∠P+∠PCF+∠PFC=180°,∵∠AFB=∠PFC,∴∠P+∠PCF=∠A+∠ABF,∵∠P+∠PBE=∠PED,∠PED=∠PCD−∠D,∴∠P+∠PBE=∠PCD−∠D,∴2∠P+∠PCF+∠PBE=∠A−∠D+∠ABF+∠PCD,∵PB、PC是角平分线∴∠PCF=∠PCD,∠ABF=∠PBE,∴2∠P=∠A−∠D∵∠A=48°,∠D=10°,∴∠P=19°.法二:延长DC,与AB交于点E.∵∠ACD是△ACE的外角,∠A=48°,∴∠ACD =∠A +∠AEC =48°+∠AEC .∵∠AEC 是△BDE 的外角,∴∠AEC =∠ABD +∠D =∠ABD +10°,∴∠ACD =48°+∠AEC =48°+∠ABD +10°,整理得∠ACD −∠ABD =58°.设AC 与BP 相交于O ,则∠AOB =∠POC ,∴∠P +12∠ACD =∠A +12∠ABD ,即∠P =48°−12(∠ACD −∠ABD )=19°.故选A .二、填空题6.如图,在ABC ∆中,A θ∠=,ABC ∠和ACD ∠的平分线交于点1A ,得1A ∠,1A BC ∠和1A CD ∠的平分线交于点2A ,得2A ∠;⋯;2019A BC ∠和2019A CD ∠的平分线交于点2020A ,则2020A ∠=__.(用θ表示)【答案】20202θ【分析】利用角平分线的性质、三角形外角性质,易证∠A 1=12∠A ,由于∠A 1=12∠A ,∠A 2=12∠A 1=212∠A ,…,以此类推可知∠A 2020即可求得.【解析】∵A 1B 平分∠ABC ,A 1C 平分∠ACD ,∴∠A 1BC=12∠ABC ,∠A 1CA=12∠ACD ,∵∠A 1CD=∠A 1+∠A 1BC ,即12∠ACD=∠A 1+12∠ABC ,∴∠A 1=12(∠ACD-∠ABC ),∵∠A+∠ABC=∠ACD ,∴∠A=∠ACD-∠ABC ,∴∠A 1=12∠A ,以此类推∠A 2=12∠A 1=12•12∠A=212∠A,∠A 3=12∠A 2=21122⨯∠A=312∠A ,……,所以∠A n =12n A ∠,202020202020122A A θ∴∠=∠=.故答案为:20202θ.7.如图,在△ABC 中,A 70∠=︒,如果ABC ∠与ACB ∠的平分线交于点D ,那么BDC ∠=_________度.【答案】125【分析】先利用三角形内角和定理求出ABC ACB ∠+∠的度数,进而可求DBC DCB ∠+∠的度数,最后再利用三角形内角和定理即可求出答案.【解析】70A ∠=︒ ,180110ABC ACB A ∴∠+∠=︒-∠=︒.∵BD 平分ABC ∠,CD 平分ACB ∠,1()552DBC DCB ABC ACB ∴∠+∠=∠+∠=︒,180()125BDC DBC DCB ∴∠=︒-∠+∠=︒.故答案为:125.8.如图在△ABC 中,BO ,CO 分别平分∠ABC ,∠ACB ,交于O ,CE 为外角∠ACD 的平分线,交BO 的延长线于点E ,记1BAC ∠=∠,2BEC ∠=∠,则以下结论①122∠=∠,②32BOC ∠=∠,③901BOC ∠=︒+∠,④902BOC ∠=︒+∠,正确的是________.(把所有正确的结论的序号写在横线上)【答案】①④【分析】依据角平分线的性质以及三角形外角性质,即可得到∠1=2∠2,∠BOC =90°+12∠1,∠BOC =90°+∠2,再分析判断.【解析】∵CE 为外角∠ACD 的平分线,BE 平分∠ABC ,∴∠DCE =12∠ACD ,∠DBE =12∠ABC ,又∵∠DCE 是△BCE 的外角,∴∠2=∠DCE−∠DBE =12(∠ACD−∠ABC )=12∠1,故①正确;∵BO ,CO 分别平分∠ABC ,∠ACB ,∴∠OBC =12ABC ,∠OCB =12∠ACB ,∴∠BOC =180°−(∠OBC +∠OCB )=180°−12(∠ABC +∠ACB )=180°−12(180°−∠1)=90°+12∠1,故②、③错误;∵OC 平分∠ACB ,CE 平分∠ACD ,∴∠ACO =12∠ACB ,∠ACE =12∠ACD ,∴∠OCE =12(∠ACB +∠ACD )=12×180°=90°,∵∠BOC 是△COE 的外角,∴∠BOC =∠OCE +∠2=90°+∠2,故④正确;故答案为:①④.9.如图,ABC 的角平分线OB 、OC 相交于点O ,40A ∠︒=,则BOC ∠=______.【答案】110︒.【分析】根据三角形的角平分线定义和三角形的内角和定理求出∠OBC+∠OCB 的度数,再根据三角形的内角和定理即可求出∠BOC 的度数.【解析】解:∵OB 、OC 分别是∠ABC 和∠ACB 的角平分线,∴∠OBC+∠OCB=111()222ABC ACB ABC ACB ∠+∠=∠+∠∵∠A=40°,∴∠OBC+∠OCB=1(18040)2︒︒-=70°,∴∠BOC=180°-(∠OBC+∠OCB )=180°-70°=110°.故答案是110.10.如图,已知60BAC ∠=︒,AD 是角平分线且10AD =,作AD 的垂直平分线交AC 于点F ,作DE AC ⊥,则DEF 周长为________.【答案】5+【分析】知道60BAC ∠=︒和AD 是角平分线,就可以求出30DAE ∠=︒,AD 的垂直平分线交AC 于点F 可以得到AF =FD ,在直角三角形中30°所对的边等于斜边的一半,再求出DE ,得到DEF C DE EF AF AE DE =++=+△.【解析】解: AD 的垂直平分线交AC 于点F ,∴DF AF =(垂直平分线上的点到线段两端点距离相等)∴DEF C DE EF AF AE DE=++=+△∵60BAC ∠=︒,AD 是角平分线∴30DAE ∠=︒∵10AD =∴5DE =,AE =∴5DEF C =+△11.如图,在△ABC中,∠A=60°,BD、CD分别平分∠ABC、∠ACB,M、N、Q分别在DB、DC、BC的延长线上,BE、CE分别平分∠MBC、∠BCN,BF、CF分别平分∠EBC、∠ECQ,则∠F=________.【答案】15°【分析】先由BD、CD分别平分∠ABC、∠ACB得到∠DBC=12∠ABC,∠DCB=12∠ACB,在△ABC中根据三角形内角和定理得∠DBC+∠DCB=12(∠ABC+∠ACB)=12(180°-∠A)=60°,则根据平角定理得到∠MBC+∠NCB=300°;再由BE、CE分别平分∠MBC、∠BCN得∠5+∠6=12∠MBC,∠1=12∠NCB,两式相加得到∠5+∠6+∠1=12(∠NCB+∠NCB)=150°,在△BCE中,根据三角形内角和定理可计算出∠E=30°;再由BF、CF分别平分∠EBC、∠ECQ得到∠5=∠6,∠2=∠3+∠4,根据三角形外角性质得到∠3+∠4=∠5+∠F,∠2+∠3+∠4=∠5+∠6+∠E,利用等量代换得到∠2=∠5+∠F,2∠2=2∠5+∠E,再进行等量代换可得到∠F=12∠E.【解析】解:如图:∵BD、CD分别平分∠ABC、∠ACB,∠A=60°,∴∠DBC=12∠ABC,∠DCB=12∠ACB,∴∠DBC+∠DCB=12(∠ABC+∠ACB)=12(180°-∠A)=12×(180°-60°)=60°,∴∠MBC+∠NCB=360°-60°=300°,∵BE、CE分别平分∠MBC、∠BCN,∴∠5+∠6=12∠MBC,∠1=12∠NCB,∴∠5+∠6+∠1=12(∠NCB +∠NCB )=150°,∴∠E =180°-(∠5+∠6+∠1)=180°-150°=30°,∵BF 、CF 分别平分∠EBC 、∠ECQ ,∴∠5=∠6,∠2=∠3+∠4,∵∠3+∠4=∠5+∠F ,∠2+∠3+∠4=∠5+∠6+∠E ,即∠2=∠5+∠F ,2∠2=2∠5+∠E ,∴2∠F =∠E ,∴∠F =12∠E =12×30°=15°.故答案为:15°.三、解答题12.(1)如图所示,在ABC 中,,BO CO 分别是ABC ∠和ACB ∠的平分线,证明:1902BOC A ∠=+∠︒.(2)如图所示,ABC 的外角平分线BD 和CD 相交于点D ,证明:1902BDC A -︒∠=∠.(3)如图所示,ABC 的内角平分线BD 和外角平分线CD 相交于点D ,证明:12D A ∠=∠.【答案】(1)见解析;(2)见解析;(3)见解析【解析】(1)设,ABO OBC x ACO BCO y ∠=∠=∠=∠=.由ABC 的内角和为180︒,得22180A x y ︒∠++=.①由BOC 的内角和为180︒,得180BOC x y ∠++=︒.②由②得180x y BOC +=-∠︒.③把③代入①,得()2180180A BOC ∠+-∠=︒︒,即2180BOC A ∠=︒+∠,即1902BOC A ∠=+∠︒(2)∵BD 、CD 为△ABC 两外角∠ABC 、∠ACB 的平分线,∴()()1122BCD A ABC DBC A ACB ∠=∠+∠∠=∠+∠、,由三角形内角和定理得,180BDC BCD DBC ∠=︒-∠-∠,=180°-12[∠A +(∠A +∠ABC +∠ACB )],=180°-12(∠A +180°),=90°-12∠A ;(3)如图:∵BD 为△ABC 的角平分线,交AC 与点E ,CD 为△ABC 外角∠ACE 的平分线,两角平分线交于点D∴∠1=∠2,∠5=12(∠A +2∠1),∠3=∠4,在△ABE 中,∠A =180°-∠1-∠3∴∠1+∠3=180°-∠A ①在△CDE中,∠D=180°-∠4-∠5=180°-∠3-12(∠A+2∠1),即2∠D=360°-2∠3-∠A-2∠1=360°-2(∠1+∠3)-∠A②,把①代入②得∠D=12∠A.13.如图,在△ABC中,∠ABC、∠ACB的平分线相交于点O①若∠ABC=40°,∠ACB=50°,则∠BOC的度数为;②若∠A=76°,则∠BOC的度数为;③你能找出∠A与∠BOC之间的数量关系吗?说明理由【答案】①135°;②128°;③∠BOC=90°+12∠A,理由见解析【分析】①利用三角形的内角和定理和角平分线的定义进行求解;②利用三角形的内角和定理求出(∠ABC+∠ACB)的度数,再根据角平分线的定义和三角形的内角和定理进行求解;③利用三角形的内角和定理求出(∠ABC+∠ACB)的度数,再根据角平分线的定义和三角形的内角和定理进行求解.【解析】解:①∵∠ABC=40°,∠ACB=50°,∠ABC,∠ACB的平分线相交于点O,∴∠OBC=12∠ABC=20°,∠OCB=12∠ACB=25°,又∵∠BOC+∠OBC+∠OCB=180°,∴∠BOC=180°-12(∠ABC+∠ACB)=135°,故答案为:135°;②∵在△ABC中,∠A=76°,∴∠ABC+∠ACB=104°,∴由①知,∠BOC=180°-12(∠ABC+∠ACB)=128°,故答案为:128°③∠BOC=90°+12∠A,理由如下:∠BOC=180°-12(∠ABC+∠ACB)=180°-12(180°-∠A)=90°+12∠A.14.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点P.(1)若∠ABC +∠ACB =130°,求∠BPC 的度数.(2)当∠A 为多少度时,∠BPC =3∠A ?【答案】(1)115︒;(2)36A ∠=︒【分析】(1)根据角平分线的定义,求得PBC ∠,PCB ∠,再根据三角形内角和定理即可求得BPC ∠;(2)根据(1)的方法求得BPC ∠,再结合条件∠BPC =3∠A ,解方程即可求得∠A .【解析】(1)PB 平分ABC ∠,PC 平分ACB ∠,11,22PBC ABC PCB ACB ∴∠=∠∠=∠, ∠ABC +∠ACB =130°,1()652PBC PCB ABC ACB ∴∠+∠=∠+∠=︒,180()18065115BPC PBC PCB ∴∠=︒-∠+∠=︒-︒=︒,(2)PB 平分ABC ∠,PC 平分ACB ∠,11,22PBC ABC PCB ACB ∴∠=∠∠=∠,1()2PBC PCB ABC ACB ∴∠+∠=∠+∠,180ABC ACB A ∠+∠=︒-∠ ,1902PBC PCB A ∴∠+∠=︒-∠,180()BPC PBC PCB Ð=°-Ð+Ð1180(90)2A =︒-︒-∠1902A =+∠︒ ∠BPC =3∠A13902A A ∴∠=︒+∠,36A ∴∠=︒.15.数学思想运用:(1)如图①所示,△ABC 的外角平分线交于G ,若∠A =80°,则∠BGC =______°,请你猜测∠BGC 和∠A 的数量关系:_______________.(2)如图②所示,若△ABC 的内角平分线交于点I ,若∠A =50°,则∠BIC =______°,请你猜测∠BIC 和∠A 的数量关系:__________________.(3)已知,如图③,△ABC 中,ACE ∠的平分线与的平分线交于点,请你猜测∠D和∠A 的数量关系:____________________.若,求的度数(写出求解过程).【答案】(1)501902BGC A ∠=︒-∠(2)1151902BIC A ∠=︒+∠(3)12D ACE ∠=∠,35°【分析】(1)根据三角形内角和等于180°,可知180100ABC ACB A ∠+∠=︒-∠=︒,继而求出260CBE BCF ∠+∠=︒由角平分线的定义得出112,322CBE BCF ∠=∠∠=∠,再由三角形内角和定理即可求解;(2)根据三角形内角和等于180°,可得180130ABC ACB A ∠+∠=︒-∠=︒,根据角平分线的意义可得116,822ABC ACB ∠=∠∠=∠,再由三角形内角和定理即可求解;(3)先由角平分线的定义可得1,122DBC ABC DCE ACE ∠=∠∠=∠,再根据三角形外角的性质得,ACE ABC A DCE DBC D ∠=∠+∠∠=∠+∠,利用角的和差即可求解;将70A ︒∠=代入数量关系即可求解.【解析】(1)180,80A ABC ACB A ∠+∠+∠=︒∠=︒180100ABC ACB A ∴∠+∠=︒-∠=︒180,180ABC CBE ACB BCF ∠+∠=︒∠+∠=︒180180(180)180260CBE BCF A A ∴∠+∠=︒+︒-︒-∠=︒+∠=︒,BG CG 分别平分,CBE BCF∠∠112,322CBE BCF ∴∠=∠∠=∠1123()(180)13022CBE BCF A ∴∠+∠=∠+∠=︒+∠=︒23180BGC ∠+∠+∠=︒ 11180(23)180(180)905022BGC A A ⎡⎤∴∠=︒-∠+∠=︒-︒+∠=︒-∠=︒⎢⎥⎣⎦故答案为:50,1902BGC A ∠=︒-∠(2)180,50A ABC ACB A ∠+∠+∠=︒∠=︒180130ABC ACB A ∴∠+∠=︒-∠=︒,BI CI Q 分别平分,ABC ACB∠∠116,822ABC ACB ∴∠=∠∠=∠11168()(180)90222ABC ACB A A ∴∠+∠=∠+∠=︒-∠=︒-∠68180BIC ∠+∠+∠=︒ 11180(68)180(180)9011522BIC A A ∴∠=︒-∠+∠=︒-︒-∠=︒+∠=︒故答案为:115,1902BIC A ∠=︒+∠(3),BD CD 分别平分,ABC ACE∠∠11,22DBC ABC DCE ACE ∴∠=∠∠=∠,ACE ABC A DCE DBC D∠=∠+∠∠=∠+∠ 111222ACE ABC A ∴∠=∠+∠12D A ∴∠=∠70A ︒∠= 35D ∴∠=︒故答案为:12D A ∠=∠16.ABC 中,50A ∠=︒.(1)如图①,若点P 是ABC ∠与ACB ∠平分线的交点,求P ∠的度数;(2)如图②,若点P 是CBD ∠与BCE ∠平分线的交点,求P ∠的度数;(3)如图③,若点P 是ABC ∠与ACF ∠平分线的交点,求P ∠的度数;(4)若A β∠=.请直接写出图①,②,③中P ∠的度数,(用含β的代数式表示)【答案】(1)115°;(2)65°;(3)25°;(4)分别为:①11180(180)9022P ββ∠=︒-︒-=︒+;②1902P β∠=︒-;③1122P A β∠=∠=【分析】(1)根据三角形内角和定理和角平分线定义得出∠PBC+∠PCB=12(∠ABC+∠ACB )=65°,根据三角形的内角和定理得出∠P 的度数;(2)由三角形内角和定理和邻补角关系得出∠CBD+∠BCE=360°-130°=230°,由角平分线得出∠PBC+∠PCB=12(∠CBD+∠BCE )=115°,再由三角形内角和定理即可求出结果;(3)由三角形的外角性质和角平分线的定义证出∠P=12∠A ,即可得出结果;(4)由(1)(2)(3),容易得出结果.【解析】解:(1)50A ∠=︒ ,18050130ABC ACB ∴∠+∠=︒-︒=︒,点P 是ABC ∠与ACB ∠平分线的交点,12PBC ABC ∴∠=∠,12PCB ACB ∠=∠,11()1306522PBC PCB ABC ACB ∴∠+∠=⨯∠+∠=⨯︒=︒,180()115P PBC PCB ∴∠=︒-∠+∠=︒;(2)18050130ABC ACB ∠+∠=︒-︒=︒ ,360130230CBD BCE ∴∠+∠=︒-︒=︒,点P 是CBD ∠与BCE ∠平分线的交点,1()1152PBC PCB CBD BCE ∴∠+∠=∠+∠=︒,18011565P ∴∠=︒-︒=︒;(3) 点P 是ABC ∠与ACF ∠平分线的交点,12PBC ABC ∴∠=∠,12PCF ACF ∠=∠,PCF P PBC ∠=∠+∠ ,ACF A ABC ∠=∠+∠,2()P PBC A ABC ∴∠+∠=∠+∠,1252P A ∴∠=∠=︒;(4)若A β∠=,在(1)中,11180(180)9022P ββ∠=︒-︒-=︒+;在(2)中,同理得:1902P β∠=︒-;在(3)中,同理得:1122P A β∠=∠=.17.【问题背景】(1)如图1的图形我们把它称为“8字形”,请说明∠A+∠B=∠C+∠D ;【简单应用】(2)如图2,AP 、CP 分别平分∠BAD .∠BCD ,若∠ABC=46°,∠ADC=26°,求∠P 的度数;【问题探究】(3)如图3,直线AP 平分∠BAD 的外角∠FAD ,CP 平分∠BCD 的外角∠BCE ,若∠ABC=36°,∠ADC=16°,请猜想∠P 的度数,并说明理由.【拓展延伸】(4)①在图4中,若设∠C=α,∠B=β,∠CAP=13∠CAB ,∠CDP=13∠CDB ,试问∠P 与∠C 、∠B 之间的数量关系为:(用α、β表示∠P );②在图5中,AP 平分∠BAD ,CP 平分∠BCD 的外角∠BCE ,猜想∠P 与∠B 、∠D 的关系,直接写出结论.【答案】(1)见解析;(2)36°;(3)26°,理由见解析;(4)①∠P=23αβ+②∠P=1802B D︒+∠+∠【分析】(1)根据三角形内角和定理即可证明;(2)直接利用(1)中的结论两次,两式相加,然后根据角平分线的性质求解即可;(3)由AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,推出∠1=∠2,∠3=∠4,推出∠PAD=180°﹣∠2,∠PCD=180°﹣∠3,由∠P+(180°﹣∠1)=∠D+(180°﹣∠3),∠P+∠1=∠B+∠4,推出2∠P=∠B+∠D,即可解决问题.(4)①同法利用(1)种的结论列出方程即可解决问题.②同法利用(1)种的结论列出方程即可解决问题.【解析】(1)在△AEB中,∠A+∠B+∠AEB=180°.在△CED中,∠C+∠D+∠CED=180°.∵∠AEB=∠CED,∴∠A+∠B=∠C+∠D;(2)由(1)得:∠1+∠B=∠3+∠P,∠4+∠D=∠2+∠P,∴∠1+∠B+∠4+∠D=∠3+∠P+∠2+∠P.∵∠1=∠2,∠3=∠4,∴2∠P=∠B+∠D=46°+26°=72°,∴∠P=36°.(3)∠P=26°,理由是:如图3:∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∴∠PAD=180°﹣∠2,∠PCD=180°﹣∠3.∵∠PAB=∠1,∠P+∠PAB=∠B+∠4,∴∠P+∠1=∠B+∠4.∵∠P+(180°﹣∠2)=∠D+(180°﹣∠3),∴2∠P=∠B+∠D,∴∠P=12(∠B+∠D)=12×(36°+16°)=26°.(4)①设∠CAP=m,∠CDP=n,则∠CAB=3m,,∠CDB=3n,∴∠PAB=2m,∠PDB=2n.∵∠C+∠CAP=∠P+∠PDC,∠P+∠PAB=∠B+∠PDB,∵∠C=α,∠B=β,∴α+m=∠P+n,∠P+2m=β+2n,∴α-∠P=n-m,∠P-β=2n-2m=2(n-m),∴2α+β=3∠P∴∠P=23αβ+.故答案为:∠P=23αβ+.②设∠BAP=x,∠PCE=y,则∠PAO=x,∠PCB=y.∵∠PAO+∠P=∠PCD+∠D,∠B+∠BAO=∠OCD+∠D,∴x+∠P=180°-y+∠D,∠B+2x=180°-2y+∠D,∴∠P=1802B D︒+∠+∠.故答案为:∠P=1802B D︒+∠+∠.18.如图①,在△ABC中,∠ABC与∠ACB的平分线相交于点P.(1)如果∠A=80°,求∠BPC的度数;(2)如图②,作△ABC外角∠MBC、∠NCB的平分线交于点Q,试探索∠Q、∠A之间的数量关系.(3)如图③,延长线段BP、QC交于点E,△BQE中,存在一个内角等于另一个内角的3倍,请直接写出∠A的度数.【答案】(1)130°;(2)1902Q A∠=︒-∠;(3)60°或120°或45°或135°【分析】(1)运用三角形的内角和定理及角平分线的定义,首先求出∠ABC+∠ACB,进而求出∠BPC即可解决问题;(2)根据三角形的外角性质分别表示出∠MBC与∠BCN,再根据角平分线的性质可求得∠CBQ+∠BCQ,最后根据三角形内角和定理即可求解;(3)在△BQE中,由于∠Q=90°﹣12∠A,求出∠E=12∠A,∠EBQ=90°,所以如果△BQE中,存在一个内角等于另一个内角的3倍,那么分四种情况进行讨论:①∠EBQ=3∠E=90°;②∠EBQ=3∠Q=90°;③∠Q=3∠E;④∠E=3∠Q;分别列出方程,求解即可.【解析】(1)解:∵∠A=80°.∴∠ABC+∠ACB=100°,∵点P是∠ABC和∠ACB的平分线的交点,∴∠P=180°﹣12(∠ABC+∠ACB)=180°﹣12×100°=130°,(2)∵外角∠MBC,∠NCB的角平分线交于点Q,∴∠QBC+∠QCB=12(∠MBC+∠NCB)=12(360°﹣∠ABC﹣∠ACB)=12(180°+∠A)=90°+12∠A∴∠Q=180°﹣(90°+12∠A)=90°﹣12∠A;(3)延长BC至F,∵CQ为△ABC的外角∠NCB的角平分线,∴CE是△ABC的外角∠ACF的平分线,∴∠ACF=2∠ECF,∵BE平分∠ABC,∴∠ABC=2∠EBC,∵∠ECF=∠EBC+∠E,∴2∠ECF=2∠EBC+2∠E,即∠ACF=∠ABC+2∠E,又∵∠ACF=∠ABC+∠A,∴∠A=2∠E,即∠E=12∠A;∵∠EBQ=∠EBC+∠CBQ=12∠ABC+12∠MBC=12(∠ABC+∠A+∠ACB)=90°.如果△BQE中,存在一个内角等于另一个内角的3倍,那么分四种情况:①∠EBQ=3∠E=90°,则∠E=30°,∠A=2∠E=60°;②∠EBQ=3∠Q=90°,则∠Q=30°,∠E=60°,∠A=2∠E=120°;③∠Q=3∠E,则∠E=22.5°,解得∠A=45°;④∠E=3∠Q,则∠E=67.5°,解得∠A=135°.综上所述,∠A的度数是60°或120°或45°或135°.19.如图,∠CBF,∠ACG是△ABC的外角,∠ACG的平分线所在的直线分别与∠ABC,∠CBF的平分线BD,BE交于点D,E.(1)若∠A=70°,求∠D的度数;(2)若∠A=a,求∠E;(3)连接AD,若∠ACB= ,则∠ADB=.【答案】(1)35°;(2)90°-12α;(3)12β【分析】(1)由角平分线的定义得到∠DCG=12∠ACG,∠DBC=12∠ABC,然后根据三角形外角的性质即可得到结论;(2))根据角平分线的定义得到∠DBC=12∠ABC,∠CBE=12∠CBF,于是得到∠DBE=90°,由(1)知∠D=12∠A,根据三角形的内角和得到∠E=90°-12α;(3)根据角平分线的定义可得,∠ABD=12∠ABC,∠DAM=12∠MAC,再利用三角形外角的性质可求解.【解析】解:(1)∵CD平分∠ACG,BD平分∠ABC,∴∠DCG=12∠ACG,∠DBC=12∠ABC,∵∠ACG=∠A+∠ABC,∴2∠DCG=∠ACG=∠A+∠ABC=∠A+2∠DBC,∵∠DCG=∠D+∠DBC,∴2∠DCG=2∠D+2∠DBC,∴∠A+2∠DBC=2∠D+2∠DBC,∴∠D=12∠A=35°;(2)∵BD平分∠ABC,BE平分∠CBF,∴∠DBC=12∠ABC,∠CBE=12∠CBF,∴∠DBC+∠CBE=12(∠ABC+∠CBF)=90°,∴∠DBE=90°,∵∠D=12∠A,∠A=α,∴∠D=12α,∵∠DBE=90°,∴∠E=90°-12α;(3)如图,∵BD平分∠ABC,CD平分∠ACG,∴AD平分∠MAC,∠ABD=12∠ABC,∴∠DAM=12∠MAC,∵∠DAM=∠ABD+∠ADB,∠MAC=∠ABC+∠ACB,∠ACB=β,∴∠ADB=12∠ACB=12β.故答案为:12β.。

初中数学几何模型之角平分线模型

初中数学几何模型之角平分线模型
模型一:角分线与圆周角和角的n等分线
①角分线与圆周角
模型分析:
如图,直线AB、CD相较于点O,OE⊥AB于点O,OF平分∠AOE, ,则下列结论不正确的是()
A.∠AOD与∠1互为补角B.∠1的余角等于
C. D.
【解析】
解:A.∠AOD与∠1互为补角,说法正确;
B.∠1的余角: ,说法正确;
C.∵OE⊥AB,
∴ ,
∵OF平分∠AOE,
∴ ,说法正确;
D. ,原题说法错误;
故选:D.
解题通法:掌握余角,补角,角平分线,垂线的性质,通过加减运算解决问题
模型精练:
1.如图,直线AB,CD相交于点O,射线OM平分 , ,若 ,则 的度数为()
A.
B.
C.
D.
【答案】C
【解析】
【分析】由 和射线OM平分 ,可求∠MOC=30°;再根据 ,即可求得∠CON.
【详解】解:∵ ,射线OM平分 ,
∴∠MOC=

∴ =∠MON-∠MOC=90°-30°=60°,故选:C
【点睛】本题考查了角平分线和角的和差的知识,正确运用角的和差是解答本题的关键.
2.如图,点O是直线AD上一点,射线OC,OE分别平分∠AOB、∠BOD.若∠AOC=28°,则∠BOE=_____.
数学模型-角平分线常见解题模型
角平分线作为图形最基础的概念,在选择题,填空题和几何证明题中屡见不鲜,同学们除了掌握角平分线的概念和性质定理以外,还需要对常见的角平分线的模型进行了解,在与平行线、三角形、四边形、圆等背景知识的基础上,结合角平分线得到一些常见的结论并对此进行整理记忆.
对此将角平分线的常见模型分为如下六个模块,其中前五模块为基础模块,需要同学们掌握其中结论的证明步骤,第六模块为补充模块,只需要了并会运用即可.

2022年中考数学几何模型之角平分线的五种模型(讲+练)(解析版)

2022年中考数学几何模型之角平分线的五种模型(讲+练)(解析版)

专题01 角平分线的五种模型模型一、角平分线垂两边例1.如图,AD是△ABC的角平分线,且AB:AC=3:2,则△ABD与△ACD的面积之比为()A.3:2B.6:4C.2:3D.不能确定【答案】A【详解】过点D作DE⊥AB于E,DF⊥AC于F.∵AD为∠BAC的平分线,∴DE=DF,又AB:AC=3:2,∴S△ABD:S△ACD=(12AB•DE):(12AC•DF)=AB:AC=3:2.故选A.例2.如图,∠AOP=∠BOP=15°,PC//OA,PD⊥OA,若PC=4,则PD的长为___.【答案】2【详解】解:过P作PE⊥OB,交OB与点E,∵∠AOP=∠BOP,PD⊥OA,PE⊥OB,∴PD=PE,∵PC//OA,∴∠CPO=∠POD,又∠AOP=∠BOP=15°,∴∠CPO=∠BOP=15°,又∠ECP为△OCP的外角,∴∠ECP=∠COP+∠CPO =30°,在直角三角形CEP 中,∠ECP =30°,PC =4,∴PE =12PC =2,则PD =PE =2.故答案为:2. 【变式训练1】如图所示,在四边形ABCD 中,DC //AB ,∠DAB =90°,AC ⊥BC ,AC =BC ,∠ABC 的平分线交A D ,AC 于点E 、F ,则BFEF的值是___________.11221BCBC BC ==--【详解】解:如图,作FG ⊥AB 于点G ,∠DAB -90°,∴FG /AD ,∴BF EF =BGAGAC ⊥BC ,∴∠ACB =90° 又BF 平分∠ABC ,∴FG =FC 在Rt △BGF 和Rt △BCF 中BF BFCF GF=⎧⎨=⎩ ∴△BGF ≌△BCF (HL ),∴BC =BGAC =BC ,∴∠CBA =45°,∴AB =2BC1BF BG BC EF AG AB BG ∴====- 【变式训练2】如图,BD 平分ABC 的外角∠ABP ,DA =DC ,DE ⊥BP 于点E ,若AB =5,BC =3,求BE 的长.【答案】1【详解】解:过点D 作BA 的垂线交AB 于点H ,∵BD平分△ABC的外角∠ABP,DH⊥AB,∴DE=DH,在Rt△DEB和Rt△DHB中,DE DHDB DB=⎧⎨=⎩,∴Rt△DEB≌Rt△DHB(HL),∴BE=BH,在Rt△DEC和Rt△DHA中,DE DHDC DA=⎧⎨=⎩,∴Rt△DEC≌Rt△DHA(HL),∴AH=CE,由图易知:AH=AB−BH,CE=BE+BC,∴AB−BH=BE+BC,∴BE+BH=AB−BC=5−3=2,而BE=BH,∴2BE=2,故BE=1.【变式训练3,的平分线相交于点E,过点E作交AC于点F,则EF的长为.【答案】【解析】延长FE交AB于点D G H,如图所示:四边形BDEG是矩形,平分CE平分,四边形BDEG是正,,设,则,,,解得,,即,解得,.模型二、角平分线垂中间例.如图,已知,90,,BAC AB AC BD ∠=︒=是ABC ∠的平分线,且CE BD ⊥交BD 的延长线于点E .求证:2BD CE =. 【答案】见解析【详解】证明:如图,延长CE 与BA 的延长线相交于点F ,∵90,90EBF F ACF F ∠+∠=︒∠+∠=︒,∴EBF ACF ∠=∠,在ABD △和ACF 中,EBF ACF AB AC BAC CAF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ABD ACF ASA △≌△,∴BD CF =,∵BD 是ABC ∠的平分线,∴EBC EBF ∠=∠.在BCE ∆和BFE ∆中,EBC EBF BE BE CEB FEB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()BCE BFE ASA ≌△△, ∴CE EF =,∴2CF CE =, ∴2BD CF CE ==.【变式训练1】如图,已知△ABC ,∠BAC =45°,在△ABC 的高BD 上取点E ,使AE =BC . (1)求证:CD =DE ;(2)试判断AE 与BC 的位置关系?请说明理由;【答案】(1)见解析;(2)AE BC ⊥,理由见解析;(3)【详解】(1)证明:∵BD AC ⊥,45BAC ∠=︒,∴90,45EDA BDC ABD BAD ∠=∠=︒∠=∠=︒,∴AD BD =,在Rt ADE △和Rt BDC 中,∵AD BDAE BC =⎧⎨=⎩ ∴()Rt ADE Rt BDC HL ≅,∴CD =DE ; (2)AE BC ⊥,理由如下:如图,延长AE ,交BC 于点F , 由(1)得,90EAD EBF EAD AED ∠=∠∠+∠=︒,∵AED AEF ∠=∠,∴90BEF EBF ∠+∠=︒,∴90EFB =︒,即AE BC ⊥;【变式训练2】如图,D 是△ABC 的BC 边的中点,AE 平分∠BAC ,AE ⊥CE 于点E ,且AB =10,AC =16,则DE 的长度为________【答案】3【解答】解:如图,延长CE ,AB 交于点F .AE 平分∠BAC ,AE ⊥EC ,∴∠F AE =∠CAE ,∠AEF =∠AEC =90°在△AFE 和△ACE 中,EAF EAC AE AE AEF AEC =⎧⎪=⎨⎪=⎩∠∠∠∠,∴△AFE ≌ACE (ASA ),∴AF =AC =16,EF =EC ,∴B F =6又D 是BC 的中点,∴BD =CD ,∴DE 是△CBF 的中位线,∴DE =12BF =3,故答案为:3. 【变式训练3】如图,在ABC ∆中,CD 是ACB ∠的平分线,AD CD ⊥于点D ,DE //BC 交AB 于点E ,求证:EA EB =.【答案】见解析【解答】证明:延长AD 交BC 于点F .CD 平分ACF ∠, ACD FCD ∴∠=∠.又,,AD CD CD CD ⊥=ADC ∴∆≌FDC ∆,AD FD ∴=. 又DE ∥BC ,EA EB ∴=.模型三、角平分线+平行线构造等腰三角形例.如图所示,在△ABC 中,BC =6,E 、F 分别是AB 、AC 的中点,动点P 在射线EF 上,BP 交CE 于D,∠CBP 的平分线交CE 于Q ,当CQ =13CE 时,EP +BP =________.【答案】12【解答】解:如图,延长BQ 交射线EF 于点M .E 、F 分别是AB 、AC 的中点,∴EF //BC ,∴∠CBM =∠EMBBM 平分∠ABC ,∴∠ABM =∠CBM ,∴∠EMB =∠EBM ,∴EB =EM ,∴EP +BP =EP +PM =EM CQ =13CE ,∴EQ =2CQ由EF //BC 得,△EMQ ∽△CBQ∴2 212 12EM EQEM BC EP BP BC CQ==∴==∴+=【变式训练1】如图,平分于点C ,,求OC 的长?【解析】如图所示:过点D 作交OA 于点E ,则,平分,,中,,.【变式训练2C=90°,AD平分∠CAB,BE平分∠ABC,AD、BE相交于点F,且,则AC=.【解析】过点E于G,连接CF,如图所示:分别是,CF是的平分线,,,由勾股定理可得.模型四、利用角平分线作对称例.平分.【答案】见解析【解析】证明:在AB上截取,连接DE,如图所示:.【变式训练】AD是△ABC的角平分线,过点D作DE⊥AB于点E,且DE=3,S△ABC=20.(1)如图1,若AB=AC,求AC的长;(2)如图2,若AB=5,请直接写出AC的长.【答案】(1)203;(2)253【详解】解:(1)如图1,作DF⊥AC于F,∵AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,∴DF =DE =3, 由题意得,12×AB ×3+12×AC ×3=20,解得,AC =AB =203; (2)如图2,作DF ⊥AC 于F ,∵AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,∴DF =DE =3, 由题意得,12×5×3+12×AC ×3=20,解得,AC =253. 模型五、内外模型例.如图,在△ABC 中,AB=AC ,∠A=30°,E 为BC 延长线上一点,∠ABC 与∠AC E 的平分线相交于点D ,则∠D 的度数为( )A .15°B .17.5°C .20°D .22.5°【答案】A4321DA【解析】∵∠ABC与∠AC E的平分线相交于点D,∴∠DCE=∠DCA,∠CBD=∠ABD,即.的外角的平分线CP与内角BP交于点P,若,则.【解析】平分平分又,过点P的延长线,垂足分别为点E、F、G,如图所示:由角平分线的性质可得,AP是.课后训练1.如图,BD是ABC的外角∠ABP的角平分线,DA=DC,DE⊥BP于点E,若AB=5,BC=3,则BE 的长为()A .2B .1.5C .1D .0【答案】C【详解】解:如图,过点D 作DF AB ⊥于F ,BD 是ABP ∠的角平分线,DF AB ⊥,DE ⊥BP ,DE DF ∴=,在Rt BDE 和Rt BDF 中,BD BDDE DF =⎧⎨=⎩,()Rt BDE Rt BDF HL ∴△≌△,BE BF ∴=,在Rt ADF 和Rt CDE △中,DA DCDE DF=⎧⎨=⎩,()Rt ADF Rt CDE HL ∴△≌△,AF CE ∴=,AF AB BF =-,CE BC BE =+,AB BF BC BE ∴-=+,2BE AB BC ∴=-,5AB =,3BC =,2532BE ∴=-=,解得:1BE =.故选:C .2.如图,AD 是ABC 中BAC ∠的平分线,DE AB ⊥交AB 于点E ,DF AC ⊥交AC 于点F ,若7ABC S =△,32=DE ,5AB =,则AC 的长为( )A .133B .4C .5D .6【答案】A【详解】∵AD 是ABC ∆中BAC ∠的平分线,DE AB ⊥于点E ,DF AC ⊥交AC 于点F ,∴32DF DE ==. 又∵ABCABD ACDSSS=+,5AB =,∴1313752222AC =⨯⨯+⨯⨯,∴133AC =.故选:A . 3.如图,在Rt △ABC 中,∠C =90°,∠BAC 的平分线交BC 于点D ,CD =2,BD =3,Q 为AB 上一动点,则DQ 的最小值为( )A.1B.2C.2.5D【答案】B【详解】解:作DH⊥AB于H,如图,∵AD平分∠BAC,DH⊥AB,DC⊥AC,∴DH=DC=2,∵Q为AB上一动点,∴DQ的最小值为DH的长,即DQ的最小值为2.故选:B.4.如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC=9,CD=4,则四边形ABCD 的面积是______.【答案】30【详解】过D作DE⊥AB,交BA的延长线于E,则∠E=∠C=90°,∵∠BCD=90°,BD平分∠ABC,∴DE=DC=4,∴四边形ABCD的面积S=S△BCD+S△BAD=12×BC×CD+12×AB×DE=12×9×4+12×6×4=30,故答案为:30.5.如图,在△ABC中,AD为△ABC的角平分线,DE⊥AB,垂足为E,DF⊥AC,垂足为F,若AB=5,AC=3,DF=2,则△ABC的面积为______.【答案】8【详解】解:∵AD为△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF=2,∴△ABC的面积=12×5×2+12×3×2=8,故答案侍:8.6.在△ABC中,∠ABC=62°,∠ACB=50°,∠ACD是△ABC的外角∠ACD和∠ABC的平分线交于点E,则∠AEB=_____︒【答案】25【详解】解:如图示:过点E ,分别作EF BD ⊥交BD 于点E ,EG AC ⊥交AC 于点G ,EH AB ⊥,交AB 延长线于点H , ∵BE 平分ABC ∠,CE 平分ACD ∠,∴EH EF =,EG EF =,∴EH EG =,∴AE 平分HAC ∠, ∵62ABC ∠=︒,50∠=°ACB ,∴6250112HAC ABC ACB ∠=∠+∠=︒+︒=︒,∴111125622EAO HAC ∠=∠=⨯︒=︒, ∵BE 平分ABC ∠,62ABC ∠=︒∴11623122EBC ABC ∠=∠=⨯︒=︒ 在AOE △和BOC 中,OBC OCB OAE AEB ∠+∠=∠+∠∴31505625AEB OBC OCB OAE ∠=∠+∠-∠=︒+︒-︒=︒,故答案是:25. 7.如图,DE ⊥AB 于E ,DF ⊥AC 于F ,若BD =CD ,BE =CF .(1)求证:AD 平分∠BAC :(2)已知AC =18,BE =4,求AB 的长. 【答案】(1)见解析;(2)10AB =.【详解】(1)证明:DE AB ∵⊥,DF AC ⊥,90E DFC ∴∠=∠=︒,在Rt BED 和Rt CFD △中,BD CD BE CF =⎧⎨=⎩,∴Rt BED Rt CFD ≅()HL ,DE DF ∴=,DE AB ∵⊥,DF AC ⊥,AD ∴平分BAC ∠;(2)解:DE DF =,AD AD =,Rt ADE Rt ADF ∴≅()HL ,AE AF ∴=,AB AE BE AF BE AC CF BE =-=-=--,184410AB ∴=--=.8.如图1,在平面直角坐标系中,△ABC 的顶点A (-4,0),B (0,4),AD ⊥BC 交BC 于D 点,交y 轴正半轴于点E (0,t )(1)当t=1时,点C 的坐标为 ; (2)如图2,求∠ADO 的度数;(3)如图3,已知点P (0,3),若PQ ⊥PC ,PQ=PC ,求Q 的坐标(用含t 的式子表示). 【答案】(1)点C 坐标(1,0);(2)∠ADO =45°;(3)Q (-3,3-t ). 【详解】(1)如图1,当t =1时,点E (0,1), ∵AD ⊥BC , ∴∠EAO +∠BCO =90°, ∵∠CBO +∠BCO =90°,∴∠EAO =∠CBO ,在△AOE 和△BOC 中,∵90EAO CBOAO BO AOE BOC ∠=∠⎧⎪=⎨⎪∠=∠︒⎩=,∴△AOE ≌△BOC (ASA ),∴OE =OC =1,∴点C 坐标(1,0). 故答案为:(1,0);(2)如图2,过点O 作OM ⊥AD 于点M ,作ON ⊥BC 于点N ,∵△AOE ≌△BOC ,∴S △AOE =S △BOC ,且AE =BC , ∵OM ⊥AE ,ON ⊥BC ,∴OM =ON ,∴OD 平分∠ADC ;AD ⊥BC ,90ADC ∴∠=︒∴∠ADO =1452ADC ∠=︒;(3)如图3,过P 作GH ∥x 轴,过C 作CG ⊥GH 于G ,过Q 作QH ⊥GH 于H ,交x 轴于F ,∵P (0,3),C (t ,0),∴CG =FH =3,PG =OC =t , ∵∠QPC =90°,∴∠CPG +∠QPH =90°, ∵∠QPH +∠HQP =90°,∴∠CPG =∠HQP ,∵∠QHP=∠G=90°,PQ=PC,∴△PCG≌△QPH,∴CG=PH=3,PG=QH=t,∴Q(-3,3-t).。

初中数学常见模型之角平分线四大模型

初中数学常见模型之角平分线四大模型

角平分线四大模型模型1 角平分线上的点向两边作垂线如图,P 是∠MON 的平分线上一点,过点P 作PA ⊥OM 于点A ,PB ⊥ON 于点B 。

结论:PB=PA 。

模型分析利用角平分线的性质:角平分线上的点到角两边的距离相等,构造模型,为边相等、角相等、三角形全等创造更多的条件,进而可以快速找到解题的突破口。

模型实例(1)如图①,在△ABC 中,∠C=90°,AD 平分∠CAB ,BC=6,BD=4,那么点D到直线AB 的距离是 ; (2)如图②,∠1=∠2,+∠3=∠4。

求证:AP 平分∠BAC 。

热搜精练1.如图,在四边形ABCD 中,BC>AB ,AD=DC ,BD 平分∠ABC 。

求证:∠BAD+∠BCD=180°。

2.如图,△ABC 的外角∠ACD 的平分线CP 与内角∠ABC 的平分线BP 交于点 P ,若∠BPC=40°,则∠CAP= 。

N M OAB P 2图4321A CP B D AB C图1A B DC模型2 截取构造对称全等如图,P 是∠MON 的平分线上一点,点A 是射线OM 上任意一点,在ON 上截取OB=OA ,连接PB 。

结论:△OPB ≌△OPA 。

模型分析利用角平分线图形的对称性,在角的两边构造对称全等三角形,可以得到对应边、对应角相等。

利用对称性把一些线段或角进行转移,这是经常使用的一种解题技巧。

模型实例(1)如图①所示,在△ABC 中,AD 是△ABC 的外角平分线,P 是AD 上异于点A 的任意一点,试比较PB+PC 与AB+AC 的大小,并说明理由;(2)如图②所示, AD 是△ABC 的内角平分线,其他条件不变,试比较 PC-PB 与AC-AB 的大小,并说明理由。

热搜精练1.已知,在△ABC 中,∠A=2∠B ,CD 是∠ACB 的平分线,AC=16,AD=8。

求线段BC 的长。

A B DCPP O N M B A 图2DP AB C D C 1图P B A ABCD2.已知,在△ABC 中,AB=AC ,∠A=108°,BD 平分∠ABC 。

角平分线四大基本模型

角平分线四大基本模型
【提示】“角平分线加垂线,三线合一试试看”
12
例题4 (1)在三角形ABC中,∠ABC与∠ACB的角平分线相交 于点F,过点F作DE//BC,交AB于点D,交AC于点E,若 BD+CE=9,则线段DE之长为________
13
(2)在△ABC中,BD、CD分别平分∠ABC和∠ACB, DE//AB,FD//AC,如果BC=6,求△DEF的周长
【提示】“图中有角平分线,可将图形对折看,对称以后关系现”
10
例题3 (1)已知等腰直角三角形ABC中,∠A=90°,AB=AC, BD平分∠ABC,CE⊥BD,垂足为点E,求证: BD=2CE
11
(2)在△ABC中,AB=3AC,∠BAC的平分线交BC于 点D,过点B作BE⊥AD,垂足为E,求证:AD=DE
角平分线四大基本模型 角平分线在初中几何中常见, 现总结以下四种基本类型 已知P是∠MON平分线上一点
2
【模型1】 若PA⊥OM于点A,可过P作PB⊥ON于点B,则 PB=PA 口诀:“图中有角平分线,可向两边作垂线”
3
【模型2】 若点A是射线OM上任意一点,可在ON上截取OB=OA,连接PB, 构造△OPB≌△OPA 口诀:“图中有角平分线,可将图形对折看,对称以后关系现”
“角平分线+平行线,等腰三角形必呈现”
14
ห้องสมุดไป่ตู้
4
【模型3】 若AP⊥OP于点P,可延长AP交ON于点B,构造等腰 △AOB,OP是底边AB垂线,进而利用三线合一 口诀:“角平分线加垂线,三线合一试试看”
5
【模型4】 若过点P作PQ//ON交OM于点Q,从而构造等腰△POQ 口诀:“角平分线+平行线,等腰三角形必呈现”

巧借三角形的两条内(外)角平分线夹角的模型

巧借三角形的两条内(外)角平分线夹角的模型

BBECB A巧借三角形的两条内(外)角平分线夹角的模型【基本模型】三角形的两个内(外)角平分线所夹的角与第三个角之间的数量关系 模型一:当这两个角为内角时:这个夹角等于90°与第三个角一半的和(如图1); 模型二:当这两个角为外角时:这个夹角等于90°与第三个角一半的差(如图2); 模型三:当这两个角为一内角、一外角时:这个夹角等于第三个角一半(如图3);【分析】三个结论的证明例1、 如图1,△ABC 中,BD 、CD 为两个内角平分线,试说明:∠D=90°+21∠A 。

(方法一)解:∵BD 、CD 为角平分线∴∠CBD =21∠ABC , ∠BCD =21∠ACB 。

在△BCD 中:∠D =180°-(∠CBD +∠BCD )=180°-21(∠ABC +∠ACB )=180°-21(180°-∠A )=180°-21×180°+21∠A=90°+21∠A(方法二)解:连接AD 并延长交BC 于点E 解:∵BD 、CD 为角平分线∴∠CBD =21∠ABC , ∠BCD =21∠ACB 。

∵∠BDE 是△ABD 的外角 ∴∠BDE =∠BAD+∠ABD=∠BAD+21∠ABC同理可得∠CDE =∠CAD+21∠ACB又∵∠BDC =∠BDE+∠CDE∴∠BDC =∠BAD+21∠ABC+∠CAD+21∠ACB=∠BAC+21(∠ABC+∠ACB )=∠BAC+21(180°-∠BAC )=90°+21∠BAC例2、如图,BD、CD为△ABC的两条外角平分线,试说明:∠D=90°-21∠A 。

解:∵BD 、CD 为角平分线∴∠CBD=21∠CBE∠BCD =21∠BCF又∵∠CBE 、∠BCD 为△ABC 的外角 ∴∠CBE =∠A +∠ACB ∠BCF =∠A +∠ABC∴∠CBE +∠BCF =∠A +∠ACB +∠A +∠ABC =∠A +180°在△BCD 中:∠D =180°-(∠CBD +∠BCD )=180°-(21∠CBE +21∠BCF )=180°-21(∠CBE +∠BCF )=180°-21(∠A +180°)=90°-21∠A【小结】通过对模型1、2的分析和证明,我们还能发现三角形两内角平分线的夹角和两外角平分线的夹角互补,即和为180°。

初中数学几何模型:双角平分线模型

初中数学几何模型:双角平分线模型

双角平分线模型模型讲解【结论1】如图所示,在△ABC中,BD,CD分别是∠ABC和∠ACB的平分线,则∠BDC=90°+12∠A.【证明】设∠ABD=∠DBC= x,∠ACD=∠BCD = y.由△ABC的内角和为180°,得∠A+2x+2y=180°.①由△BDC的内角和为180°,得∠BDC+x+y=180°.②由②得x+y=180°-∠BDC.③把③代入①,得∠A+2(180°-∠BDC) =180°,即2∠BDC =180°+∠A,即∠BDC=90°+12∠A.【结论2】如图所示,△ABC的外角平分线BD和CD相交于点D,则∠BDC = 90°−12∠A.【证明】设∠EBD=∠CBD = x,BCD=∠FCD = y.由△BCD的内角和为180°,得x+y+∠BDC=180°,①易得2x+2y=180°+∠A.②由①得x+y=180°-∠BDC.③把③代入②,得2(180°―∠BDC) =180°+∠A,即2∠BDC = 180°-∠A,即∠BDC = 90°−12∠A.【结论3】如图所示,△ABC的内角平分线BD和外角平分线CD相交于点D,则∠D=12∠A.【证明】设∠ABD=∠DBC = x,∠ACD=∠ECD = y.由外角定理得2y=∠A+2x,①y=∠D+x.②把②代入①,得2(∠D+x)=∠A+2x,即∠D=12∠A.典型例题典例1如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,若∠BAC=80°,则∠BOC的度数是( ).A.130°B.120°C.100°D.90°典例2如图,BA1和CA1,分别是△ABC的内角平分线和外角平分线,BA2是∠A1BD的平分线,CA2是∠A1CD的平分线,BA3是∠A2BD的平分线,CA3是∠A2CD的平分线,……以此类推,若∠A=α,则A2020 =___________.典例3【问题】如图1,在△ABC中,BE平分∠ABC,CE平分∠ACB.若∠A=80°,则∠BEC=________;若∠A=n°,则∠BEC=______.【探究】(1)如图2,在△ABC中,BD,BE三等分∠ABC,CD,CE三等分∠ACB,若∠A=n°,则∠BEC=________;(2)如图3,O是∠ABC的平分线BO与∠ACD的平分线CO的交点,试分析∠BOC和∠A有怎样的关系,并说明理由;(3)如图4,O是三角形ABC的外角∠DBC与∠BCE的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系? (只写结论,不需要证明)初露锋芒1.如图所示,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,若∠A=60°,则∠BFC等于( ).A.121°B.120°C.119°D.118°2.如图,五边形ABCDE在∠BCD,∠EDC处的外角分别是∠FCD,∠GDC,CP,DP分别平分∠FCD和∠GDC且相交于点P.若∠A=160°,∠B=80°,∠E=90°,则∠CPD=_________.感受中考1.(2019黑龙江大庆中考真题)如图,在△ABC中,BE是∠ABC的平分线,CE是∠ACM的平分线,BE与CE相交于点E. 若∠A=60°,则∠BEC的度数为( ).A.15°B.30°C.45°D.60°参考答案典例1【答案】A【解析】∵BO,CO是△ABC的内角平分线,由“内内90°加一半”得,∠BOC=90°+12∠BAC,即∠BOC=90°+ 12×80°=130°.故选A.典例2【答案】(12)2020·α【解析】∵BA1为△ABC的内角平分线,CA1为△ABC的外角平分线,∴由“内外就一半”,得∠A1= 12∠A=12·α.同理,∠A2= 12∠A1=(12)2·α,∠A3= 12∠A2=(12)3·α,......∴∠A2020 = ( 12)2020·α.典例3【解析】【问题】130°;90°+ 12n°【探究】(1)由三角形内角和定理,得∠ABC+∠ACB=180°-∠A=180°- n°.∵BD,BE三等分∠ABC,CD,CE三等分∠ACB,∴∠EBC= 23∠ABC,∠ECB =23∠ACB,∴∠EBC+∠ECB= 23(∠ABC+∠ACB)=23×(180°- n°)=120°−23n°,∴∠BEC =180°- (∠EBC+∠ECB)=180°- (120°-23n°)= 60°+ 23n°.(2)∠BOC= 12∠A. 理由如下:由三角形的外角性质,得∠ACD=∠A+∠ABC,∠OCD=∠BOC+∠OBC.∵O是∠ABC的平分线BO与∠ACD的平分线CO的交点,∴∠ABC =2∠OBC, ∠ACD =2∠OCD,∴∠A+∠ABC=2 (∠BOC+∠OBC),∴∠A=2∠BOC,∴∠BOC = 12∠A.(3)∠BOC=90°−12∠A.初露锋芒1.【答案】B【解析】∵BE,CD均为△ABC的内角平分线,∴由“内内90°加一半”,得∠BFC=90°+12∠A = 90°+12×60°=120°.故选B.2.【答案】105°【解析】如图,延长BF,EG交于点H.在△CDH中,CP,DP分别平分∠HCD和∠HDC,∴由“内内90°加一半”,得∠CPD=90°+ 12∠H.又∠A+∠B+∠H+∠E =360°,∴∠H = 360°−160°−80°−90°= 30°,∴∠CPD = 90°+ 12×30°=105°.感受中考1.【答案】B【解析】∵BE为△ABC的内角平分线,CE为△ABC的外角平分线,∴由“内外就一半”,得∠BEC= 12∠A=12×60°=30°.故选B.11。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一几何——双角平分线模型1.在△ABC中,BO,CO分别平分∠ABC和∠ACB,∠1+∠2=50°,则∠A的度数为()A.80度B.50度C.100度D.110度2.如图,△ABC中,∠A=50°,D是BC延长线上一点,∠ABC和∠ACD的平分线交于点E,则∠E的度数为()A.40°B.20°C.25°D.30°第1题图第2题图第3题图第4题图3.如图在△ABC中,BO,CO分别平分∠ABC,∠ACB,交于O,CE为外角∠ACD的平分线,BO的延长线交CE 于点E,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是()A.①②③B.①③④C.①④D.①②④4.如图,∠ABD、∠ACD的角平分线交于点P,若∠A=60°,∠D=20°,则∠P的度数为()A.15°B.20°C.25°D.30°5.如图,在△ABC中,∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2;……;∠A2017BC与∠A2017CD的平分线相交于点A2018,得∠A2018.如果∠A=80°,则∠A2018的度数是()A.80 B.802018 C.40 D.80×(12)20186.已知△ABC,下列说法正确的是(只填序号).①如图(1),若点P是∠ABC和∠ACB的角平分线的交点,则∠P=90°+12∠A;②如图(2),若点P是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°−12∠A;③如图(3),若点P是∠ABC和外角∠ACE的角平分线的交点,则∠P=12∠A.7.已知:如图,O是△ABC内一点,且OB、OC分别平分∠ABC、∠ACB,若∠A=46°,求∠BOC=.第7题图第8题图第9题图8.如图,在△ABC中,∠ABC=40°,∠ACD=76°,BE平分∠ABC,CE平分△ABC的外角∠ACD,则∠E=.9.如图,△ABC中,∠C=104°,BF平分∠ABC与△ABC的外角平分线AE所在的直线交于点F,则∠F=.10.如图,在△ABC中,∠B=90°,∠ACB、∠CAF的平分线所在的直线交于点H,求∠H的度数.11.如图①,∠ACD是△ABC的外角,BE平分∠ABC,CE平分∠ACD,且BE、CE交于点E.(1)如果∠A=60°,∠ABC=50°,求∠E的度数;(2)猜想:∠E与∠A有什么数量关系;(写出结论即可)(3)如图②,点E是△ABC两外角平分线BE、CE的交点,探索∠E与∠A之间的数量关系,并说明理由.12.甲乙两同学对同一个图形进行研究,如图①,在△ABC中,点O是∠ABC和∠ACB平分线的交点,若∠A=α,则∠BOC=.(说明:本题中角的大小均可用á表示);(1)甲同学不断调整图中射线BO、CO的位置,如图②,∠CBO=13∠ABC,∠BCO=13∠ACB,∠A=α,则∠BOC=,并请你帮他说明理由.(2)由(1)方法,甲同学猜想:如图③,当∠CBO=1n∠ABC,∠BCO=1n∠ACB,∠A=α,∠BOC=(3)乙两同学的探究思路是把三角形不断变化为四边形、五边形、六边形…,探究角平分线组成的∠O与多边形其他角的关系.如图④,在四边形ABCD中,BO、CO分别平分∠ABC和∠BCD,试探究∠O与∠A、∠D的数量关系,并说明理由.(4)仿照(3)的方法,如图⑤,在六边形ABCDEF中,BO、CO分别平分∠ABC和∠BCD,请直接写出∠O 与∠A、∠D、∠E、∠F的数量关系:.13.(1)如图1,已知△ABC,BF平分外角∠CBP,CF平分外角∠BCQ.试确定∠A和∠F的数量关系;(2)如图2,已知△ABC,BF和BD三等分外角∠CBP,CF和CE三等分外角∠BCQ.试确定∠A和∠F的数量关系;(3)如图3,已知△ABC,BF、BD和BM四等分外角∠CBP,CF、CE和CN四等分外角∠BCQ.试确定∠A 和∠F的数量关系;(4)如图4,已知△ABC,将外角∠CBP进行n等分,BF是临近BC边的等分线,将外角∠BCQ进行n等分,CF是临近BC边的等分线,试确定∠A和∠F的数量关系.14.(1)如图1,O是△ABC内一点,且BO,CO分别平分∠ABC,∠ACB、若∠A=46°,则∠BOC=;若∠A=n°,则∠BOC=;(2)如图2,O是△ABC外一点,BO,CO分别平分△ABC的外角∠CBE,∠BCF.若∠A=n°,求∠BOC;(3)如图3,O是△ABC外一点,BO,CO分别平分∠ABC,∠ACD.若∠A=n°,求∠BOC.初一几何——双角平分线模型参考答案与试题解析一.选择题(共5小题)1.在△ABC中,BO,CO分别平分∠ABC和∠ACB,∠1+∠2=50°,则∠A的度数为()A.80度B.50度C.100度D.110度【解答】解:∵BO,CO分别平分∠ABC和∠ACB,∠1+∠2=50°,∴∠ABC=2∠1,∠ACB=2∠2,∴∠ABC+∠ACB=2(∠1+∠2)=100°,∵△ABC中,∠A+∠ABC+∠ACB=180°,∴∠A=180°﹣100°=80°.故选:A.2.如图,△ABC中,∠A=50°,D是BC延长线上一点,∠ABC和∠ACD的平分线交于点E,则∠E的度数为()A.40°B.20°C.25°D.30°【解答】解:∵由三角形的外角的性质可知,∠E=∠ECD﹣∠EBD,∵∠ABC的平分线与∠ACD的平分线交于点E,∴∠EBC=12∠ABC,∠ECD=12∠ACD,∵∠ACD﹣∠ABC=∠A=50°,∴12(∠ACD﹣∠ABC)=25°,∴∠E=∠ECD﹣∠EBD=25°,故选:C.3.如图在△ABC中,BO,CO分别平分∠ABC,∠ACB,交于O,CE为外角∠ACD的平分线,BO的延长线交CE 于点E,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是()A.①②③B.①③④C.①④D.①②④【解答】解:∵CE为外角∠ACD的平分线,BE平分∠ABC,∴∠DCE=12∠ACD,∠DBE=12∠ABC,又∵∠DCE是△BCE的外角,∴∠2=∠DCE﹣∠DBE,=12(∠ACD﹣∠ABC)=12∠1,故①正确;∵BO,CO分别平分∠ABC,∴∠OBC=12ABC,∠OCB=12∠ACB,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°−12(∠ABC+∠ACB)=180°−12(180°﹣∠1)=90°+12∠1,故②、③错误;∵OC平分∠ACB,CE平分∠ACD,∴∠ACO=12∠ACB,∠ACE=12ACD,∴∠OCE=12(∠ACB+∠ACD)=12×180°=90°,∵∠BOC是△COE的外角,∴∠BOC=∠OCE+∠2=90°+∠2,故④正确;故选:C.4.如图,∠ABD、∠ACD的角平分线交于点P,若∠A=60°,∠D=20°,则∠P的度数为()A .15°B .20°C .25°D .30°【解答】解:延长AC 交BD 于点E , 设∠ABP =α, ∵BP 平分∠ABD , ∴∠ABE =2α,∴∠AED =∠ABE +∠A =2α+60°, ∴∠ACD =∠AED +∠D =2α+80°, ∵CP 平分∠ACD ,∴∠ACP =12∠ACD =α+40°, ∵∠AFP =∠ABP +∠A =α+60°, ∠AFP =∠P +∠ACP∴α+60°=∠P +α+40°, ∴∠P =20°, 故选:B .5.如图,在△ABC 中,∠ABC 与∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得∠A 2;……;∠A 2017BC 与∠A 2017CD 的平分线相交于点A 2018,得∠A 2018.如果∠A =80°,则∠A 2018的度数是( )A .80B .802018C .40D .80×(12)2018【解答】解:∵∠ABC 与∠ACD 的平分线交于点A 1, ∴∠A 1BC =12∠ABC ,∠A 1CD =12∠ACD , 由三角形的外角性质,∠ACD =∠A +∠ABC , ∠A 1CD =∠A 1+∠A 1BC ,12(∠A +∠ABC )=∠A 1+∠A 1BC =∠A 1+12∠ABC ,整理得,∠A 1=12∠A =12×80°=40°; 同理可得 ∠A n =(12)n ×80 故选:D .二.填空题(共4小题)6.已知△ABC,下列说法正确的是①②③(只填序号).①如图(1),若点P是∠ABC和∠ACB的角平分线的交点,则∠P=90°+12∠A;②如图(2),若点P是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°−12∠A;③如图(3),若点P是∠ABC和外角∠ACE的角平分线的交点,则∠P=12∠A.【解答】解:①正确.∵P点是∠ABC和∠ACB的角平分线的交点,∴∠PBC+∠PCB=12(∠ABC+∠ACB)=12(180°﹣∠A)=90°−12∠A,∴∠P=180°−12(∠ABC+∠ACB)=180°﹣90°+12∠A=90°+12∠A;②正确.∵BP、CP为△ABC两外角的平分线,∴∠BCP=12∠BCE=12(∠A+∠ABC),∠PBC=12∠CBF=12(∠A+∠ACB),由三角形内角和定理得:∠BPC=180°﹣∠BCP﹣∠PBC=180°−12[∠A+(∠A+∠ABC+∠ACB)]=180°−12(∠A+180°)=90°−12∠A.③正确.∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠PBC=12∠ABC,∠PCE=12∠ACE,∵∠ACE是△ABC的外角,∠PCE是△BPC的外角,∴∠ACE=∠ABC+∠A,∠PCE=∠PBC+∠P,∴12∠ACE=12∠ABC+12∠A,∴12∠ABC+12∠A=∠PBC+∠P,∠P=12∠A;故答案为①②③.7.已知:如图,O是△ABC内一点,且OB、OC分别平分∠ABC、∠ACB,若∠A=46°,求∠BOC=113°.【解答】解:∵OB、OC分别是∠ABC和∠ACB的角平分线,∴∠OBC+∠OCB=12∠ABC+12∠ACB=12(∠ABC+∠ACB),∵∠A=46°,∴∠OBC+∠OCB=12(180°﹣46°)=67°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣67°=113°.故答案为:113°.8.如图,在△ABC中,∠ABC=40°,∠ACD=76°,BE平分∠ABC,CE平分△ABC的外角∠ACD,则∠E=18°.【解答】解:∵BE平分∠ABC,CE平分△ABC的外角∠ACD,∴∠EBC=12∠ABC=20°,∠ECD=12∠ACD=38°,∵∠ECD=∠EBC+∠E,∴∠E=38°﹣20°=18°,故答案为18°.9.如图,△ABC中,∠C=104°,BF平分∠ABC与△ABC的外角平分线AE所在的直线交于点F,则∠F=52°.【解答】解:∵BF平分∠ABC,AE平分∠DAB,∴∠ABF=12∠ABC,∠EAB=12∠DAB,∵∠DAB﹣∠ABC=∠C=104°,∴∠F=∠EAB﹣∠ABF=12(∠DAB﹣∠ABC)=52°,故答案为:52°.三.解答题(共5小题)10.如图,在△ABC中,∠B=90°,∠ACB、∠CAF的平分线所在的直线交于点H,求∠H的度数.【解答】解:∵CH、AD分别为∠ACB、∠CAF的平分线,∴∠CAD=12∠CAF=∠H+12∠ACB(三角形的一个外角等于与它不相邻的两个内角的和),又∵∠CAF=∠B+∠ACB=90°+∠ACB(三角形的一个外角等于与它不相邻的两个内角的和),即12∠CAF−12∠ACB=45°,∴∠H=12∠CAF−12∠ACB=45°.11.如图①,∠ACD是△ABC的外角,BE平分∠ABC,CE平分∠ACD,且BE、CE交于点E.(1)如果∠A=60°,∠ABC=50°,求∠E的度数;(2)猜想:∠E与∠A有什么数量关系;(写出结论即可)(3)如图②,点E是△ABC两外角平分线BE、CE的交点,探索∠E与∠A之间的数量关系,并说明理由.【解答】解:(1)根据外角的性质得∠ACD=∠A+∠ABC=60°+50°=110°,∵BE平分∠ABC,CE平分∠ACD,∴∠1=12∠ACD=55°,∠2=12∠ABC=25°∵∠E+∠2=∠1,∴∠E=∠1﹣∠2=30°;(2)猜想:∠E=12∠A;(3)∵BE、CE是两外角的平分线,∴∠2=12∠CBD,∠4=12∠BCF,而∠CBD=∠A+∠ACB,∠BCF=∠A+∠ABC,∴∠2=12(∠A+∠ACB),∠4=12(∠A+∠ABC).∵∠E+∠2+∠4=180°,∴∠E+12(∠A+∠ACB)+12(∠A+∠ABC)=180°,即∠E+12∠A+12(∠A+∠ACB+∠ABC)=180°.∵∠A+∠ACB+∠ABC=180°,∴∠E+12∠A=90°.12.甲乙两同学对同一个图形进行研究,如图①,在△ABC中,点O是∠ABC和∠ACB平分线的交点,若∠A=α,则∠BOC=(90+α2)°.(说明:本题中角的大小均可用á表示);(1)甲同学不断调整图中射线BO、CO的位置,如图②,∠CBO=13∠ABC,∠BCO=13∠ACB,∠A=α,则∠BOC=120°+13∠α,并请你帮他说明理由.(2)由(1)方法,甲同学猜想:如图③,当∠CBO=1n∠ABC,∠BCO=1n∠ACB,∠A=α,∠BOC=(n−1)180°+∠αn(3)乙两同学的探究思路是把三角形不断变化为四边形、五边形、六边形…,探究角平分线组成的∠O与多边形其他角的关系.如图④,在四边形ABCD中,BO、CO分别平分∠ABC和∠BCD,试探究∠O与∠A、∠D的数量关系∠O=12(∠A+∠D),并说明理由.(4)仿照(3)的方法,如图⑤,在六边形ABCDEF中,BO、CO分别平分∠ABC和∠BCD,请直接写出∠O与∠A、∠D、∠E、∠F的数量关系:∠O=12(∠A+∠∠D+∠E+∠F)﹣180°.【解答】解:∵∠A=α,∴∠ABC+∠ACB=180°﹣α,∵OB、CO分别平分∠ABC和∠ACB,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=90°−α2,∴∠O=180°﹣(∠OBC+∠OCB)=180°﹣90°+α2=(90+α2)°;故答案为:(90+α2)°;(1)根据∠CBO=13∠ABC,∠BCO=13∠ACB,∠A=α,运用三角形内角和定理,即可得到∠BOC=120°+13∠α;(2)根据∠CBO=1n∠ABC,∠BCO=1n∠ACB,∠A=α,运用三角形内角和定理,即可得到∠BOC=(n−1)180°+∠αn;(3)四边形边形ABCDEF的内角和为:(4﹣2)•180°=360°,∵OB、OC分别平分∠ABC和∠BCD,∴∠OBC=12∠ABC,∠OCB=12∠BCD,∴∠O=180°﹣∠PDC﹣∠PCD=180°−12∠ABC−12∠BCD=180°−12(∠ABC+∠BCD)=180°−12(360°﹣∠A﹣∠D)=12(∠A+∠D)°,(4)六边形ABCDEF 的内角和为:(6﹣2)•180°=720°,∵OB 、OC 分别平分∠ABC 和∠BCD ,∴∠OBC =12∠ABC ,∠OCB =12∠BCD ,∴∠O =180°﹣∠OBC ﹣∠OCD=180°−12∠ABC −12∠BCD=180°−12(∠ABC +∠BCD )=180°−12(720°﹣∠A ﹣∠B ﹣∠E ﹣∠F )=12(∠A +∠B +∠E +∠F )﹣180°,故答案为:12(∠A +∠B +∠E +∠F )﹣180°. 13.(1)如图1,已知△ABC ,BF 平分外角∠CBP ,CF 平分外角∠BCQ .试确定∠A 和∠F 的数量关系;(2)如图2,已知△ABC ,BF 和BD 三等分外角∠CBP ,CF 和CE 三等分外角∠BCQ .试确定∠A 和∠F 的数量关系;(3)如图3,已知△ABC ,BF 、BD 和BM 四等分外角∠CBP ,CF 、CE 和CN 四等分外角∠BCQ .试确定∠A 和∠F 的数量关系;(4)如图4,已知△ABC ,将外角∠CBP 进行n 等分,BF 是临近BC 边的等分线,将外角∠BCQ 进行n 等分,CF 是临近BC 边的等分线,试确定∠A 和∠F 的数量关系.【解答】解:(1)由已知得∠CBF =12∠CBP ,∠BCF =12∠BCQ ,∵∠CBP=∠A+∠ACB,∠BCP=∠A+∠ABC,∴∠CBF+∠BCF=12(∠A+∠ACB+∠A+∠ABC)=12(∠A+180°)∠F=180°−(∠CBF+∠BCF)=180°−12(∠A+180°)=90°−12∠A.(2)由已知得∠CBF=13∠CBP,∠BCF=13∠BCQ,∵∠CBP=∠A+∠ACB,∠BCP=∠A+∠ABC,∴∠CBF+∠BCF=13(∠A+∠ACB+∠A+∠ABC)=13(∠A+180°)∠F=180°−(∠CBF+∠BCF)=180°−13(∠A+180°)=120°−13∠A.(3)由已知得∠CBF=14∠CBP,∠BCF=14∠BCQ,∵∠CBP=∠A+∠ACB,∠BCP=∠A+∠ABC,∴∠CBF+∠BCF=14(∠A+∠ACB+∠A+∠ABC)=14(∠A+180°)∠F=180°−(∠CBF+∠BCF)=180°−14(∠A+180°)=135°−14∠A.(4)由已知得∠CBF=1n∠CBP,∠BCF=1n∠BCQ,∴∠CBP=∠A+∠ACB,∠BCP=∠A+∠ABC,∴∠CBF+∠BCF=1n(∠A+∠ACB+∠A+∠ABC)=1n(∠A+180°)∠F=180°−(∠CBF+∠BCF)=180°−1n(∠A+180°)=n−1n×180°−1n∠A.14.(1)如图1,O是△ABC内一点,且BO,CO分别平分∠ABC,∠ACB、若∠A=46°,则∠BOC=113°;若∠A=n°,则∠BOC=90°+12 n°;(2)如图2,O是△ABC外一点,BO,CO分别平分△ABC的外角∠CBE,∠BCF.若∠A=n°,求∠BOC;(3)如图3,O是△ABC外一点,BO,CO分别平分∠ABC,∠ACD.若∠A=n°,求∠BOC.【解答】解:(1)∵∠COB=180°﹣(∠OBC+∠OCB),而BO,CO分别平分∠ABC,∠ACB,∴∠OBC=12∠ABC,∠OCB=12∠ACB∴∠BOC=180°−12(∠ABC+∠ACB)=180°−12(180°﹣∠A)=90°+12∠A=113°,故∠BOC=113°.∴若∠A=n°,则∠BOC=90°+12 n°;(2)∵∠COB=180°﹣(∠OBC+∠OCB),而BO,CO分别平分∠ABC,∠ACB,∴∠OBC=12∠EBC,∠OCB=12∠FCB∴∠BOC=180°−12(∠EBC+∠FCB),而∠EBC=180°﹣∠ABC,∠FCB=∠180°﹣∠ACB∴∠BOC=180°−12(180°+∠A)=90°−12∠A,∴∠BOC=90°−12 n°;(3)∵∠COB=∠4﹣∠2,∠A=∠ACD﹣∠ABC,而BO,CO分别平分∠ABC,∠ACD,∴∠ACD=2∠4,∠ABC=2∠2,∴∠A=2∠COB,∴∠BOC=12n°.。

相关文档
最新文档