高中物理力学模型和分析

合集下载

高中物理 高中物理22个经典模型汇总 清晰实用

高中物理 高中物理22个经典模型汇总 清晰实用

高中物理高中物理22个经典模型汇总清晰实用高中物理22个经典模型汇总与清晰实用一、引言高中物理作为理科学科的重要组成部分,是学生们接触自然科学的第一步,也是理解世界的窗口。

在学习高中物理的过程中,掌握经典模型是至关重要的。

经典模型能够帮助我们理解自然界的规律,为我们解决问题提供了基本的思路,更好地认识自然界的奥秘,也更好地应对未来的挑战。

本文将汇总高中物理22个经典模型,并探讨它们的清晰实用之处。

二、运动学1. 位移、速度、加速度模型位移、速度、加速度是运动的基本概念,它们之间的关系能够帮助我们描述物体的运动状态,从而解释各种日常运动现象。

2. 牛顿三定律牛顿三定律是力学的基础,这个模型能够帮助我们理解物体受力的情况,进而分析物体的运动状态。

3. 万有引力万有引力模型是物理学中重要的一部分,它描述了物体之间的引力大小与距离的关系,解释了宇宙中广泛存在的引力现象。

4. 匀变速直线运动匀变速直线运动模型描述了物体在力作用下的匀变速直线运动规律,让我们能够准确预测物体的位置随时间的变化。

5. 抛体运动抛体运动模型适用于空中物体在重力作用下的运动,可以帮助我们分析和计算各种投掷运动。

6. 圆周运动圆周运动模型帮助我们理解物体在圆周运动中受力的情况,解释了各种圆周运动中发生的现象。

7. 谐振谐振模型能够帮助我们理解谐振现象产生的原因,也让我们在实际应用中更好地利用谐振的特性。

三、动能和势能8. 动能与势能转化动能和势能的转化模型描述了物体在力的作用下,动能和势能之间相互转化的规律,为我们解释各种能量转化现象提供了理论依据。

9. 机械能守恒机械能守恒模型说明了在某些力场内,物体的机械能守恒,这个规律被广泛应用于各种动力学计算中。

四、波动10. 机械波机械波模型帮助我们理解机械波的传播规律,解释了声音、水波等机械波的传播特性。

11. 光的直线传播光的直线传播模型适用于介质中光的传播规律,让我们能够更好地理解光的传播路径。

高中物理48个解题模型高考物理题型全归纳

高中物理48个解题模型高考物理题型全归纳

⾼中物理48个解题模型⾼考物理题型全归纳最后两个⽉,快速掌握⾼考物理150道易错题+30个常考物理模型,⼀定拿⾼分!不看太可惜!历年⾼考物理解题经典模型,⽼师都没讲得这么全!常考物理模型及易错题常考物理模型及隐含条件30条1.绳:只能拉,不能压,即受到拉⼒时F≠0,受压时F=0.2.杆:既能拉也能压,即受到拉⼒.压⼒时,有F≠0.3.绳刚要断:此时绳的拉⼒已经达到最⼤值,即F=Fmax.4.光滑:意味着⽆摩擦⼒.5.长导线:意味着长度L可看成⽆穷⼤.6.⾜够⼤的平板:意味着平板的⾯积S可看成⽆穷⼤.7.轻杆.轻绳.轻滑轮:意味着质量m=0.8.物体刚要离开地⾯.物体刚要飞离轨道等物体和接触⾯之间作⽤⼒:FN=0.9.绳恰好被拉直,此时绳中拉⼒:F=0.10.物体开始运动.⾃由释放:表⽰初速度为0.11.锤打桩⽆反弹:碰撞后,锤与桩有共同速度.12.理想变压器:⽆功率损耗的变压器.13.细杆:体积为零,仅有长度.14.质点:具有质量,但可忽略其⼤⼩.形状和内部结构⽽视为⼏何点的物体.15.点电荷:在研究带电体间的相互作⽤时,如果带电体的⼤⼩⽐它们之间的距离⼩得多,即可认为分布在带电体上的电荷是集中在⼀点上的.16.基本粒⼦如电⼦.质⼦.离⼦等是不考虑重⼒的粒⼦,⽽带电的质点.液滴.⼩球等(除说明不考虑重⼒外)则要考虑重⼒.17.“轻绳.弹簧.轻杆”模型:注意三种模型的异同点,常考查直线与圆周运动中三种模型的动⼒学问题和功能问题.18.“挂件”模型:考查物体的平衡问题.死结与活结问题,常采⽤正交分解法,图解法,三⾓形法则和极值法解题.19.“追碰”模型:考查运动规律.碰撞规律.临界问题.常通过数学法(函数极值法.图像法等)和物理⽅法(参照物变换法.守恒法)等解题.20.“⽪带”模型:注意摩擦⼒的⼤⼩和⽅向.常考查⽜顿运动定律.功能关系及摩擦⽣热等问题.21.“平抛”模型:物体做平抛运动(或类平抛运动),考查运动的合成与分解.⽜顿运动定律.动能定理等知识.22.“⾏星”模型:万有引⼒提供向⼼⼒.注意相关物理量.功能问题.数理问题(圆⼼.半径.临界问题).23.“⼈船”模型:不仅是动量守恒问题中典型的物理模型,也是最重要的⼒学综合模型之⼀.通过类⽐和等效⽅法,可以使许多动量守恒问题的分析思路和解答步骤变得简捷.24.“⼦弹打⽊块”模型:⼦弹和⽊块组成的系统动量守恒,机械能不守恒.系统损失的机械能等于阻⼒乘以相对位移.25.“限流与分压器”模型:电路设计中经常遇到.考查串.并联电路规律及闭合电路的欧姆定律.电能.电功率以及实际应⽤等.26.“电路的动态变化”模型:考查闭合电路的欧姆定律.27.“回旋加速器”模型:考查带电粒⼦在磁场中运动的典型模型.注意加速电场的平⾏极板接的是交变电压,且它的周期和粒⼦的运动周期相同.28.电磁场中的“单杆”模型:导体棒主要是以棒⽣电或电⽣棒的内容出现,从组合情况来看有棒与电阻.棒与电容.棒与电感.棒与弹簧等.导体棒所在的导轨有平⾯导轨.竖直导轨等.29.电磁场中的“双电源”模型:考查⼒学中的三⼤定律.闭合电路的欧姆定律.电磁感应定律等知识.30.“远距离输电变压器”模型:注意变压器的三个制约问题.⾼中物理模型有哪些⒈"质⼼"模型:质⼼(多种体育运动).集中典型运动规律.⼒能⾓度.⒉"绳件.弹簧.杆件"三件模型:三件的异同点,直线与圆周运动中的动⼒学问题和功能问题.⒊"挂件"模型:平衡问题.死结与活结问题,采⽤正交分解法,图解法,三⾓形法则和极值法.⒋"追碰"模型:运动规律.碰撞规律.临界问题.数学法(函数极值法.图像法等)和物理⽅法(参照物变换法.守恒法)等.⒌"运动关联"模型:⼀物体运动的同时性.独⽴性.等效性.多物体参与的独⽴性和时空联系.⒍"⽪带"模型:摩擦⼒.⽜顿运动定律.功能及摩擦⽣热等问题.⒎"斜⾯"模型:运动规律.三⼤定律.数理问题.⒏"平抛"模型:运动的合成与分解.⽜顿运动定律.动能定理(类平抛运动).⒐"⾏星"模型:向⼼⼒(各种⼒).相关物理量.功能问题.数理问题(圆⼼.半径.临界问题).⒑"全过程"模型:匀变速运动的整体性.保守⼒与耗散⼒.动量守恒定律.动能定理.全过程整体法.⒒"⼈船"模型:动量守恒定律.能量守恒定律.数理问题.⒓"⼦弹打⽊块"模型:三⼤定律.摩擦⽣热.临界问题.数理问题.⒔"爆炸"模型:动量守恒定律.能量守恒定律.⒕"单摆"模型:简谐运动.圆周运动中的⼒和能问题.对称法.图象法.⒖"限流与分压器"模型:电路设计.串并联电路规律及闭合电路的欧姆定律.电能.电功率.实际应⽤.⒗"电路的动态变化"模型:闭合电路的欧姆定律.判断⽅法和变压器的三个制约问题.⒘"磁流发电机"模型:平衡与偏转.⼒和能问题.⒙"回旋加速器"模型:加速模型(⼒能规律).回旋模型(圆周运动).数理问题.⒚"对称"模型:简谐运动(波动).电场.磁场.光学问题中的对称性.多解性.对称性.⒛电磁场中的单杆模型:棒与电阻.棒与电容.棒与电感.棒与弹簧组合.平⾯导轨.竖直导轨等,处理⾓度为⼒电⾓度.电学⾓度.⼒能⾓度.21.电磁场中的"双电源"模型:顺接与反接.⼒学中的三⼤定律.闭合电路的欧姆定律.电磁感应定律.22.交流电有效值相关模型:图像法.焦⽿定律.闭合电路的欧姆定律.能量问题.23."能级"模型:能级图.跃迁规律.光电效应等光的本质综合问题.24.远距离输电升压降压的变压器模型.。

高一物理48个解题模型

高一物理48个解题模型

高一物理48个解题模型高一物理48个解题模型物理是一门理论与实践相结合的学科,对于高中生来说,掌握解题模型是学好物理的关键。

下面将介绍一些高一物理常见的解题模型,帮助学生更好地应对各种物理问题。

1. 运动学模型:根据物体在运动中的速度、位移、加速度等信息,分析物体的运动规律。

2. 动量守恒模型:根据系统内物体的质量和速度,分析碰撞、爆炸等情况下动量的守恒关系。

3. 能量守恒模型:根据物体的势能、动能等信息,分析物体在能量转化过程中的关系。

4. 弹性碰撞模型:根据碰撞物体的质量和速度,分析碰撞后物体的速度和能量转化情况。

5. 万有引力模型:根据物体的质量和距离,分析物体之间的引力关系。

6. 电路分析模型:根据电路中的电阻、电容、电流等元件,分析电路中的电流、电压等参数。

7. 磁场分析模型:根据磁场的大小和方向,分析磁场对物体的作用力和磁感应强度等参数。

8. 电磁感应模型:根据磁感应强度和导线运动情况,分析感应电动势和感应电流等问题。

9. 光学成像模型:根据光的传播规律,分析凸透镜、凹透镜成像的特点和规律。

10. 热力学模型:根据物体的温度、热量和热容等参数,分析热力学过程中的能量转化和热平衡问题。

11. 物质结构模型:根据物质的化学成分和结构,分析物质的性质和变化规律。

12. 机械振动模型:根据弹簧振子、摆锤等物体的振动特性,分析振动频率和振幅等问题。

13. 波动模型:根据波的传播规律,分析波的频率、波速和波长等参数。

14. 电磁波模型:根据电磁波的特性,分析电磁波的频率、波长和传播速度等问题。

15. 电磁场分析模型:根据电磁场的大小和方向,分析电磁场对物体的作用力和电磁感应等问题。

除了上述模型外,还有很多其他解题模型,如力学模型、静电模型、波粒二象性模型等等。

在解题过程中,学生可以根据具体问题的要求选择合适的模型进行分析和计算。

同时,掌握解题方法也是解决物理问题的关键。

学生需要注重理论知识的学习,建立良好的物理思维和逻辑能力,通过大量的练习和实践,熟悉不同模型的应用,培养自己的解题能力。

(完整版)高中物理二级结论模型归纳

(完整版)高中物理二级结论模型归纳

先想前提,后记结论力学 一.静力学:1.几个力平衡,则一个力是与其它力合力 平衡的力。

2.两个力的合力:F +F ≥F ≥F -F 。

三个大小相等的力平衡,力之间的夹大小合大小角为120度。

3.物体沿斜面匀速下滑,则μ=tanα。

4.两个一起运动的物体“刚好脱离”时:貌合神离,弹力为零。

此时速度 加速度相等,此后不等。

二.运动学:1.在描述运动时,在纯运动学问题中,可以任意选取参照物;在处理动力学问题时,只能以地为参照物。

2.匀变速直线运动:用平均速度思考匀变速直线运动问题,总是带来方便:=V ==-V 2/t 221V V +TS S 221+3.匀变速直线运动:当时间等分时:S n -Sn-1=aT .2位移中点的即时速度:V s/2= ,V s/2>V t/222221V V +纸带点迹求速度加速度:V t/2=, a=, a=T S S 212+212TSS -21)1(T n S S n--4.自由落体:V t (m/s): 10 20 30 40 50 = gtH 总(m ):5 20 45 80 125 = gt 2/2H 分(m):5 15 25 35 45 = gt 22/2 – gt 12 /2g=10m/s 25.上抛运动:对称性:t 上= t 下 V 上= -V下6.相对运动:相同的分速度不产生相对位移。

7.“刹车陷阱”:给出的时间大于滑行时间,则不能用公式算。

先求滑行时间,确定了滑行时间小于给出的时间时,用V 2=2aS 求滑行距离。

8."S=3t+2t 2”:a=4m/s 2,V 0=3m/s 。

(s = v 0t+ at 2/2)9.绳端物体速度分解:对地速度是合速度,分解为沿绳的分速度合垂直绳的分速度。

三.运动定律:1.水平面上滑行:a=-µg2.系统法:动力-阻力=m总g绳牵连系统3.沿光滑斜面下滑:a=gSinα时间相等: 450时时间最短: 无极值:4.一起加速运动的物体:N=F,(N为物体间相互作用力),与有无摩212mmm+擦(μ相同)无关,平面斜面竖直都一样。

高中物理滑块木板模型动能定理解

高中物理滑块木板模型动能定理解

高中物理滑块木板模型动能定理解高中物理滑块木板模型是一种常见的力学模型,用来研究物体在斜面上滑动的问题。

动能定理是描述物体动能变化的定理,它表达了物体的动能变化等于物体所受力的功。

下面我将详细介绍高中物理滑块木板模型及其动能定理的原理和应用。

首先,我们来介绍一下高中物理滑块木板模型的基本概念。

滑块木板模型由一条倾斜的木板和一个放置在木板上的滑块组成。

滑块与木板之间有一定的摩擦力,可以通过改变木板的角度或滑块的质量来研究滑块在木板上滑动的性质。

在滑块木板模型中,我们考虑滑块在斜面上的运动。

当斜坡上无滑动摩擦力时,滑块只受到重力作用,其加速度仅受到斜面角度和重力加速度的影响。

当斜坡上存在摩擦力时,滑块的加速度还会受到摩擦力对滑块的阻碍。

动能定理是描述物体动能变化的定理。

根据动能定理,物体的动能变化等于物体所受力的功。

在高中物理滑块木板模型中,滑块在斜坡上滑动时,通过斜坡上的重力和摩擦力对滑块进行功。

根据动能定理,滑块的动能变化等于这些力的功之和。

具体来说,滑块的动能变化可以用下式表示:△K = Wg + Wf其中,△K表示滑块的动能变化,Wg表示重力对滑块做的功,Wf 表示摩擦力对滑块做的功。

重力对滑块做的功可以用如下公式表示:Wg = mgh其中,m表示滑块的质量,g表示重力加速度,h表示滑块的垂直高度。

摩擦力对滑块做的功可以用如下公式表示:Wf = fdcosθ其中,f表示滑块和斜面之间的摩擦力,d表示滑块在斜面上的位移,θ表示斜面的倾角。

通过将重力功和摩擦力功代入动能定理的公式,可以得到滑块的动能变化的表达式。

动能定理在物理学中有广泛的应用。

首先,动能定理可以用来计算滑块在斜面上的运动速度。

通过将动能定理的公式进行转换,可以得到滑块的末速度的表达式。

其次,动能定理可以用来研究滑块与斜面之间的摩擦力的大小和方向。

通过观察滑块的动能变化和速度的变化,可以确定摩擦力的大小和方向。

此外,动能定理还可以用来分析滑块与斜面之间的能量转换。

高中物理24个经典模型

高中物理24个经典模型

高中物理24个经典模型高中物理领域有许多经典模型,这些模型帮助我们更好地理解和解释自然界中各种现象和规律。

以下是高中物理中的24个经典模型。

1.质点模型:物理中最简单的模型之一,将物体简化为一个几乎没有大小的点,用于研究物体的运动和力学性质。

2.弹簧模型:用来研究弹簧和弹性体的力学性质,它可以模拟很多弹性形变的现象。

3.质点弹簧模型:结合了质点和弹簧模型,用于研究弹簧振动和简谐振动的性质。

4.轨迹模型:用来描述运动物体的路径,常用的轨迹有直线运动、圆周运动、抛物线运动等。

5.平衡模型:用来研究物体处于平衡状态时的力学性质,如平衡条件、平衡位置等。

6.载体模型:用来研究物体在载体上的运动,常用的载体有斜面、轨道、绳子等。

7.力模型:用来描述物体受到的力,包括重力、摩擦力、弹力、拉力等。

8.力矩模型:用来研究物体围绕固定点转动的性质,描述物体受到的力矩和力矩平衡条件。

9.阻力模型:用来研究物体在流体中运动时受到的阻力,如空气阻力、水阻力等。

10.平衡力模型:用来描述物体受到多个力的作用时达到平衡的条件,如平衡力的合成和分解。

11.载荷模型:用来研究物体受到外力作用时的变形和应力分布,如悬链线、横梁等。

12.动力模型:用来研究物体的运动和力学性质,描述物体的动量和动量守恒定律。

13.动能模型:用来描述物体的能量和能量转化规律,包括动能和动能守恒定律。

14.位能模型:用来描述物体的势能和势能转化规律,包括重力势能、弹性势能等。

15.电路模型:用来研究电流、电压和电阻在电路中的分布和变化规律,如串联电路、并联电路等。

16.磁场模型:用来描述磁场和磁力在磁场中的分布和变化规律,如磁场线、磁感应强度等。

17.光学模型:用来研究光的传播、反射、折射、干涉等光学现象,如几何光学模型、波动光学模型等。

18.波动模型:用来研究波的传播和波动性质,包括机械波、电磁波等。

19.音响模型:用来研究声音的传播和声音的特性,如声音的频率、波长、音强等。

高中物理解题模型详解(20套精讲)

高中物理解题模型详解(20套精讲)

= 1 mv2 − 0 2
物体 A 克服摩擦力做功,机械能转化为内能:
Wf
=
mg

g
(2
−µ 4
)t
2
+
L

m3g 2 8q 2 B 2
4、如图 1.05 所示,在水平地面上有一辆运动的平板小车, 车上固定一个盛水的杯子,杯子的直径为 R。当小车作匀加速运动 时,水面呈如图所示状态,左右液面的高度差为 h,则小车的加速 度方向指向如何?加速度的大小为多少?
(2)、加磁场之前,物体 A 做匀加速运动,据牛顿运动定律有:
mg sinθ + qE cosθ − Ff = ma 又FN + qE sinθ − mg cosθ = 0, Ff = µFN
解出 a = g(2 − µ) 2
A 沿斜面运动的距离为:
s = 1 at2 = g(2 − µ)t2
2
4
加上磁场后,受到洛伦兹力 F洛 = Bqv
C. 物体前 10s 内和后 10s 内加速度大小之比为 2:1
D. 物体所受水平恒力和摩擦力大小之比为 3:1
答案:ACD
三、斜面模型
1、相距为 20cm 的平行金属导轨倾斜放置,如图 1.03, 导轨所在平面与水平面的夹角为θ = 37° ,现在导轨上放一 质量为 330g 的金属棒 ab,它与导轨间动摩擦系数为 µ = 0.50 ,整个装置处于磁感应强度 B=2T 的竖直向上的匀 强磁场中,导轨所接电源电动势为 15V,内阻不计,滑动变 阻器的阻值可按要求进行调节,其他部分电阻不计,取 g = 10m / s 2 ,为保持金属棒 ab 处于静止状态,求:
解析:设以火车乙为参照物,则甲相对乙做初速为 (v1 − v2 ) 、加速度为 a 的匀减速运动。

高中物理常见模型归纳_高中物理板块模型归纳

高中物理常见模型归纳_高中物理板块模型归纳

高中物理常见模型归纳_高中物理板块模型归纳高中物理的绝大部分题目都是有原始模型的,考生需要时刻总结归纳这些模型,掌握物理常见模型,下面店铺给大家带来高中物理常见模型,希望对你有帮助。

高中物理常见模型【力学常见物理模型】“子弹打木块”模型:三大定律、摩擦生热、临界问题、数理问题。

“爆炸”模型:动量守恒定律、能量守恒定律。

“单摆”模型:简谐运动、圆周运动中的力和能问题、对称法、图象法。

“质心”模型:质心(多种体育运动)、集中典型运动规律、力能角度。

“绳件、弹簧、杆件”三件模型:三件的异同点,直线与圆周运动中的动力学问题和功能问题。

“挂件”模型:平衡问题、死结与活结问题,采用正交分解法、图解法、三角形法则和极值法。

“追碰”模型:运动规律、碰撞规律、临界问题、数学法(函数极值法、图像法等)和物理方法(参照物变换法、守恒法)等。

“皮带”模型:摩擦力、牛顿运动定律、功能及摩擦生热等问题。

“行星”模型:向心力(各种力)、相关物理量、功能问题、数理问题(圆心、半径、临界问题)。

“人船”模型:动量守恒定律、能量守恒定律、数理问题。

【电磁学常见物理模型】“限流与分压器”模型:电路设计。

串并联电路规律及闭合电路的欧姆定律、电能、电功率、实际应用。

“电路的动态变化”模型:闭合电路的欧姆定律。

判断方法和变压器的三个制约问题。

“磁流发电机”模型:平衡与偏转,力和能问题。

电磁场中的单杆模型:棒与电阻、棒与电容、棒与电感、棒与弹簧组合、平面导轨、竖直导轨等,处理角度为力电角度、电学度、力能角度。

电磁场中的”双电源”模型:顺接与反接、力学中的三大定律、闭合电路的欧姆定律、电磁感应定律。

“回旋加速器”模型:加速模型(力能规律)、回旋模型(圆周运动)、数理问题。

高中物理学习方法(1)课前认真预习。

想提高物理考试成绩,基础一定要掌握的牢。

很多基础差的学生,听课很吃力,主要是因为前面落下了很多内容。

因此,请做好预习工作,在这一点上,不要学班里的学霸们,他们不预习,是因为他们考点掌握的很牢固了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

╰α高中物理力学模型及分析1.连接体模型是指运动中几个物体叠放在一起、或并排在一起、或用细绳、细杆联系在一起的物体组。

解决这类问题的基本方法是整体法和隔离法。

整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。

2斜面模型(搞清物体对斜面压力为零的临界条件)斜面固定:物体在斜面上情况由倾角和摩擦因素决定μ=tgθ物体沿斜面匀速下滑或静止μ> tgθ物体静止于斜面μ< tgθ物体沿斜面加速下滑a=g(sinθ一μcosθ)3.轻绳、杆模型绳只能受拉力,杆能沿杆方向的拉、压、横向及任意方向的力。

杆对球的作用力由运动情况决定只有θ=arctg(ga)时才沿杆方向最高点时杆对球的作用力;最低点时的速度?,杆的拉力?若小球带电呢?假设单B下摆,最低点的速度V B=R2g⇐mgR=221Bmv整体下摆2mgR=mg2R+'2B'2Amv21mv21+'A'BV2V=⇒'AV=gR53;'A'BV2V==gR256> V B=R2g所以AB杆对B做正功,AB杆对A做负功若V0<gR,运动情况为先平抛,绳拉直沿绳方向的速度消失即是有能量损失,绳拉紧后沿圆周下落机械能守恒。

而不能够整个过程用机械能守恒。

求水平初速及最低点时绳的拉力?换为绳时:先自由落体,在绳瞬间拉紧(沿绳方向的速度消失)有能量损失(即v1突然消失),再v2下摆机械能守恒例:摆球的质量为m,从偏离水平方向30°的位置由静释放,设绳子为理想轻绳,求:小球运动到最低点A时绳子受到的拉力是多少?4.超重失重模型系统的重心在竖直方向上有向上或向下的加速度(或此方向的分量a y)mL·m2m1FBAF1 F2 B A FF m 向上超重(加速向上或减速向下)F=m(g+a);向下失重(加速向下或减速上升)F=m(g-a)难点:一个物体的运动导致系最高点时杆对球的作用力;最低点时的速度?,杆的拉力? 若小球带电呢?假设单B 下摆,最低点的速度V B =R 2g ⇐mgR=221B mv 整体下摆2mgR=mg2R +'2B '2A mv 21mv 21+ 'A'B V2V = ⇒ 'AV=gR 53; 'A 'B V 2V ==gR 256> V B =R 2g 所以AB 杆对B 做正功,AB 杆对A 做负功若 V 0<gR ,运动情况为先平抛,绳拉直沿绳方向的速度消失即是有能量损失,绳拉紧后沿圆周下落机械能守恒。

而不能够整个过程用机械能守恒。

求水平初速及最低点时绳的拉力?换为绳时:先自由落体,在绳瞬间拉紧(沿绳方向的速度消失)有能量损失(即v 1突然消失),再v 2下摆机械能守恒例:摆球的质量为m ,从偏离水平方向30°的位置由静释放,设绳子为理想轻绳,求:小球运动到最低点A 时绳子受到的拉力是多少?4.超重失重模型 系统的重心在竖直方向上有向上或向下的加速度(或此方向的分量a y ) 向上超重(加速向上或减速向下)F=m(g+a);向下失重(加速向下或减速上升)F=m(g-a) 难点:一个物体的运动导致系统重心的运动1到2到3过程中 (1、3除外)超重状态绳剪断后台称示数系统重心向下加速 斜面对地面的压力? 地面对斜面摩擦力? 导致系统重心如何运动?统重心的运动1到2到3过程中 (1、3除外)超重状态 绳剪断后台称示数 系统重心向下加速斜面对地面的压力?地面对斜面摩擦力?导致系统重心如何运动?铁木球的运动用同体积的水去补充。

5.碰撞模型:特点,①动量守恒;②碰后的动能不可能比碰前大③对追及碰撞,碰后后面物体的速度不可能大于前面物体的速度。

◆弹性碰撞:m 1v 1+m 2v 2='22'11v m v m +(1)'222'12221mv 21mv 21mv 21mv 21+=+ (2 ) ◆一动一静且二球质量相等的弹性正碰:速度交换大碰小一起向前;质量相等,速度交换;小碰大,向后返。

Em ,qL ·O a 图9 θ◆一动一静的完全非弹性碰撞(子弹打击木块模型) mv 0+0=(m+M)'v20mv 21='2M)v m (21++E 损 E 损=20mv 21一'2M)v (m 21+=02020E m M M m 21m)(M M M)2(m mM k v v +=+=+ E 损 可用于克服相对运动时的摩擦力做功转化为内能E 损=fd 相=μmg ·d 相=20mv 21一'2M)v (m 21+“碰撞过程”中四个有用推论弹性碰撞除了遵从动量守恒定律外,还具备:碰前、碰后系统的总动能相等的特征,设两物体质量分别为m 1、m 2,碰撞前速度分别为υ1、υ2,碰撞后速度分别为u 1、u 2,即有 :m 1υ1+m 2υ2=m 1u 1+m 1u 221m 1υ12+21m 2υ22=21m 1u 12+21m 1u 22 碰后的速度u 1和u 2表示为: u 1=2121m m m m +-υ1+2122m m m +υ2u 2=2112m m m +υ1+2112m m m m +-υ2推论一:如对弹性碰撞的速度表达式进行分析,还会发现:弹性碰撞前、后,碰撞双方的相对速度大小相等,即}: u 2-u 1=υ1-υ2推论二:如对弹性碰撞的速度表达式进一步探讨,当m 1=m 2时,代入上式得:1221,v u v u ==。

即当质量相等的两物体发生弹性正碰时,速度互换。

推论三:完全非弹性碰撞碰撞双方碰后的速度相等的特征,即: u 1=u 2由此即可把完全非弹性碰撞后的速度u 1和u 2表为: u 1=u 2=212211m m m m ++υυ例3:证明:完全非弹性碰撞过程中机械能损失最大。

证明:碰撞过程中机械能损失表为: △E=21m 1υ12+21m 2υ22―21m 1u 12―21m 2u 22 v 0AB ABv 0 vsM v 0 L 1 2Av 0S 1S 2 由动量守恒的表达式中得: u 2=21m (m 1υ1+m 2υ2-m 1u 1) 代入上式可将机械能的损失△E 表为u 1的函数为: △E=-22112)(m m m m +u 12-222111)(m m m m υυ+u 1+[(21m 1υ12+21m 2υ22)-221m ( m 1υ1+m 2υ2)2]这是一个二次项系数小于零的二次三项式,显然:当 u 1=u 2=212211m m m m ++υυ时,即当碰撞是完全非弹性碰撞时,系统机械能的损失达到最大值△E m =21m 1υ12+21m 2υ22 -)(2)(2122211m m m m ++υυ推论四:碰撞过程中除受到动量守恒以及能量不会增加等因素的制约外,还受到运动的合理性要求的制约,比如,某物体向右运动,被后面物体追及而发生碰撞,被碰物体运动速度只会增大而不应该减小并且肯定大于或者等于(不小于)碰撞物体的碰后速度。

6.人船模型:一个原来处于静止状态的系统,在系统内发生相对运动的过程中, 在此方向遵从动量守恒:mv=MV ms=MS s+S=d ⇒s=d Mm M+ M/m=L m /L M载人气球原静止于高h 的高空,气球质量为M ,人的质量为m .若人沿绳梯滑至地面,则绳梯至少为多长?7.弹簧振子模型:F=-Kx (X 、F 、a 、v 、A 、T 、f 、E K 、E P 等量的变化规律)水平型 竖直型 8.单摆模型:T=2πgL(类单摆) 利用单摆测重力加速度 9.波动模型:特点:传播的是振动形式和能量,介质中各质点只在平衡位置附近振动并不随波迁移。

①各质点都作受迫振动, ②起振方向与振源的起振方向相同, ③离源近的点先振动,④没波传播方向上两点的起振时间差=波在这段距离内传播的时间⑤波源振几个周期波就向外传几个波长。

波从一种介质传播到另一种介质,频率不改变, 波速v=s/t=λ/T=λf波速与振动速度的区别 波动与振动的区别:波的传播方向⇔质点的振动方向(同侧法)20mMmO Rv 0A BC知波速和波形画经过Δt 后的波形(特殊点画法和去整留零法)物理解题方法:如整体法、假设法、极限法、逆向思维法、物理模型法、等效法、物理图像法等. 模型法常常有下面三种情况(1)物理对象模型:用来代替由具体物质组成的、代表研究对象的实体系统,称为对象模型(也可称为概念模型),即把研究的对象的本身理想化.常见的如“力学”中有质点、刚体、杠杆、轻质弹簧、单摆、弹簧振子、弹性体、绝热物质等;(2)条件模型:把研究对象所处的外部条件理想化,排除外部条件中干扰研究对象运动变化的次要因素,突出外部条件的本质特征或最主要的方面,从而建立的物理模型称为条件模型.(3)过程模型:把具体过理过程纯粹化、理想化后抽象出来的一种物理过程,称过程模型 其它的碰撞模型:A B C1 2A。

相关文档
最新文档