各种的化学位移值经验计算方法及常见氢核的化学位移

合集下载

氢核的化学位移

氢核的化学位移

氢核的化学位移13.5.3.1电子屏蔽效应在外磁场B0中,氢核外围电子在与外磁场垂直的平面上绕核旋转时,将产生一个与外磁场相对抗的感生磁场,其结果对于氢核来说,相当于产生了一种削弱外磁场的屏蔽,13-39所示。

这种现象叫作电子屏蔽效应。

感生磁场的大小与外磁场的强度成正比,用σB0表示。

其中σ叫作屏蔽常数,它反映了屏蔽效应的大小,其数值取决于氢核周围电子云密度的大小,而电子云密度的大小又和氢核的化学环境,即与之相邻的原子或原子团的亲电能力、化学键的类型等因素有关。

氢核外围电子云密度越大,σ就越大,σB0也越大,氢核实际感触到的有效磁场Beff就越弱,即有图13-39 氢核的电子屏蔽效应 Beff=B0-σB0=(1-σ)B0 假如考虑屏蔽效应的影响,欲实现核磁共振,则有所以实现核磁共振的条件应为:通常采纳固定射频v,并缓慢转变外磁场B0强度的办法来满足上式。

此时v、γ均为常数,所以产生共振汲取的场强B0的大小仅仅取决于,的大小。

化合物中各种类型氢核的化学环境不同,核外电子云密度就不同,屏蔽常数σ也将不同,在同一频率v的照耀下,引起共振所需要的外磁场强度也是不同的。

这样一来,不同化学环境中氢核的共振汲取峰将浮现在NMR波谱的不同磁场强度的位置上。

如上所述,当用同一射频照耀样品时,样品分子中处于不同化学环境的同种原子的磁性核所产生的共振峰将浮现在不同磁场强度的区域,这种共振峰位置的差异叫作化学位移。

在实际工作中,要精确测定磁场强度比较棘手,因此常将待测磁性核共振峰所在的场强Bs和某标准物质磁性核共振峰所在的场强Br举行比较,用这个相对距离表示化学位移,并用δ代表:因为磁场强度与射频频率成正比,而测定和表示磁性核的汲取频率比较便利,故有在NMR 中,射频普通固定,如240 MHz, 600 MHz等,样品和标准氢核的汲取频率虽然有差异,但都在射频频率v 附近变幻,相差仅约万分之一。

为了使δ的数值易于读写,可改写为: 13.5.3.2影响氢核化学位移的因素影响化学位移的因素无数,主要有诱导效应、磁各向异性效应、第1页共3页。

核磁共振氢谱

核磁共振氢谱

+ C
+ + +
C +
- C
+
C -
- C
+
C -
ห้องสมุดไป่ตู้
- C
+
O -
-
电子云密度小, 屏蔽 电子云密度小,负屏蔽(-)
电子云密度高, 屏蔽 电子云密度高,正屏蔽(+)
1.乙酸乙酯中得的三种类型氢核电子屏蔽效 1.乙酸乙酯中得的三种类型氢核电子屏蔽效 应是否相同?若发生核磁共振, 应是否相同?若发生核磁共振,共振峰应 当怎么排列? 值大小如何? 当怎么排列?δ值大小如何?
3.3 氢键缔合对化学位移的影响
氢核电子云密度减小,其化学位移增大, 氢核电子云密度减小,其化学位移增大,向低场 位移
浓度越大,氢核化学位移向低场移动, 浓度越大,氢核化学位移向低场移动,数值增大
分子间氢键与分子内氢键
3.4 其他因素对化学位移的影响
溶剂、分子内范德华力、 溶剂、分子内范德华力、不对称因素
CH3-COO-CH2-CH3
2. 下列各组化合
1
CH3CH2CH2C
CH

CH3CH2CH2CH CH2 O CH3

物用箭头标记 的氢核中, 的氢核中,何 者共振峰位于 地场? 地场?为什么 ?

CH3
2



O
3
CH3

O


CH3
4

H3C


3.3 氢核交换对化学位移的影响
RCOOHa + R`OHb = RCOOHb + R`OHa 平均峰化学位移δobs = Naδa+ Nbδb 平均峰化学位移 例如:乙酸的浓度是 水也是0.1mol/L,而纯 例如:乙酸的浓度是0.5mol/L, 水也是 , 乙酸和水的化学位移分别为11.6 和5.2 ppm, 计算平均 乙酸和水的化学位移分别为 化学位移

各种氢的化学位移

各种氢的化学位移

各种氢的化学位移一、正常氢(H)正常氢(H)是最简单的元素,只含有一个质子和一个电子。

正常氢的化学位移为0 ppm。

正常氢在核磁共振(NMR)技术中被用作参照物,作为其他核磁共振信号的参考。

二、重氢(D)重氢(D)是氢的同位素,它的原子核中除了一个质子外还有一个中子。

由于额外的中子,重氢的质量比正常氢大约是两倍。

重氢的化学位移与正常氢相比略有不同,通常为4.5 ppm。

这是因为重氢的质量更大,原子核周围的电子云受到不同程度的屏蔽。

三、氚(T)氚(T)是氢的另一个同位素,它的原子核中有一个质子和两个中子。

氚是一种放射性同位素,它的化学位移与正常氢和重氢有明显的差异。

氚的化学位移通常在-10至-30 ppm之间,这是由于氚原子核周围的电子云与其他氢同位素有不同的相互作用。

四、氘(2H)氘(2H)是氢的另一种同位素,它的原子核中有一个质子和一个中子。

氘与重氢是同一种同位素,因此它们具有相似的化学位移。

氘的化学位移通常为4-5 ppm,与重氢相比略有偏移。

五、三氢(3H)三氢(3H)是氢的同位素,它的原子核中有一个质子和两个中子。

三氢是一种放射性同位素,它的化学位移与其他氢同位素有很大的差异。

三氢的化学位移通常在-40至-90 ppm之间,这是由于三氢原子核周围的电子云与其他氢同位素有不同的相互作用。

六、超氢(H+)超氢(H+)是氢的正离子形式,失去了一个电子。

由于失去了电子,超氢的化学位移通常在10 ppm以上。

超氢在化学反应中具有重要的作用,可以作为酸性物质和催化剂。

各种氢同位素具有不同的化学位移,这是由于原子核周围的电子云与其他原子核的相互作用不同所致。

了解和研究氢的化学位移对于理解分子结构和化学反应机制至关重要。

核磁共振技术的发展使得我们能够准确测定不同氢同位素的化学位移,为化学和生物学研究提供了重要的工具。

化学位移 - 化学位移

化学位移 - 化学位移
1. 芳H(7-8)﹥烯H(5)﹥炔H(3)﹥烷H C
2.C—C—H﹥C—CH2—C﹥C—CH3 C
3. RCOOH(10-12)﹥RCHO(9-10)﹥ArOH﹥ ROH≈RNH2
图14-11
(1)化学位移的绝对值很难测定,相对值易得。
(2)


r
2
(1 )H0
对同一核,在H0不同时,n不同,不便于比较; 采用相对值, d 与H无关,便于比较。
例:
将CH3Br放在H0 1.4902T,CH3 60MHz 162Hz, TMS 60MHz
(60MHz 162106 60MHz) 106 2.70( ppm)
(化学结构决定)
核外电子云密度↑,s↑。
H实 H0 H0 (1 ) H0
修正的Lamor方程
r 2
H0 (1 )
1. 若H0一定(扫频)
s↑,n↓,信号出现在谱图的右端(低频端);
s↓,n↑,信号出现在谱图的左端(高频端)。
2. 若n一定(扫场)
s↑,H0↑ ,信号出现在谱图的右端(高场端); s↓,H0↓ ,信号出现在谱图的左端(高场端);
CH3
a. 12个H核的化学环境相同,产生单峰;
(TMS)
b. 该化合物s最大,吸收峰出现在谱图的最右端;
c. 易溶于有机溶剂且惰性,沸点低(27℃),易采用蒸 馏法将其除去。
三、影响化学位移的因素
1. 局部屏蔽效应 (H核核外成键电子云产生的抗磁屏蔽效应)
CH3-H CH3-I CH3-Br CH3-Cl CH3-OH CH3-F TMS
NMR谱图:右端低频(高场),左端高频(低场)。
二、化学位移的定义及其表示 式

化学位移值计算公式

化学位移值计算公式

化学位移值计算公式化学位移值(Chemical Shift)可是化学中一个相当重要的概念呢!它在核磁共振(NMR)光谱分析中扮演着关键角色。

那化学位移值的计算公式到底是怎么一回事呢?化学位移值的计算公式通常表示为:δ = (观测频率 - 参考频率)/ 共振频率。

这个公式看起来简单,可里面的门道儿不少。

为了让大家更好地理解这个公式,我给大家讲讲我曾经在课堂上的一个小经历。

有一次,我在给学生们讲解化学位移值的计算时,有个学生一脸迷茫地问我:“老师,这公式到底怎么用啊?感觉好抽象!”我笑了笑,拿出事先准备好的一个简单的有机分子结构模型,指着其中的不同原子说:“同学们,咱们就拿这个分子来说。

假设我们要研究其中氢原子的化学位移值。

首先,我们得确定参考频率,一般常用的是四甲基硅烷(TMS)的共振频率作为参考。

然后,通过实验测量出我们所关心的氢原子的观测频率。

”我接着在黑板上写出具体的数字,“比如说,TMS 的共振频率是100 MHz,我们测量到的这个氢原子的观测频率是 120 MHz。

那按照公式,化学位移值δ 就等于(120 - 100)/ 100 = 0.2 ppm(parts per million,百万分之一)。

”学生们听着,眼睛逐渐亮了起来,开始纷纷动笔自己计算起来。

咱们再深入讲讲这个公式。

在实际应用中,化学位移值能告诉我们原子周围的化学环境。

比如,在苯环上的氢原子,由于苯环的电子云分布影响,它的化学位移值就会与普通的烷基氢原子不同。

通过对化学位移值的准确计算和分析,我们可以推断出分子的结构、化学键的性质等重要信息。

而且,不同的仪器和实验条件可能会对测量的频率产生一定影响,但只要参考频率固定,化学位移值的相对大小仍然具有重要的比较意义。

想象一下,如果我们不知道化学位移值的计算公式,在面对复杂的有机分子结构分析时,那可真是像在黑暗中摸索,毫无头绪。

但有了这个公式,就好像给了我们一把打开未知世界大门的钥匙。

化学位移

化学位移

二. 共轭效应
在共轭效应中,推电子基和吸电子基的影响各 不相同。 推电子基—— p -π共轭——电子云密度 ——δ 。 吸电子基——π-π共 轭——电子云密度 ——δ 。
三. 磁各向异性效应(magnetic anisotropic effect)
实验表明: CH2=CH2 CH=CH CH3-CH3
规定
四甲基硅的

TMS
= 0
用TMS作为基准的原因: (1) 12个氢处于完全相同的化学环境,只产生一个尖峰; (2) 屏蔽强烈,位移最大,共振峰在最高场区,与其他有 机化合物中的质子峰不重迭; (3) 化学性质稳定;易溶于有机溶剂;沸点低,易回收。
当用重水作溶剂时,标准物质可选用:
DSS (2,2-二甲基-硅戊烷-5磺酸钠)
分子中处于不同化学环境的氢核的外围电子云 密度不同,使它们产生共振需要不同大小的外磁场 强度来抵消屏蔽效应的影响。 当用同一射频照射样品时,样品分子中处于不 同化学环境的氢核 ,所产生的共振峰将出现在不 同磁场强度的区域。这种共振峰位置的差异称为化 学位移。
一. 化学位移的表示方法
用待测核共振峰所在位置的场强 Bs 和某标准 物质磁性核共振峰所在位置的场强 Br 进行比较,用
3.4. 各类有机化合物的化学位移
一. 烷烃
-CH3: -CH2: -CH: CH3= 0.791.10ppm CH2 = 0.981.54ppm CH = CH3 +(0.5 0.6)ppm H=3.2~4.0ppm H=2.2~3.2ppm
O CH3 N CH3 C C CH3 O C CH3 CH3
对于理想化的、裸露的氢核,
实现核磁共振的条件:
0 = B0 / (2 )

核磁共振化学位移

核磁共振化学位移

HO
O CH3
7.85ppm 7.48ppm 7.54ppm
7.26ppm
6.84ppm 7.18ppm 6.90ppm
苯甲醚
苯甲醛
溴甲烷
溴乙烷
1-溴丙烷
H 7.27
7.78
Ha
A
H
OH
C=O
H 6.73
H 7.81
OCH3 Hb
6.70
8.58
Ha1 O
COCH3
OCH3 B
Hb 8.08 Ha2 C 7.94
Cl CH2 H Cl2 CH H Cl3 C H
3.05 5.30 7.27
基团距离越远,受到的影响越小
CH3 CH2 CH2 Br
1.25 1.69 3.30
CH3F CH3OH CH3Cl CH3Br CH3I CH3-H
/ppm 4.26
3.40
3.05
2.68
2.16
0.23
cba
正屏蔽:
由于结构上的变化或介质的影响使氢核外
电子云密度增加,或者感应磁场的方向与外磁
场相反,则使谱线向高磁场方向移动(右移), 值减小,亦叫抗磁性位移。
去屏蔽:
由于结构上的变化或介质的影响使氢核外
电子云密度减少,或者感应磁场的方向与外磁
场相同,则使谱线向低磁场方向移动(左移), 值增加,亦称顺磁性位移。
优点:
12个氢处于完全相同的化学环境,只有一个 峰,
电负性 Si C, 屏蔽作用很高,一般质子的 吸收峰都出现在它的左边-----低场,
沸点低,27oC,易挥发,能与许多有机溶剂 相溶。
标准:四甲基硅(TMS),δ=0
TMS的化学位移最大,但规定 TMS=0,

核磁H谱化学位移

核磁H谱化学位移

目录
1
化学位移的产生 化学位移的表示方法 影响化学位移的因素 常见基团的化学位移 例题分析
2
3
4
5
1、化学位移的产生
电子屏蔽效应 氢核周围存在不断运动着的电子,在外磁场的 作用下,运动着的电子产生一个会与外磁场方 向相反的感应磁场,抵消了部分外磁场的作用, 使核受到的外磁场作用减小,起到屏蔽作用。
在有机化合物中,氢核受核外电子的屏蔽作用, 使其共振频率发生变化,即引起共振吸收峰的 位移,这种现象称为化学位移。(不同的氢核, 所处的化学环境不同,化学位移的值也不相 同。)
2、化学位移的表示方法
如定义中所提到的,不同的氢核,所处的化学环境 不同,出峰位置也不同,其峰的位置不便精确测定,
故在试验中采用某一标准物质作为基准,以基准物
计算方程式
3、影响化学位移的因素
3.1、诱导效应 与质子相连元素的电负性越强,吸电子作用越强,质子周围的电子云密度越小,屏蔽作 用减弱,信号峰在低场出现。
诱导效应是通过成键电子沿键轴方向传递的,取代基距离越远,诱导效应越弱。
多取代基对化学位移的影响。
3、影响化学位移的因素
3.2、S-P杂化 从SP3(碳碳单键)到SP2(碳碳双键)S电子的惩罚从25%增加到33%,键电子更靠近碳 原子,因而对相连的氢原子有去屏蔽作用,即共振位移移向低场。
3.3、磁各向异性 屏蔽区:感应磁场与外磁场方向相反的区域; 去屏蔽区:感应磁场与外磁场方向相同的区域。
如图,双键的H处于去屏蔽区,故其处于低场。 化学位移为4.5-5.1
3、影响化学位移的因素
3.3、磁场方向与外磁场 方向相反,处于屏蔽区,故其处于高场。 化学位移为2-3.
质(通常以TMS作为基准物质)的谱峰位置作为核 磁谱图的坐标原点。 抗磁屏蔽:原子核外的电子在外加 磁场的感应下产生抗磁场,使原子 核实受磁场稍有降低,故此屏蔽称 为抗磁屏蔽。设以固定的电磁频率 扫描磁场强度的方式作图,横坐标 由左至右表示磁场强度增加的方向。 若某一官能团的氢核抗磁屏蔽较大, 则所需磁场强度更强,故可推断出 此谱线在其他官能团谱线的右方 (即相对高场的位置)。即谱线为 的场强为右高左低
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

各种的化学位移值经验计算方法及常见氢核的化学位移
1.烷烃和取代烷烃中1H的化学位移
(1)可从表4-6直接查得取代基α碳上的质子化学位移值。

取代基对β碳上的质子化学位移也有一定影响,在计算β碳上的质子化学位移值时,应将表4-7中β位的各种取代基影响值加到表4-6中的化学位移值上。

32
注:表中R表示烷基,Ar表示芳香基。

32
H R R R 顺反
注:此表必须与表4-6一起使用。

将此表中查得的数据与表4-6中查得的相关数据相加。

(2)烷烃和取代烷烃中质子化学位移还可以用经验公式来计算,常用的有舒里公式: δH =0.23+∑σ (4-21)
2. 烯氢的化学位移值
烯烃的结构通式可以表示如下,其中双键碳原子上的质子化学位移值可用公式(4-22)计算。

δC =C -H =5.28+∑S (4-22)
式中,5.28是乙烯质子的δ 值,∑S 是乙烯基上各取代基R 同、R 顺和R 反对烯氢化学位移影响之和。

R 同、R 顺和R 反 的值见表4-9。

表4-9 取代基对烯氢化学位移值的影响
3. 苯环上质子的化学位移值
与烯氢化学位移值的计算类似,苯环上质子的化学位移值可用以下公式计算:δ=7.26+∑Zi(4-23)
式中,7.26是没有取代的苯环上质子的δ值,∑Zi是取代基对苯环上的剩余质子化学位移影响之和,Zi不仅与取代基的种类有关,而且与取代基的相对位置有关。

各种取代基的Zi 值列入表4-10中。

表4-10 取代基对苯环上质子化学位移值的影响。

相关文档
最新文档