人教版七年级数学上册计算题专项训练57
人教版七年级数学上册《有理数的混合运算》专题训练-附参考答案

人教版七年级数学上册《有理数的混合运算》专题训练-附参考答案【解题技巧】主要是要注意混合运算的运算顺序。
一级运算:加减法;二级运算:乘除法;三级运算:乘方运算。
规定:先算高级运算再算低级运算同级运算从左到右依次进行。
(1)有括号先算括号里面的运算按小括号、中括号、大括号依次进行;(2)先乘方、再乘除、最后加减;(3)同级运算按从左往右依次进行。
当然在准守上述计算原则的前提下也需要灵活使用运算律以简化运算。
1.(2022·广西崇左·七年级期末)计算:(1)3312424⎛⎫⎛⎫-⨯÷-⎪ ⎪⎝⎭⎝⎭;(2)2014281|5|(4)(8)5⎛⎫-+-⨯---÷-⎪⎝⎭.【答案】(1)12(2)-7【分析】(1)原式从左到右依次计算即可求出值;(2)原式先算乘方及绝对值再算乘除最后算加减即可求出值.(1)原式9489⎛⎫⎛⎫=-⨯-⎪ ⎪⎝⎭⎝⎭12 =;(2)原式=﹣1+5×(85-)﹣16÷(﹣8)=﹣1﹣8+2=﹣7.【点睛】本题考查了有理数的混合运算熟练掌握运算法则是解本题的关键.2.(2022·内蒙古·七年级期末)计算:(1)31125(25)25424⎛⎫⨯--⨯+⨯-⎪⎝⎭(2)4211(1)3[2(3)]2---÷⨯--【答案】(1)25(2)1 6【分析】(1)根据乘法分配律、有理数乘法法则、减法法则和加法法则计算即可;(2)根据有理数的运算顺序和各个运算法则计算即可.(1)解:原式311252525424⎛⎫=⨯+⨯++- ⎪⎝⎭31125424⎛⎫=⨯+- ⎪⎝⎭251=⨯25=;(2)解:原式111(29)23=--⨯⨯- 11(7)6=--⨯- 761=-+ 16=. 【点睛】此题考查了有理数的混合运算.解题的关键是掌握有理数的混合运算的运算顺序和每一步的运算法则.3.(2022·山东东营·期末)计算: (1)11311338⎛⎫⎛⎫+÷-⨯ ⎪ ⎪⎝⎭⎝⎭; (2)42111(2)|25|623⎛⎫-+-+--⨯- ⎪⎝⎭ 【答案】(1)34- (2)5 【分析】(1)原式先算括号内的 再算乘除;(2)原式先乘方 再中计算括号内及绝对值内的减法 再计算乘法 最后计算加减即可求出值.(1)解:11311338⎛⎫⎛⎫+÷-⨯ ⎪ ⎪⎝⎭⎝⎭ 433328⎛⎫=⨯-⨯ ⎪⎝⎭ 34=- (2)解:42111(2)|25|623⎛⎫-+-+--⨯- ⎪⎝⎭ 111436623=-++-⨯+⨯ 14332=-++-+5=【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键.4.(2022·安徽阜阳·七年级期末)计算:(1)()221113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭. (2)2221132() 1.532⎡⎤-⨯-+÷--⎢⎥⎣⎦ 【答案】(1)16(2)-2312 【分析】先计算乘方及小括号内的运算 再计算乘法 最后计算加减法.【详解】(1)解:()221113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭=()111723--⨯⨯- =716-+ =16. (2)解:2221132() 1.532⎡⎤-⨯-+÷--⎢⎥⎣⎦ 19(924)34=-⨯-+⨯- 19(1)34=-⨯-- 1934=- =-2312. 【点睛】此题考查了含乘方的有理数的混合运算 正确掌握有理数的运算法则及运算顺序是解题的关键. 5.(2022·湖南娄底·七年级期末)计算:(1)()()220211110.5233⎡⎤---⨯⨯--⎣⎦; (2)()224212512432⎡⎤⎛⎫⎡⎤-÷--+-⨯⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎣⎦【答案】(1)16(2)6 【分析】(1)原式先计算乘方运算 再计算乘除运算 最后算加减运算即可得到结果.(2)先算乘方 再算乘除 最后算减法;同级运算 应按从左到右的顺序进行计算.【详解】(1)解:原式()117112912366⎛⎫=--⨯⨯-=---= ⎪⎝⎭ (2)解:()224212512432⎡⎤⎛⎫⎡⎤-÷--+-⨯⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎣⎦ ()2116512434⎛⎫=-÷-+-⨯ ⎪⎝⎭ 21164242434⎛⎫=-÷+⨯-⨯ ⎪⎝⎭410=-+6=【点睛】本题考查的是含乘方的有理数的混合运算 掌握“含乘方的有理数的混合运算的运算顺序”是解本题的关键 运算顺序为:先乘方 再乘除 最后算加减 有括号先计算括号内的运算.6.(2022·天津北辰·七年级期末)(1)24(3)5(2)6⨯--⨯-+;(2)()31162(4)8⎛⎫÷---⨯- ⎪⎝⎭. 【答案】(1)52;(2)-52. 【分析】(1)先算乘方 然后计算乘除 最后算加减即可;(2)先算乘方 然后计算乘除 最后算加减即可.【详解】解:(1)24(3)5(2)6⨯--⨯-+=4×9+10+6=52;(2)()31162(4)8⎛⎫÷---⨯- ⎪⎝⎭=-16÷8-12=-2-12=-52. 【点睛】本题考查了有理数的混合运算 有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算.7.(2022·广西百色·七年级期末)计算:(1)()()22241322⎡⎤---⨯÷⎣⎦.(2)33(2)30(5)34⎛⎫-⨯-+÷--- ⎪⎝⎭. 【答案】(1)8(2)-2【分析】根据有理数的混合运算法则计算即可;含乘方的有理数混合运算法则:1、先乘方 再乘除 最后加减;2、同级运算 从左往右进行;3、如果有括号 先做括号内的运算 按小括号、中括号、大括号依次进行.【详解】(2)解:原式()161924=--⨯÷⎡⎤⎣⎦()16824=--⨯÷⎡⎤⎣⎦8=.解:原式()()51411=÷--+⨯-()551=÷--11=--2=-.【点睛】本题考查了有理数的混合运算 熟练掌握运算法则是解题的关键.8.(2022·河南周口·七年级期末)计算: (1)2022211(1)(1)(32)23-+-⨯+-+ (2)23220213(4)(2)(2)(1)-⨯-+-÷--- 【答案】(1)556- (2)35 【分析】(1)原式先计算乘方运算及括号内的运算 再计算乘除运算 最后计算加减运算即可求出值;(2)先计算乘方运算 再计算乘除运算 最后计算加减运算即可求出值.(1)解:原式=111(92)23+⨯+-+ =1176+- =556-; (2)解:原式=9(4)(8)4(1)-⨯-+-÷--=3621-+=35【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键.9.(2022·江苏扬州·七年级期末)计算: (1)3(6)( 1.55) 3.25(15.45)4---+++-; (2)()()22351222125⎛⎫⎛⎫-÷-⨯-+- ⎪ ⎪⎝⎭⎝⎭ 【答案】(1)-7 (2)98- 【分析】(1)先算同分母分数 再算加减法即可求解;(2)先算乘方 再算乘除 最后算加法;同级运算 应按从左到右的顺序进行计算.(1)解:3(6)( 1.55) 3.25(15.45)4---+++-(6.75 3.25)( 1.5515.45)=++--1017=-7=-;(2)解:()()22351222125⎛⎫⎛⎫-÷-⨯-+- ⎪ ⎪⎝⎭⎝⎭ 254(8)1425=÷-⨯- 2514()14825=⨯-⨯- 118=-- 98=-. 【点睛】本题考查了有理数的混合运算 解题的关键是掌握有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算;如果有括号 要先做括号内的运算.进行有理数的混合运算时 注意各个运算律的运用 使运算过程得到简化.19.(2022·河南南阳·七年级期末)计算(1)243(6)()94-⨯-+; (2)33116(2)()(4) 3.52÷---⨯-+.【答案】(1)11 (2)1【分析】(1)先计算乘方 再利用乘法分配律计算即可;(2)先计算乘方 再计算乘除 最后计算加减即可.(1)解:原式4336()94=⨯-+4336()3694=⨯-+⨯ 1627=-+11=;(2)解:原式116(8)()(4) 3.58=÷---⨯-+20.5 3.5=--+ 1=.【点睛】本题主要考查有理数的混合运算 解题的关键是掌握有理数的混合运算顺序和运算法则.11.(2022·河北邯郸·七年级期末)计算:()()20212132311234⎛⎫-+⨯---⨯- ⎪⎝⎭. 【答案】12-【详解】解:原式()44311213123=-⨯-++⨯⨯- 434912=--+-=-.【点睛】本题考查了有理数的混合运算 熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方 再算乘除 最后算加减;同级运算 按从左到右的顺序计算.如果有括号 先算括号里面的 并按小括号、中括号、大括号的顺序进行.有时也可以根据运算定律改变运算的顺序.12.(2022·浙江杭州市·七年级期末)计算:(1). (2). (3) (4) 【答案】(1);(2);(3);(4) 【分析】(1)直接约分计算即可;(2)将除法转化为乘法 再约分计算;(3)先算乘方和括号 再算乘除 最后算加减;(4)先算乘方 再算乘除 最后算加减.【详解】解:(1) =; (2)= ==; (3) = 71(5)27⎛⎫-⨯-⨯ ⎪⎝⎭15(0.25)63⎛⎫÷-÷- ⎪⎝⎭231213(2)5⎛⎫---⨯÷- ⎪⎝⎭223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭52257920-16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭5215(0.25)63⎛⎫÷-÷- ⎪⎝⎭131654⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭()13465⎛⎫⨯-⨯- ⎪⎝⎭25231213(2)5⎛⎫---⨯÷- ⎪⎝⎭31(8)45⎛⎫---÷- ⎪⎝⎭= = =; (4) = = = = 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序.13.(2022·浙江杭州市·七年级期末)计算:(1). (2). (3) (4) 【答案】(1);(2);(3);(4) 【分析】(1)直接约分计算即可;(2)将除法转化为乘法 再约分计算;(3)先算乘方和括号 再算乘除 最后算加减;(4)先算乘方 再算乘除 最后算加减.【详解】解:(1) =; (2)= 14258⎛⎫--⨯- ⎪⎝⎭2410-+7920-223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭129(8)9454⎛⎫-⨯-⨯-+÷ ⎪⎝⎭12489459-⨯⨯+⨯445-+16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭15(0.25)63⎛⎫÷-÷- ⎪⎝⎭231213(2)5⎛⎫---⨯÷- ⎪⎝⎭223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭52257920-16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭5215(0.25)63⎛⎫÷-÷- ⎪⎝⎭131654⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭==; (3) = = = =; (4) = =12489459-⨯⨯+⨯ =445-+ =165 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序.14.(2022·浙江七年级期末)计算:(1). (2). (3). (4). 【答案】(1)3;(2)1;(3)927;(4)1【分析】(1)先化简符号和括号 再计算加减法;(2)将除法转化为乘法 再约分计算;(3)先算括号内的 再算乘除 最后算加减;(4)先算乘方和括号 再算乘除 最后算加减. ()13465⎛⎫⨯-⨯- ⎪⎝⎭25231213(2)5⎛⎫---⨯÷- ⎪⎝⎭31(8)45⎛⎫---÷- ⎪⎝⎭14258⎛⎫--⨯- ⎪⎝⎭2410-+7920-223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭129(8)9454⎛⎫-⨯-⨯-+÷ ⎪⎝⎭11552( 4.8)4566⎡⎤⎛⎫-+--- ⎪⎢⎥⎝⎭⎣⎦94(81)(16)49-÷⨯÷-11304(3)1556⎛⎫÷--⨯-+ ⎪⎝⎭422321(3)(15)35⎛⎫⎡⎤-÷--+-⨯- ⎪⎣⎦⎝⎭【详解】解:(1) = = ==3;(2) = =1;(3) = ==927;(4) = ==1 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序. 28.(2021·湖北恩施·七年级期末)计算下列各题:(1)2(35)(3)(13)--+-⨯-; (2)32422()93-÷⨯-. 【答案】(1)-16 (2)-8【分析】(1)先算括号中的减法 再算乘方 乘法 以及加减即可得到结果; (2)先算乘方 再算乘除即可得到结果.(1)解:原式=359(2)-++⨯-11552( 4.8)4566⎡⎤⎛⎫-+--- ⎪⎢⎥⎝⎭⎣⎦11552 4.84566⎛⎫--+ ⎪⎝⎭145154425566+--107-94(81)(16)49-÷⨯÷-441819916⨯⨯⨯11304(3)1556⎛⎫÷--⨯-+⎪⎝⎭301215301÷++9001215++422321(3)(15)35⎛⎫⎡⎤-÷--+-⨯- ⎪⎣⎦⎝⎭()23168(15)(15)35-÷-+⨯--⨯-2109-+218=- =16-;(2)解:原式=94849-⨯⨯=8-.【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键. 15.(2022·河南驻马店·七年级期末)计算:(1)()22112 2.25554⎛⎫---+-- ⎪⎝⎭; (2)2220212111132322⎛⎫--⨯--+÷⨯ ⎪⎝⎭.【答案】(1)1-;(2)54-【分析】(1)先化简绝对值、去括号 再计算加减法即可得;(2)先计算乘方、除法 再化简绝对值、乘法 然后计算加减法即可得. 【详解】 解:(1)原式2 2.2275.2555--+=- 7255=- 1=-;(2)原式4143111322=--⨯-+⨯3134344=--⨯+-4331344=--⨯+3114=--+ 54=-.【点睛】本题考查了含乘方的有理数混合运算 熟练掌握运算法则是解题关键. 16.(2022·山东青岛·七年级期末)计算: (1)123()3035--+; (2)431116(2)()48-+÷---⨯. 【答案】(1)110; (2)52-【分析】(1)原式利用减法法则变形 计算即可得到结果; (2)原式先算乘方 再算乘除 最后算加减即可得到结果. (1) 原式=1233035+- =12018303030+- =1201830+- =330=110; (2)原式=()1116848⎛⎫-+÷---⨯ ⎪⎝⎭=1122--+=52-.【点睛】本题考查了有理数的加、减、乘、除、乘方的混合运算 正确理解运算顺序并细心计算是解决本题的关键;运算顺序:先乘方、再乘除、后加减 有括号的先算括号里面的. 17.(2022·福建福州·七年级期末)计算: (1)()()()()2356---++-+; (2)()2202241235⎛⎫-+-÷--- ⎪⎝⎭.【答案】(1)0 (2)9-【分析】(1)根据有理数加减混合运算法则进行计算即可; (2)根据有理数的混合运算法则进行计算即可. (1)解:()()()()2356---++-+2356=-++-88=-+0=(2)解:()2202241235⎛⎫-+-÷--- ⎪⎝⎭51434⎛⎫=-+⨯-- ⎪⎝⎭153=--- 9=-【点睛】本题主要考查了有理数的混合运算 熟练掌握有理数混合运算法则 有乘方的先算乘方 再算乘除 最后算加减 有括号的先算小括号里面的 是解题的关键. 18.(2022·湖北孝感·七年级期末)计算:(1)(-5)×(-6)-40+2. (2)(-3)2-|-8|-(1-2×35)÷25.【答案】(1)8- (2)32【分析】(1)先计算有理数的乘法 然后计算加减即可;(2)先计算乘方及绝对值及小括号内的运算 然后计算除法 最后计算加减即可. (1)原式=30-40+2 =-8; (2)原式=9-8-65152⎛⎫-⨯ ⎪⎝⎭=9-8-1552⎛⎫-⨯ ⎪⎝⎭=9-8+12=32. 【点睛】题目主要考查含乘方的有理数的混合运算 绝对值化简 熟练掌握运算法则是解题关键. 19.(2022·山东枣庄·七年级期末)计算(1)22(2)31(0.2)4-+-⨯-÷-+- (2)222172(3)(6)()3-+⨯---÷-【答案】(1)-1 (2)23【分析】(1)先计算乘方 再计算乘除 最后算加减 可得答案;(2)先计算乘方 再计算乘除 最后计算加减 即可得到答案. (1)解:22(2)31(0.2)4-+-⨯-÷-+-4(6)54=-+-++1=-(2)222172(3)(6)()3-+⨯---÷-4929(6)9=-+⨯--⨯491854=-++ 23=【点睛】本题考查的是含乘方的有理数的混合运算 掌握“含乘方的有理数的混合运算的运算顺序”是解本题的关键.20.(2022·湖北荆州·七年级期末)计算:(1)﹣14﹣5+30﹣2 (2)﹣32÷(﹣3)2+3×(﹣2)+|﹣4| 【答案】(1)9 (2)-3【分析】(1)根据有理数的加减法运算法则计算即可求解; (2)先算乘方 再算乘除 最后算加法求解即可. (1)解:-14-5+30-2 =(-14-5-2)+30 =-21+30 =9; (2)-32÷(-3)2+3×(-2)+|-4| =-9÷9-6+4 =-1-6+4 =-3.【点睛】本题考查了有理数的混合运算 有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算;如果有括号 要先做括号内的运算. 21.(2022·河南驻马店·七年级期末)计算:(1)1|2|4--(34-)+11|1|2--; (2)16+(﹣2)319-⨯(﹣3)2﹣(﹣4)4.【答案】(1)312 (2)-249【分析】(1)先求绝对值 再按有理数加减法法则计算即可; (2)先计算乘方 再计算乘法 最后计算加减即可. (1)解:原式=13121442++-=312; (2)解:原式=16-8-19×9-256=16-8-1-256 =-249.【点睛】本题考查有理数混合运算 求绝对值 熟练掌握有理数运算法则是解题的关键. 22.(2022·四川广元·七年级期末)计算:220221256(4)(1)2⎛⎫---+÷-+-⨯- ⎪⎝⎭.【答案】-6 【详解】解:原式()()41241=--⨯-+-⨯ =()()424---+- =()424-++-6=-.【点睛】此题考查了含乘方的有理数的混合运算 正确掌握有理数混合运算法则是解题的关键. 23.(2022·广西崇左·七年级期末)计算(1)2312130.25343-+-- (2)()22122332⎡⎤-+⨯--÷⎢⎥⎣⎦【答案】(1)-1812 (2)2 (1)解∶原式=-2123-13+334-14= -22+312 =-1812 (2)解:原式=()42932-+⨯-⨯ = -4+2×(9-6) =-4+6 =2【点睛】本题主要考查了有理数的混合运算 熟练掌握有理数混合运算法则是解题的关键. 24.(2022·陕西·西安七年级期中)计算: (1)()()2132----+- (2)22212(32)243⎡⎤⨯+-÷⎣⎦ (3)152(18)369⎛⎫-+⨯- ⎪⎝⎭ (4)3202141(1)(13)82⎛⎫-+-÷⨯ ⎪⎝⎭【答案】(1)6-(2)0(3)5(4)34-【分析】(1)利用有理数加法和减法法则按照从左到右的顺序依次计算;(2)先算乘方 并把带分数化成假分数 再计算乘除 最后计算加减 同时按照先算小括号再算中括号的运算顺序计算即可;(3)利用乘法分配律进行计算即可;(4)先计算乘方 再计算乘除 最后计算加法即可.(1)原式=21326-+--=-; (2)原式=()2934294⎡⎤⨯+-÷⎣⎦ =1122⎛⎫+- ⎪⎝⎭=0;(3)原式=()121829⎛⎫-+⨯- ⎪⎝⎭=()()12181829⎛⎫-⨯-+⨯- ⎪⎝⎭=94- =5;(4)原式=()411288-+-÷⨯=111688-+÷⨯=1128-+⨯=114-+=34-. 【点睛】本题考查有理数的加减乘除及乘方的混合运算 解题关键是牢记运算法则 掌握运算顺序. 25.(2022· 绵阳市·九年级专项)计算:(1)211421337⎛⎫⎛⎫⎛⎫-+-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (2)11(3)(3)33⎛⎫⨯-÷-⨯- ⎪⎝⎭;(3)11661510155⎛⎫⎛⎫--÷- ⎪ ⎪⎝⎭⎝⎭; (4)67324(6) 3.5784⎛⎫⎛⎫-÷--÷⨯- ⎪ ⎪⎝⎭⎝⎭;(5)111532⎛⎫÷-- ⎪⎝⎭; (6)221782 1.52133699⎡⎤⎛⎫-⨯÷-÷ ⎪⎢⎥⎝⎭⎣⎦;(7)21112 1.48 1.410 1.4333⎛⎫⎛⎫⎛⎫-÷--÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (8)211113170.12511131628⎡⎤⎛⎫⎛⎫⎛⎫⨯⨯-+÷-÷-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.【答案】(1)218-;(2)9-;(3)712-;(4)177;(5)18-;(6)22-;(7)307;(8)16. 【分析】(1)先计算除法 再计算加法 两个有理数相除 同号得正;(2)乘除法 同级运算 从左到右 依次将除法转化为乘法 先确定符号 再将数值相乘; (3)先将除法转化为乘法 再利用乘法分配律解题 注意符号;(4)先算乘除 再算减法 结合加法结合律解题;(5)先算小括号 再算除法;(6)先算小括号 再算中括号;(7)先将除法转化为乘法 再利用乘法分配律的逆运算解题; (8)先算小括号 再算中括号 结合乘法交换律解题. 【详解】解:(1)211421337⎛⎫⎛⎫⎛⎫-+-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1477833⎛⎫⎛⎫⎛⎫=-+-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2414493=-+24218=-; (2)11(3)(3)33⎛⎫⨯-÷-⨯- ⎪⎝⎭()1=(3)3(3)3⨯-⨯-⨯- =9;(3)11661510155⎛⎫⎛⎫--÷- ⎪ ⎪⎝⎭⎝⎭5165101566⎛⎫⎛⎫=--⨯- ⎪ ⎪⎝⎭⎝⎭111123=-++ 712=-; (4)67324(6) 3.5784⎛⎫⎛⎫-÷--÷⨯- ⎪ ⎪⎝⎭⎝⎭617324()762874⎛⎫⎛⎫=--⨯--⨯⨯- ⎪ ⎪⎝⎭⎝⎭1437=++177=; (5)111532⎛⎫÷-- ⎪⎝⎭6155⎛⎫=÷- ⎪⎝⎭5156⎛⎫=⨯- ⎪⎝⎭18=-;(6)221782 1.52133699⎡⎤⎛⎫-⨯÷-÷ ⎪⎢⎥⎝⎭⎣⎦2378261323998⎡⎤⎛⎫=-⨯⨯-÷ ⎪⎢⎥⎝⎭⎣⎦2782241399⎡⎤⎛⎫=--÷ ⎪⎢⎥⎝⎭⎣⎦282223992⎡⎤⎛⎫=-÷ ⎪⎢⎥⎝⎭⎣⎦ 982094⎛⎫=-+⨯ ⎪⎝⎭22442-=22=-;(7)21112 1.48 1.410 1.4333⎛⎫⎛⎫⎛⎫-÷--÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2115128103337⎡⎤⎛⎫⎛⎫⎛⎫=---++⨯ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2115128103337⎡⎤=-++⨯⎢⎥⎣⎦567=⨯307=; (8)211113170.12511131628⎡⎤⎛⎫⎛⎫⎛⎫⨯⨯-+÷-÷-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦162113171713388⎡⎤⎛⎫⎛⎫⎛⎫=⨯⨯-⨯-+÷ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2113(16)33881⎡⎤⎛⎫⎛⎫=⨯-⨯-+⨯ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()332286⎛⎫=-⨯ ⎪⎝⎭863=⨯16=.【点睛】本题考查有理数的四则混合运算 涉及加法结合律、乘法分配律等知识 是重要考点 掌握相关知识是解题关键.26.(2022·娄底市第二中学七年级期中)请你先认真阅读材料: 计算 解:原式的倒数是=12112()()3031065-÷-+-21121-+()3106530⎛⎫-÷- ⎪⎝⎭2112()(30)31065-+-⨯-=×(﹣30)﹣×(﹣30)+×(﹣30)﹣×(﹣30)=﹣20﹣(﹣3)+(﹣5)﹣(﹣12) =﹣20+3﹣5+12 =﹣10 故原式等于﹣再根据你对所提供材料的理解 选择合适的方法计算:. 【答案】. 【分析】根据题意 先计算出的倒数的结果 再算出原式结果即可.【详解】解:原式的倒数是:故原式. 【点睛】本题主要考查了有理数的除法 读懂题意 并能根据题意解答题目是解决问题的关键. 27.(2022·黑龙江绥化·期中)计算:(1)()()()6.5 3.3 2.5 4.7-+----+; (2)()31612146⎛⎫⨯-⨯-⨯ ⎪⎝⎭; (3)22132412⎡⎤⎛⎫-+⨯-÷-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(4)()2449525⨯- (5)41399911899999918555⎛⎫⨯+⨯--⨯ ⎪⎝⎭【答案】(1)12- (2)63 (3)9- (4)24954-(5)99900【分析】根据有理数的加减乘除运算法则求解即可. (1)解:()()()6.5 3.3 2.5 4.7-+----+23110162511011322()()4261437-÷-+-114-113224261437⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭132216143742⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭132216143742⎛⎫⎛⎫-+-÷-⎪ ⎪⎝⎭⎝⎭()132********⎛⎫=-+-⨯- ⎪⎝⎭13224242424261437⎛⎫=-⨯-⨯+⨯-⨯ ⎪⎝⎭()792812=--+-14=-114=-6.5 3.3 2.5 4.7=--+-()6.5 3.3 4.7 2.5=-+++14.5 2.5=-+12=-;(2)解:()31612146⎛⎫⨯-⨯-⨯ ⎪⎝⎭ 3761246=⨯⨯⨯ 63=;(3)解:22132412⎡⎤⎛⎫-+⨯-÷-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ ()9244=-+⨯-9=-;(4)解:()2449525⨯- ()2449525⎛⎫=+⨯- ⎪⎝⎭ 24495525=-⨯-⨯ 242455=-- 42495=-; (5)解:41399911899999918555⎛⎫⨯+⨯--⨯ ⎪⎝⎭ 41399911818555⎛⎫=⨯+--- ⎪⎝⎭ 999100=⨯99900=.【点睛】本题考查有理数的加减乘除混合运算 熟练掌握相关运算法则及运算顺序是解决问题的关键. 28.(2022·河北邯郸·七年级期中)能简算的要简算(1)122 6.6 2.5325⨯+⨯ (2)44444999999999955555++++ (3)16533241787⎡⎤⎛⎫÷⨯-+ ⎪⎢⎥⎝⎭⎣⎦ (4)513.21 3.62812⎡⎤⎛⎫⨯-+⨯ ⎪⎢⎥⎝⎭⎣⎦【答案】(1)25;(2)11110;(3)16;(4)10 【分析】(1)先把小数化为分数 然后根据乘法的结合律进行计算求解即可;(2)先把分数部分和整数部分分别相加然后得到()()()()19199199919999+++++++由此求解即可;(3)直接根据分数的混合计算法则进行求解即可;(4)先把小数化为分数 然后根据分数的混合计算法则进行求解即可.【详解】解:(1)131226232525⨯+⨯132=263255⎛⎫⨯+ ⎪⎝⎭1=2102⨯=25;(2)44444999999999955555++++()44444=999999999955555⎛⎫++++++++ ⎪⎝⎭=49999999999++++()()()()=19199199919999+++++++=10100100010000+++=11110;(3)16533241787⎡⎤⎛⎫÷⨯-+ ⎪⎢⎥⎝⎭⎣⎦1633=977⎡⎤÷+⎢⎥⎣⎦1696=77÷167=796⨯1=6;(4)513.21 3.62812⎡⎤⎛⎫⨯-+⨯ ⎪⎢⎥⎝⎭⎣⎦1631825=58512⎛⎫⨯+⨯ ⎪⎝⎭61825=5512⎛⎫+⨯ ⎪⎝⎭2425=512⨯ =10.【点睛】本题主要考查了分数与小数的混合计算 分数的混合计算 解题的关键在于能够熟练掌握相关计算法则.29.(2022·浙江七年级期中)计算(1) (2) (3) (4) (5) (6) (7) (8) 【答案】(1);(2);(3)-8;(4);(5)8;(6);(7)161;(8) 【分析】根据有理数的混合运算法则分别计算.【详解】解:(1) = = =; (2) = = 3233(10)43434⎛⎫⎛⎫÷-⨯-÷-- ⎪ ⎪⎝⎭⎝⎭()22012201121(0.25)4522--⨯+-÷-1111864126⎛⎫-⨯-++÷ ⎪⎝⎭()2222114(32)333⎡⎤⎛⎫⎛⎫-÷---⨯-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦22222411.35 1.057.7393⎛⎫⎛⎫⎛⎫⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2432151|2|(3)(2)62⎛⎫⎡⎤-+⨯-----÷- ⎪⎣⎦⎝⎭222311513543⎡⎤⎛⎫⎛⎫⎛⎫-⨯÷---÷-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦111112123123100+++++++++++13-174-49613-2001013233(10)43434⎛⎫⎛⎫÷-⨯-÷-- ⎪ ⎪⎝⎭⎝⎭3112123124451034⎛⎫⎛⎫⎛⎫⨯-⨯-÷-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭110441015153-⨯⨯⨯13-()22012201121(0.25)4522--⨯+-÷-()2012220111422554⎛⎫--⨯+-÷- ⎪⎝⎭2012201151424254⎛⎫-⨯-⨯⎪⎝⎭= =; (3) = = ==-8;(4) = = ==; (5) = = = =8;(6) 2011411444⎛⎫-⨯⨯- ⎪⎝⎭174-1111864126⎛⎫-⨯-++÷ ⎪⎝⎭111866412⎛⎫⨯--⨯ ⎪⎝⎭1114848486412⨯-⨯-⨯8124--()2222114(32)333⎡⎤⎛⎫⎛⎫-÷---⨯-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦()91116(32)349⎡⎤-÷--⨯--⎢⎥⎣⎦111423⎛⎫--- ⎪⎝⎭12323+49622222411.35 1.057.7393⎛⎫⎛⎫⎛⎫⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭44411.35 1.057.7999⨯-⨯+⨯()411.35 1.057.79-+⨯4189⨯2432151|2|(3)(2)62⎛⎫⎡⎤-+⨯-----÷- ⎪⎣⎦⎝⎭= = = =; (7) = = = =160+1=161;(8) == = = = 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序 以及一些常用的简便运算方法.30.(2022·河北邯郸·二模)淇淇在计算:2022311(1)(2)623⎛⎫---+÷- ⎪⎝⎭时 步骤如下: 解:原式()11=202266623---+÷-÷①=202261218-++-① ()5112246274-+⨯+-⨯14125625-+⨯⨯213-+13-222311513543⎡⎤⎛⎫⎛⎫⎛⎫-⨯÷---÷-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦3531345254⎛⎫⨯⨯+⨯+ ⎪⎝⎭35141254⎛⎫⨯++⎪⎝⎭511284⨯+111112123123100+++++++++++()()()11111221331100100222+++++⨯+⨯+⨯2222122334100101++++⨯⨯⨯⨯11112122334100101⎛⎫⨯++++ ⎪⨯⨯⨯⨯⎝⎭11111112122334100101⎛⎫⨯-+-+-++- ⎪⎝⎭200101=2048-①(1)淇淇的计算过程中开始出现错误的步骤是________;(填序号)(2)请给出正确的解题过程.【答案】(1)①; (2)见解析.【分析】(1)根据有理数的运算法则可知从①计算错误;(2)根据有理数的运算法则计算即可.(1)解:由题意可知:()20223111(1)(2)6=186236⎛⎫---+÷---+÷ ⎪⎝⎭; 故开始出现错误的步骤是①(2)解:2022311(1)(2)623⎛⎫---+÷- ⎪⎝⎭()1=1866--+÷ =1836++=45.【点睛】本题考查含乘方的有理数的运算 解题的关键是掌握运算法则并能够正确计算.。
新人教版七年级数学上册计算题

七年级数学上册计算题(428道题)(1)()22--= (2)3112⎛⎫⎪⎝⎭-=(3)()91- = (4)()42-- =(5)()20031-= (6)()2332-+-=(7)()33131-⨯--= (8)()2233-÷- = (9))2()3(32-⨯-= (10)22)21(3-÷-=(11)()()3322222+-+-- (12)235(4)0.25(5)(4)8⎛⎫-⨯--⨯-⨯- ⎪⎝⎭(13)()34255414-÷-⎪⎭⎫ ⎝⎛-÷ (14)()⎪⎭⎫ ⎝⎛-÷----721322246 (15)()()()33220132-⨯+-÷--- (16) []24)3(2611--⨯-- (17)])3(2[)]215.01(1[2--⨯⨯-- (18) (19)()()()33220132-⨯+-÷---(20)22)2(3---;(21)]2)33()4[()10(222⨯+--+-; (22)])2(2[31)5.01()1(24--⨯⨯---;(23)94)211(42415.0322⨯-----+-; (24)20022003)2()2(-+-; (25))2()3(]2)4[(3)2(223-÷--+-⨯--; (26)200420094)25.0(⨯-.(27)()0252423132.⨯--÷-⎛⎝ ⎫⎭⎪+⎡⎣⎢⎢⎤⎦⎥⎥ (28)()()----⨯-221410222(29)()()()-⨯÷-+-⎛⎝ ⎫⎭⎪⨯-÷-3120313312232325.. (30)()()()-⎛⎝ ⎫⎭⎪⨯-⨯-⨯-212052832.(31)(32)(56)(79)---(33)(3)(9)(8)(5)-⨯---⨯- (34)3515()26÷-+ (35)5231591736342--+- (36)()()22431)4(2-+-⨯--- (37)411)8()54()4()125.0(25⨯-⨯-⨯-⨯-⨯332222()(3)(3)33÷--+-(38)如果0)2(12=-++b a ,求20112010()-3ab a b a a ++-()的值 (39)已知|1|a +与|4|b -互为相反数,求ba 的值。
人教版数学七年级上册整式计算专项练习200题及答案详解

1当2已知,当3当4当5当当6若代数式7已知当8当9 C. D.如图所示的运算程序中,若开始输入的10B.C. D.按如图所示的程序计算:若开始输入的11 B.C.D.已知,则代数式的值是().12 B.C.D.已知,则式子的值为().13不能确定已知代数式的值是,则代数式的值是().14当时,代数式值为,那么当时,代数式的值是 ().1516化简17当18已知19已知代数式20化简21若22已知23如果24已知代数式25若代数式26整式化简求值:先化简,再求值:27已知整式化简求值:先化简,再求值:28已知三个有理数29已知30先化简,再求值31已知代数式32按照如图的运算顺序,输入33如图是一个数值转换机.若输入的34当35若36已知37已知多项式时,多项式的值是38已知.3940设41用整体思想解题:为了简化问题,我们往往把一个式子看成一个数42已知当43已知当44已知45先化简再求值:46设若代数式47若48已知49先化简再求值50若51已知52先化简,再求值:53先化简,在求值:5456当57化简求值:58化简:59请回答下列各题:60已知62已知63先化简,再求值:64先化简,再求值:65先化简,再求值:66回答下面问题;67先化简,再求值:68先化简,再求值:69化简再求值:70阅读框图并回答下列问题:.71先化简,再求值:72先化简,再求值.求73对于74先化简,再求值:75若76已知77已知78已知79奕铭在化简多项式80先化简,再求值81先化简,再求值:82先化简,再求值:83若84已知:85先化简再求值:86先化简,再求值:87已知88已知89已知90先化简,再求值:91已知92先化简,再求值:93若单项式94求多项式95设96已知97已知98求99若100若代数式1 23 4 5 67 8 9 10 11 1213 14 15 16 17 18 1920 21 22 23 24 25 26 2728 29 30 31 32 33 34 3536 37 38 39 40 41 4243 44 45 46 47 48 4950 51 52 53 54 55 5657 58 59 60 61 62 63 6465 66 67 68 69 70 7173 74 75 76 77 78 7981 82 83 84 85 8687 88 89 90 91 9293 94 9596 9798 99 100。
人教版七年级上册有理数单元测试卷57

人教版七年级上册有理数单元测试卷57一、选择题(共10小题;共50分)1. 计算:的结果是A. C.2.A. 是负数,不是分数B. 不是分数,是有理数C. 是负数,也是分数D. 是分数,不是有理数3. 我国最长的河流长江全长约千米,用科学计数法表示为A. 千米B. 千米C. 千米D. 千米4. 记,令,称为,,,这列数的“理想数”.已知,,,的“理想数”为,那么,,,,的“理想数”为A. B. C. D.5. 的相反数是B. C.6. 已知:,,那么,,中最大的数是A. B. C. D. 无法确定7. 能使等式成立的的取值可以是A. B. C. D.8. 下列说法正确的是A. 减任何数的差都是负数B. 减去一个正数,差一定大于被减数C. 减去一个正数,差一定小于被减数D. 两个数之差一定小于被减数9. 用四舍五入法按要求对分别取近似值,其中错误的是A. (精确到)B. (精确到千分位)C. (精确到百分位)D. (精确到)10. 如图,将一刻度尺放在数轴上.①若刻度尺上和对应数轴上的点表示的数分别为和,则对应数轴上的点表示的数是;②若刻度尺上和对应数轴上的点表示的数分别为和,则对应数轴上的点表示的数是;③若刻度尺上和对应数轴上的点表示的数分别为和,则对应数轴上的点表示的数是;④若刻度尺上和对应数轴上的点表示的数分别为和,则对应数轴上的点表示的数是.上述结论中,所有正确结论的序号是A. ①②B. ②④C. ①②③D. ①②③④二、填空题(共6小题;共30分)11. 化简:.12. 已知,则.13. 某日中午,气温由早晨的零下上升了,傍晚又下降了,这天傍晚气温是.14. 观察下面一列数的规律并填空:,,,,,,则它的第个数是,第个数是.15. 的倒数是它本身.16. 如图,圆的直径为个单位长度,圆上的点与表示的点重合,将圆沿数轴滚动一周,点到达点的位置,则点表示的数是.三、解答题(共8小题;共104分)17. 化简下列分数:(1(2);(3(418. 如图为北京市地铁号线地图的一部分,某天,小王参加志愿者服务活动,从西单站出发,到从站出站时,本次志愿者服务活动结束,如果规定向东为正,向西为负,当天的乘车站数按先后顺序依次记录如下(单位:站):.(1)请通过计算说明站是哪一站?(2)若相邻两站之间的平均距离为千米,求这次小王志愿服务期间乘坐地铁行进的总路程约是多少千米?19. 下面的连乘的积中,末尾有多少个?20. 在数轴上,已知在纸面上有一数轴(如图),折叠纸面.(1)若表示的点与表示的点重合,则表示的点与何数表示的点重合;(2)若表示的点与表示的点重合,表示的点与何数表示的点重合;(3)若表示的点与表示的点之间的线段折叠次,展开后,请写出所有的折点表示的数?21. 计算:(1).(2).22. 硬盘的存储空间一般用,和作为基本计量单位,它们之间的关系为:.若一个移动硬盘的容量为,它相当于多少(用科学记数法表示,精确到百万位)?23. 规定:求若干个相同的有理数(不等于)的除法运算叫做除方,如,等.类比有理数的乘方,记作,读作的圈次方”,一般地,我们把记作,读作“的圈次方”.(1)直接写出计算结果:,.(2)有理数的除方可以转化为乘方幂的形式.如直接将下列的除方形式写成乘方幂的形式:;.(3)计算:24. 如图,在正方体的顶点处分别填上,,,,,,八个数中的一个数,使得每个面上的四个数相加的和都相等.(1)这个相等的和等于;(2)将图中的里填上数.答案第一部分1. C 【解析】2. C3. C4. C5. D【解析】的相反数是6. B7. C8. C9. B 【解析】精确到百分位.10. D【解析】①数和之间有个单位长度,则每厘米表示表示数,则表示,正确;②数和之间有个单位长度,则每厘米表示表示数,则表示,正确;③数和之间有个单位长度,则每厘米表示表示数表示,正确;④数和之间有个单位长度,则每厘米表示表示数,则表示,正确.第二部分11.13..即这天傍晚北方某地的气温是.14. ,【解析】第个数:;第个数:;第个数:;;第个数:.15.16.第三部分17. (1)(2)(3)(4)18. (1),站是西单站.(2),(千米),小王志愿服务期间乘坐地铁行进的总路程是千米.19. 个.20. (1)若表示的点与表示的点重合,则表示的点与表示的点重合.(2)若表示的点与表示的点重合,表示的点与表示的点重合.(3)若表示的点与表示的点之间的线段折叠次,展开后,所有的折点表示的数,,.21. (1)(2)22. .23. (1);【解析】,.(2);【解析】,.(3).24. (1)(2)如图所示:。
人教版七年级上册数学有理数计算题分类及混合运算练习题(200题)

七年级数学有理数计算题练习题(200题)有理数加法 1、(-9)+(-13) 2、(-12)+27 3、(-28)+(-34)4、67+(-92)5、 (-27.8)+43.96、(-23)+7+(-152)+65原则一:所有正数求和,所有负数求和,最后计算两个数的差,取绝对值较大的数的符号。
7、|52+(-31)| = 8、(-52)+|―31| =9、 38+(-22)+(+62)+(-78)=10、(-8)+(-10)+2+(-1) 11、(-32)+0+(+41)+(-61)+(-21)12、(-8)+47+18+(-27) 13、(-5)+21+(-95)+29 14、(-8.25)+8.25+(-0.25)+(-5.75)+(-7.5) 15、 6+(-7)+(-9)+216、 72+65+(-105)+(-28) 17、(-23)+|-63|+|-37|+(-77)18、19+(-195)+47 18、(+18)+(-32)+(-16)+(+26)20、(-0.8)+(-1.2)+(-0.6)+(-2.4) 21、(-8)+(-321)+2+(-21)+1222、 553+(-532)+452+(-31) 23、(-6.37)+(-343)+6.37+2.75原则二:凑整,0.25+0.75=141+43=1 0.25+43=1 抵消:和为零有理数减法7-9 = ―7―9 = 0-(-9) = (-25)-(-13) =8.2―(―6.3) (-321)-541(-12.5)-(-7.5)= = =(-26)―(-12)―12―18 ―1―(-21)―(+23) (-41)―(-85)―81=-44 =-2 =41(-20)-(+5)-(-5)-(-12) (-23)―(-59)―(-3.5) |-32|―(-12)―72―(-5) =-8 =39.5 =-23(+103)―(-74)―(-52)―710 (-516)―3―(-3.2)―7 (+71)―(-72)―73=―7011 =-10 =0(-0.5)-(-31)+6.75-51(+6.1)―(-4.3)―(-2.1)―5.1=4 =7.4(-32)―(-143)―(-132)―(+1.75) (-332)―(-243)―(-132)―(-1.75)=1 =2.5-843-597+461-392 -443+61+(-32)―25 =-13127 =-7430.5+(-41)-(-2.75)+21(+4.3)-(-4)+(-2.3)-(+4)=3.5 =2原则三:结果的形式要与题目中数的形式保持一致。
新人教版七年级数学上册计算题

七年级数学上册计算题(428道题)(1)()22--= (2)3112⎛⎫⎪⎝⎭-=(3)()91- = (4)()42-- =(5)()20031-= (6)()2332-+-=(7)()33131-⨯--= (8)()2233-÷- =(9))2()3(32-⨯-= (10)22)21(3-÷-=(11)()()3322222+-+-- (12)235(4)0.25(5)(4)8⎛⎫-⨯--⨯-⨯- ⎪⎝⎭(13)()34255414-÷-⎪⎭⎫ ⎝⎛-÷ (14)()⎪⎭⎫ ⎝⎛-÷----721322246(15)()()()33220132-⨯+-÷--- (16) []24)3(2611--⨯--(17)])3(2[)]215.01(1[2--⨯⨯-- (18)(19)()()()33220132-⨯+-÷--- (20)22)2(3---;(21)]2)33()4[()10(222⨯+--+-; (22)])2(2[31)5.01()1(24--⨯⨯---;332222()(3)(3)33÷--+-(23)94)211(42415.0322⨯-----+-; (24)20022003)2()2(-+-;(25))2()3(]2)4[(3)2(223-÷--+-⨯--; (26)200420094)25.0(⨯-.(27)()0252423132.⨯--÷-⎛⎝ ⎫⎭⎪+⎡⎣⎢⎢⎤⎦⎥⎥ (28)()()----⨯-221410222(29)()()()-⨯÷-+-⎛⎝ ⎫⎭⎪⨯-÷-3120313312232325.. (30)()()()-⎛⎝ ⎫⎭⎪⨯-⨯-⨯-212052832.(31) (32)(56)(79)---(33)(3)(9)(8)(5)-⨯---⨯- (34)3515()26÷-+(35)5231591736342--+- (36)()()22431)4(2-+-⨯---(37)411)8()54()4()125.0(25⨯-⨯-⨯-⨯-⨯33182(4)8-÷--(38)如果0)2(12=-++b a ,求20112010()-3ab a b a a ++-()的值(39)已知|1|a +与|4|b -互为相反数,求b a 的值。
人教版七年级上册数学课时同步练习题及答案57页
第一章 有理数1.1 正数和负数基础检测 1.521,76,106,14.3,732.1,34,5.2,0,1----+-中,正数有 ,负数有 。
2.如果水位升高5m 时水位变化记作+5m ,那么水位下降3m 时水位变化记作 m ,水位不升不降时水位变化记作 m 。
3.在同一个问题中,分别用正数与负数表示的量具有 的意义。
4.2010年我国全年平均降水量比上年减少24㎜.2009年比上年增长8㎜.2008年比上年减少20㎜。
用正数和负数表示这三年我国全年平均降水量比上年的增长量。
拓展提高5.下列说法正确的是( )A.零是正数不是负数B.零既不是正数也不是负数C.零既是正数也是负数D.不是正数的数一定是负数,不是负数的数一定是正数6.向东行进-30米表示的意义是( )A.向东行进30米B.向东行进-30米C.向西行进30米D.向西行进-30米7.甲、乙两人同时从A 地出发,如果向南走48m,记作+48m ,则乙向北走32m ,记为 这时甲乙两人相距 m.8.某种药品的说明书上标明保存温度是(20±2)℃,由此可知在 ℃至 ℃范围内保存才合适。
9.如果把一个物体向右移动5m 记作移动-5m ,那么这个物体又移动+5m 是什么意思?这时物体离它两次移动前的位置多远?1.2.1有理数测试基础检测1、 ______和______统称为非负数;______和______统称为非正数;______和______统称为非正整数;______和______统称为非负整数.2、下列不是正有理数的是( )A 、-3.14B 、0C 、37 D 、3 3、既是分数又是正数的是( )A 、+2B 、-314C 、0D 、2.3 拓展提高4、下列说法正确的是( )A 、正数、0、负数统称为有理数B 、分数和整数统称为有理数C 、正有理数、负有理数统称为有理数D 、以上都不对5、-a 一定是( )A 、正数B 、负数C 、正数或负数D 、正数或零或负数6、下列说法中,错误的有( )①742-是负分数;②1.5不是整数;③非负有理数不包括0;④整数和分数统称为有理数;⑤0是最小的有理数;⑥-1是最小的负整数。
人教版7年级上册数学计算题
人教版7年级上册数学计算题一、有理数运算。
1. 计算:(-3)+5- 解析:异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
|5| = 5,| - 3|=3,5>3,所以(-3)+5 = 2。
2. 计算:4 - (-2)- 解析:减去一个数等于加上这个数的相反数,所以4-(-2)=4 + 2=6。
3. 计算:(-2)×(-3)- 解析:两数相乘,同号得正,所以(-2)×(-3)=6。
4. 计算:-4÷2- 解析:异号两数相除得负,所以-4÷2=-2。
5. 计算:(-2)^3- 解析:(-2)^3=(-2)×(-2)×(-2)= - 8。
6. 计算:<=ft(-(1/2)+(2/3)-(5/6))×(-12)- 解析:- 根据乘法分配律a(b + c+d)=ab+ac + ad,这里a=-12,b =-(1/2),c=(2/3),d =-(5/6)。
- 则<=ft(-(1/2))×(-12)+(2/3)×(-12)-(5/6)×(-12)- =6-8 + 10- =8。
二、整式加减运算。
7. 化简:3a+2b - 5a - b- 解析:- 合并同类项,同类项是指所含字母相同,并且相同字母的指数也相同的项。
- 3a-5a=(3 - 5)a=-2a,2b - b=(2 - 1)b=b。
- 所以原式=-2a + b。
8. 计算:(2x^2 - 3x+1)-(x^2 - 2x - 3)- 解析:- 去括号法则:括号前是正号,把括号和它前面的正号去掉后,原括号里各项的符号都不改变;括号前是负号,把括号和它前面的负号去掉后,原括号里各项的符号都要改变。
- 所以2x^2-3x + 1-x^2 + 2x+3- 然后合并同类项:(2x^2-x^2)+(-3x+2x)+(1 + 3)- =x^2-x + 4。
人教版七年级上册数学 整式的加减 计算题专项训练
人教版七年级上册数学整式的加减 计算题专项训练一.化简(1)(5a-3b )-3(a 2-2b ) (2)8a+2b+(5a-b )(3)()()()y x y x y x 3242332+--+-- (4)()[]1253---a a a(5)()()43537422+-----x x x x(6))(2)(2b a b a a +-++(7)3a -[-2b +(4a -3b)] (8))32(2[)3(1yz x x xy +-+--(9)4xy ﹣3x 2﹣3xy+2x 2 (10)﹣3(2x 2﹣xy )﹣(x 2+xy ﹣6)(11)3(2x 2﹣y 2)﹣2(3y 2﹣2x 2) (12)2(x 2y+xy 2)﹣(2x 2y+xy 2)二.化简求值(1)先化简,再求值:2(a 2b+3ab )-(2ab-a 2b ),其中a=-2,b=1.(2)求()()xy y x y x 745352222+++-的值,其中.2,1=-=y x(3)先化简,再求值:已知A=4x2y-5xy2,B=3x2y-4xy2,当x=-2,y=1时,求2A-B的值.(5)已知:A=2x2+3xy-5x+1,B=-x2+xy+2.1、求A+2B.2、若A+2B的值与x的值无关,求y的值.(6)求5(3a2b﹣ab2)﹣(ab2+3a2b)的值,其中a=,b=.(7)求(﹣x2+5x+4)+(5x﹣4+2x2)的值,其中x=﹣2.(8)一个整式A与x2﹣x﹣1的和是﹣3x2﹣6x+21、求整式A;2、当x=2时,求整式A的值.(9)若代数式 2x+3y 的值为﹣5,求代数式 4x+6y+3 的值(10). 已知M=3a2﹣2ab+1,N=2a2+ab﹣2,求M﹣N的值。
(11). 已知 A=3x2﹣5x+1,B=﹣2x+3x2﹣5,求当x=时,A﹣B 的值.(12)大刚计算“一个整式A减去2ab﹣3bc+4ac”时,误把“减去”算成“加上”,得到的结果是2bc+ac﹣2ab.请你帮他求出正确答案.(13). 先化简再求值:﹣2(3a2﹣ab+2)﹣(5ab﹣6a2)+4,其中a=2,b=﹣1.(14). 已知A=2x2﹣3x﹣1,B=3x2+mx+2,且3A﹣2B的值与x无关,求m的值.(15).先化简,再求值:﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2,b=2017.(16).如果关于x的多项式5x2﹣(2y n+1﹣mx2)﹣3(x2+1)的值与x的取值无关,且该多项式的次数是三次.求m,n的值.(17).某同学做一道数学题,“已知两个多项式A、B,B=2x2+3x﹣4,试求A﹣2B”.这位同学把“A﹣2B”误看成“A+2B”,结果求出的答案为5x2+8x﹣10.请你替这位同学求出“A ﹣2B”的正确答案.。
人教版数学七年级上册整式计算专项练习200题及答案解析
1写出下列单项式的系数和次数:2找出下列各代数式中的单项式(画3把多项式4计算:5化简:6解答下列问题:7解答下列各题:8请回答下列问题:9先化简,再求值:10先化简后求值:已知11已知12化简:13化简:14已知15合并同类项.16“1718先化简,再求值:19已知当20已知21先化简再求值.22化简:23已知24课堂上李老师给出了一道整式求值的题目,李老师把要求的整式25若关于26先化简,再求值:27已知28有这样一道题29有这样一道题:30先化简,再求值31已知32小明做一道题33已知多项式34先化简,再求值:35已知老师在黑板上书写了一个正确的演算过程随后用手掌捂住了如图所示的一个二次三项式,形式如36化简:37计算:38计算:39计算:40计算:41化简下列各式4243先化简,再求值:44若多项式45已知46已知47小红做一道数学题48先化简,再求值:49先化简,再求值:50已知:51先化简,后求值:已知52若53先化简再求值:54先化简,再求值:55解答下列各题:56完成下列小题.57化简求值,先化简代数式:58先化简,再求值:59先化简,再求值:60小明同学做数学题:已知两个多项式61回答问题.62先化简,再求值:63先化简,再求值:64先化简,再求值:65先化简,再求值:66化简:67先化简,再求值:68先化简,再求值:先化简,再求值:69化简:70已知:多项式71先化简,再求值:72先化简,再求值:73化简求值:74先化简,再求值:7576化简:77计算:78先化简,再求值:79化简:80已知81化简:82先化简,再求值:83阅读下面的解题过程并回答问题.84计算:8586解答下列问题.先化简,再求值:87先化简,再求值:88下列去括号正确的是(89下列去括号或添括号:90当9192如果单项式93单项式9495关于多项式9697先化简,再求值:98若代数式99若100观察下列运算并填空.1 23 4 5 67 8 9 10 11 1213 14 15 16 17 18 1920 21 22 23 24 25 26 2728 29 30 31 32 33 34 3536 37 38 39 40 41 4243 44 45 46 47 48 4950 51 52 53 54 55 5657 58 59 60 61 62 63 6465 66 67 68 69 70 7173 74 75 76 77 78 7981 82 83 84 85 8687 88 89 90 91 9293 94 9596 9798 99 100。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、用数轴上的点表示下列各有理数。
-3.5 ,-2 ,7 ,-4.5 ,10二、-43的绝对值是( ),5.9的相反数是( )。
三、-32.5的绝对值是( ),5.7的相反数是( ),3的倒数是( )。
4、|32|=( ),(0)4=( )。
五、计算。
5 2(-—)+(-—)+(-5) 27×[(-1)2+(-5)]7 77 1 1—-(-—)+(-—)26+(-14)+3×(-10)6 8 91(-0.2)×—×(-10) (-4)3+43(-1)175251 1 1(-—)×(-—-—)×0 1×[(-4)2÷(-3]7 8 21 4 4(—-—)÷(-—) 14-(-10)-2+(-16)6 3 55 1(—+—)×(-70) (-4)3-43(-1)18904 4(-20)×(-1) 1+(-16) -8+(-9)1 1(-—)×(-—) -12+[2-(-1-1)] (-2)2-549 411+2+(-12)+(-13) 5.4-(-0.1)-(-2.7)+6.52 1 13 8 9 (—+—)+(—+—) 6.5-(-—)-(-4.2)+—9 9 8 7 5 5六、合并同类项。
-(6y-3) z-2(8+8c)19m-8(8y-8c) -(6m+y)+8(2y-5c)1—(14-8z)-c -5(4d+2xy-3)61 1-—(b+c)-—(s+t) 2(9a+y)+5(m-7q)7 58y-(5y-1) y-(9y-8z)-(4z-5y)2(9t+4)+7t 3-(6a-9)-(9a+7)2(-ab+6a)+(8a-2b) 3(abc+5a)+4(7a+8abc)3(xy+8z)-(-xy+5z) -4(pq+pr)-(3pq+pr)七、解方程。
5 x 1—x+—=—0.4x+0.8=9+4.5x6 6 92 1—+3x=1+—x 2(x-8)+7(x-8)=49 81 3—(2x-6)=—x+5 6x+7(3+x)=-86 5y+2 y-1——=5+——4x-7(x-6)=153 61 2—(4-3x)=—(2x+1) 9(3x+9)=67 9一、用数轴上的点表示下列各有理数。
-2.5 ,-1.25 ,9 ,-5 ,-7二、20的绝对值是( ),3.7的相反数是( )。
三、4.5的绝对值是( ),9.6的相反数是( ),4的倒数是( )。
4、|21.5|=( ),(-1)4=( )。
五、计算。
3 3(-—)+(-—)-(-4) 22×[(-2)2+(-1)]7 71 1 1—+(-—)-(-—)23-(-29)+6-(-20)3 4 71(-0.3)×—÷(-1000) (-1)4-52(-1)104791 1 1(-—)×(-—-—)×0 9÷[(-3)3×(-4]4 6 21 4 1(—-—)-(-—) 25-(-14)+8-(-16)2 3 41 2(—+—)×(-70) (-5)3-32(-1)19553 3(-16)-(-13) 9÷(-18) -12.5+(-18)1 1(-—)×(-—) -7+[5+(-15+4)] (-1)4-347 516-9-(-5)-(-1) 7.6+(-1)+(-1.4)-8.52 1 1 4 4 7 (—+—)+(—+—) 9.6+(-—)+(-6.8)+—5 4 7 7 5 5六、合并同类项。
-(8x-1) y-5(5+6a)4x+9(7y-7z) -(2x+y)+9(8x+6a)1—(2+4y)+z -5(7c-9bc-6)91 1-—(a+b)+—(e+f) 4(6a+x)-9(m-5p)2 58y+(3y-6) 9y+(5y+6c)-(4c-y)-9(2s+10)+3s 8+(8b+3)-(9b+2)7(-ab+3a)+(8a-3b) 12(abc+6a)-8(8a+5abc)6(xy+5z)-(-xy+6z) -8(pq-pr)+(2pq+pr)七、解方程。
7 x 1—x-—=—0.8x+0.8=5.5-7.8x9 4 98 1—-6x=5+—x 2(x-1)-9(x+8)=67 71 1—(5x-5)=—x+7 6x-9(17-x)=-34 5y-1 y+1——=6+——X-8.5(x-1)=54 51 2—(3+3x)=—(3x+3) 2(7x-7)=147 3一、用数轴上的点表示下列各有理数。
-3 ,-0.75 ,3 ,2.5 ,-8二、1.5的绝对值是( ),5的相反数是( )。
三、30的绝对值是( ),0.7的相反数是( ),-3的倒数是( )。
4、|47.5|=( ),(-2)3=( )。
五、计算。
1 1(-—)+(-—)-(-8) 12×[(-4)3+(-4)]7 76 1 1—-(-—)-(-—)15+(-16)+10+(-12)7 2 31(-0.7)÷—×(-9) (-1)2+22(-1)159461 1 1(-—)×(-—+—)×0 11÷[(-2)3+(-5]2 5 91 2 1(—+—)×(-—) 9+(-13)-2+(-16)5 3 81 7(—-—)×(-80) (-5)3-52(-1)15894 6(-19)-(-7) 2-(-13) 4.5-(-3)1 1(-—)-(-—) 11-[-1-(-17-1)] (-4)2-428 224-5-(-5)+(-27) 1+(-8.1)+(-5)+62 1 134 3 (—-—)+(—+—) 7.5+(-—)-(-1.7)-—7 2 2 5 5 5六、合并同类项。
-(9a-1) x+4(9+2a)17m+3(6b+5c) -(9m-b)-3(8a+2a)1—(18+6x)-c -6(9a+4ab+6)51 1-—(a+b)-—(p+q) 5(7b+y)-3(m+7p)9 63x+(7x-9) x-(4x-5q)+(4q+7x)8(7b-7)+8b 8+(9b+8)-(8b+4)7(-ab+8a)-(6a-4b) 6(abc+5a)+5(9a+9abc)5(xy+6z)+(-xy+5z) -4(pq+pr)-(8pq+pr)七、解方程。
7 x 1—x+—=—0.5x+0.9=3.3+5.3x6 4 32 1—+3x=9+—x 2(x-7)+5(x+6)=69 91 3—(6x+7)=—x-1 9x-8(3-x)=-99 5y-1 y+1——=6+—— 2.5x-9.5(x+3)=104 61 2—(3+3x)=—(2x+5) 3(9x+2)=83 9一、用数轴上的点表示下列各有理数。
-0.5 ,-0.75 ,2 ,-4.5 ,9二、-5.5的绝对值是( ),-4.2的相反数是( )。
三、26的绝对值是( ),-8.4的相反数是( ),1的倒数是( )。
4、|8.5|=( ),(-2)2=( )。
五、计算。
1 2(-—)-(-—)+(-8) 24-[(-1)2-(-3)]7 71 1 1—-(-—)-(-—)9+(-14)-4+(-15)4 4 71(-0.5)÷—÷(-5) (-3)3-23(-1)262571 1 1(-—)×(-—+—)×0 22×[(-1)2+(-3]2 2 71 7 5(—+—)+(-—) 18-(-14)+4+(-19)8 8 47 1(—-—)×(-10) (-5)2+22(-1)28306 5(-5)÷(-14) 16×(-1) -9-(-2.5)1 1(-—)÷(-—) -3-[-4+(-20+9)] (-3)4-532 936+19+(-22)-(-24) -4.6-(-6.7)-(-4.4)-7.52 1 1 1 4 6 (—+—)-(—+—) 5.4-(-—)+(-5.7)-—3 5 9 5 5 5六、合并同类项。
-(5n-3) z-8(9-3c)17x+6(4b-3t) -(6x-b)-3(7n-6c)3—(12-8z)+t -8(5c-3bc-1)21 1-—(y+z)+—(p+q) 3(8a-y)-8(m+3q)2 6-3a-(8a-7) a+(8a-6q)-(3q+6a)8(4b-2)-2b 4-(3x+7)-(5x+5)4(-ab-8a)+(3a-5b) 11(abc+8a)+8(5a-5abc)2(xy-8z)+(-xy-7z) -6(pq-pr)-(4pq-pr)七、解方程。
7 x 1—x-—=—0.6x-0.3=9.5+4.2x9 6 92 1—-8x=2-—x 8(x-8)+5(x+5)=49 61 3—(5x-7)=—x+7 6x-6(9-x)=-15 5y-3 y+2——=6-——2x-4(x+7)=54 51 2—(1-3x)=—(4x-3) 5(8x+8)=36 7一、用数轴上的点表示下列各有理数。
-2.5 ,-4 ,1 ,-2.5 ,1二、-15的绝对值是( ),-7.8的相反数是( )。
三、-39的绝对值是( ),3.5的相反数是( ),-2.5的倒数是( )。
4、|-38.5|=( ),(-3)3=( )。
五、计算。
3 5(-—)+(-—)+(-8) 12÷[(-2)3+(-1)]7 710 1 1—+(-—)+(-—)15-(-14)-9-(-15)9 6 51(-0.5)×—×(-5) (-3)4+53(-1)269751 1 1(-—)÷(-—+—)×0 21×[(-4)3×(-2]9 6 41 4 8(—+—)×(-—) 16+(-30)-2×(-14)4 3 74 6(—-—)×(-70) (-4)4-53(-1)17565 7(-16)÷(-13) 0×(-10) 14-(-22)1 1(-—)÷(-—) 16-[5-(-15-1)] (-5)2-429 8-1-13+(-17)+(-12) -5.4+(-4.2)+(-5)+1.32 1 1 2 8 8 (—-—)-(—+—) 4.3-(-—)+(-4.6)+—3 8 2 7 5 5六、合并同类项。
-(4y+8) y+5(8-6b)10a-8(5y-3t) -(3a-y)-4(9y-7b)1—(14+6y)+t -7(8c-7xy+9)81 1-—(y+z)+—(e+f) 2(8b+x)+8(n-7q)4 6-3a-(2a-8) 5a+(3a+7q)+(6q-2a)5(4n-5)+5n 3-(2x+2)+(7x+5)8(ab-4a)-(9a-8b) 20(abc+7a)-6(4a+8abc)8(xy-4z)+(-xy-6z) -6(pq+pr)+(8pq+pr)七、解方程。