高二数学常用逻辑用语、圆锥曲线与方程苏教版知识精讲
2018-2019学年高二数学讲义选修2-1苏教版:第2章 圆锥曲线与方程 2.6.1

§2.6 曲线与方程2.6.1 曲线与方程学习目标 1.了解曲线上的点与方程的解之间的一一对应关系.2.初步领会“曲线的方程”与“方程的曲线”的概念.3.学会分析、判断曲线与方程的关系,强化“形”与“数”的统一以及相互转化的思想方法.知识点 曲线与方程的概念思考 到两坐标轴距离相等的点的轨迹方程是什么?为什么?答案 y =±x .在直角坐标系中,到两坐标轴距离相等的点M 的坐标(x 0,y 0)满足y 0=x 0或y 0=-x 0,即(x 0,y 0)是方程y =±x 的解;反之,如果(x 0,y 0)是方程y =x 或y =-x 的解,那么以(x 0,y 0)为坐标的点到两坐标轴距离相等.梳理 如果曲线C 上点的坐标(x ,y )都是方程f (x ,y )=0的解(条件①,即纯粹性),且以方程f (x ,y )=0的解(x ,y )为坐标的点都在曲线C 上(条件②,即完备性),那么,方程f (x ,y )=0叫做曲线C 的方程,曲线C 叫做方程f (x ,y )=0的曲线.特别提醒:(1)曲线的方程和方程的曲线是两个不同的概念,是从不同角度出发的两种说法.曲线C 的点集和方程f (x ,y )=0的解集之间是一一对应的关系,曲线的性质可以反映在它的方程上,方程的性质又可以反映在曲线上.定义中的条件①说明曲线上的所有点都适合这个方程;条件②说明适合方程的点都在曲线上而毫无遗漏.(2)曲线的方程和方程的曲线有着紧密的关系,通过曲线上的点与实数对(x ,y )建立了一一对应关系,使方程成为曲线的代数表示,通过研究方程的性质可间接地研究曲线的性质.1.过点A (3,0)且垂直于x 轴的直线的方程为x =3.(√)2.到y 轴距离为2的点的直线方程x =-2.(×)3.方程=1表示斜率为1,在y 轴上的截距是2的直线.(×)xy -2类型一 曲线与方程的概念例1 命题“曲线C上的点的坐标都是方程f(x,y)=0的解”是正确的,下列命题中正确的是________.(填序号)①方程f(x,y)=0的曲线是C;②方程f(x,y)=0的曲线不一定是C;③f(x,y)=0是曲线C的方程;④以方程f(x,y)=0的解为坐标的点都在曲线C上.答案 ②解析 不论方程f(x,y)=0是曲线C的方程,还是曲线C是方程f(x,y)=0的曲线,都必须同时满足两层含义:曲线上的点的坐标都是方程的解,以方程的解为坐标的点都在曲线上,所以①,③,④错误.反思与感悟 解决“曲线”与“方程”的判定这类问题(即判定方程是不是曲线的方程或判定曲线是不是方程的曲线),只要一一检验定义中的“两性”是否都满足,并作出相应的回答即可.判断点是否在曲线上,就是判断点的坐标是否适合曲线的方程.跟踪训练1 设方程f(x,y)=0的解集非空,如果命题“坐标满足方程f(x,y)=0的点都在曲线C上”是不正确的,给出下列命题:①坐标满足方程f(x,y)=0的点都不在曲线C上;②曲线C上的点的坐标都不满足方程f(x,y)=0;③坐标满足方程f(x,y)=0的点有些在曲线C上,有些不在曲线C上;④一定有不在曲线C上的点,其坐标满足f(x,y)=0.其中判断正确的是________.(填序号)答案 ④解析 “坐标满足方程f(x,y)=0的点都在曲线C上”不正确,即“坐标满足方程f(x,y)=0的点不都在曲线C上”是正确的.“不都在”包括“都不在”和“有的在,有的不在”两种情况,故①③错,②显然错.类型二 点与曲线的位置关系例2 方程(x-4y-12)[(-3)+log2(x+2y)]=0表示的曲线经过点A(0,-3),B(0,4),C,D (8,0)中的________个.(53,-74)答案 2解析 由对数的真数大于0,得x +2y >0,∴A (0,-3),C 不符合要求;(53,-74)将B (0,4)代入方程检验,符合要求;将D (8,0)代入方程检验,符合要求.反思与感悟 点与实数解建立了如下关系:C 上的点(x 0,y 0)??f (x ,y )=0的解,曲线上的点的坐标都是这个方程的解,因此要判断点是否在曲线上只需验证该点是否满足方程即可.跟踪训练2 证明圆心为坐标原点,半径等于5的圆的方程是x 2+y 2=25,并判断点M 1(3,-4),M 2(-2,2)是否在这个圆上.5解 (1)设M (x 0,y 0)是圆上任意一点,因为点M 到原点的距离等于5,所以=5,也x 20+y 20就是x +y =25,即(x 0,y 0)是方程x 2+y 2=25的解.2020(2)设(x 0,y 0)是方程x 2+y 2=25的解,那么x +y =25,两边开方取算术平方根,得2020=5,即点M (x 0,y 0)到原点的距离等于5,点M (x 0,y 0)是这个圆上的点.x 20+y 20由(1),(2)可知,x 2+y 2=25是圆心为坐标原点,半径等于5的圆的方程.把点M 1(3,-4)的坐标代入方程x 2+y 2=25,左右两边相等,(3,-4)是方程的解,所以点M 1在这个圆上;把点M 2(-2,2)的坐标代入方程x 2+y 2=25,左右两边不等,5(-2,2)不是方程的解,所以点M 2不在这个圆上.5类型三 曲线与方程关系的应用例3 判断下列结论的正误,并说明理由.(1)到x 轴距离为4的点的直线方程为y =-4;(2)到两坐标轴的距离的乘积等于1的点的轨迹方程为xy =1;(3)△ABC 的顶点A (0,-3),B (1,0),C (-1,0),D 为BC 的中点,则中线AD 的方程为x =0.解 (1)因到x 轴距离为4的点的直线方程还有一个y =4,即不具备完备性.所以结论错误.(2)到两坐标轴的距离的乘积等于1的点的轨迹方程为|x |·|y |=1,即xy =±1.所以所给问题不具备完备性.所以结论错误.(3)中线AD 是一条线段,而不是直线,应为x =0(-3≤y ≤0),所以所给问题不具备纯粹性.所以结论错误.反思与感悟 判断曲线与方程关系问题时,可以利用曲线与方程的定义;也可利用互为逆否关系的命题的真假性一致判断.跟踪训练3 若曲线y 2-xy +2x +k =0过点(a ,-a )(a ∈R ),求k 的取值范围.解 ∵曲线y 2-xy +2x +k =0过点(a ,-a ),∴a 2+a 2+2a +k =0.∴k =-2a 2-2a =-22+.(a +12)12∴k ≤,12∴k 的取值范围是.(-∞,12]1.已知坐标满足方程f (x ,y )=0的点都在曲线C 上,那么下列说法正确的是________.(填序号)①曲线C 上的点的坐标都适合方程f (x ,y )=0;②凡坐标不适合f (x ,y )=0的点都不在曲线C 上;③不在曲线C 上的点的坐标必不适合f (x ,y )=0;④不在曲线C 上的点的坐标有些适合f (x ,y )=0,有些不适合f (x ,y )=0.答案 ③2.已知方程+=1,下列所给的点在此方程表示的曲线上的为________.(填序号)9(x -1)2y 24①(-2,0) ②(1,2) ③(4,0) ④(3,1)答案 ①③解析 将点(-2,0)和(4,0)代入方程后成立,而②,④代入后方程不成立,故只有①③符合题意.3.若点M 在方程x 2+(y -1)2=10所表示的曲线上,则实数m =________.(m2,-m )答案 -或2185解析 依题意得2+(-m -1)2=10,(m2)解得m =2或m =-.185所以m 的值为2或-.1854.方程4x 2-y 2+6x -3y =0表示的图形为________.答案 两条相交直线解析 原方程可化为(2x -y )(2x +y +3)=0,即2x -y =0或2x +y +3=0,∴原方程表示直线2x -y =0和直线2x +y +3=0.5.方程(x 2-4)2+(y 2-4)2=0表示的图形是________.答案 4个点解析 由题意,得Error!∴Error!或Error!或Error!或Error!∴方程(x 2-4)2+(y 2-4)2=0表示的图形是4个点.1.判断点是否在某个方程表示的曲线上,就是检验该点的坐标是不是方程的解,是否适合方程.若适合方程,就说明点在曲线上;若不适合,就说明点不在曲线上.2.已知点在某曲线上,可将点的坐标代入曲线的方程,从而可研究有关参数的值或范围问题.一、填空题1.方程y =3x -2 (x ≥1)表示的曲线为________.(填序号)①一条直线②一条射线③一条线段④不能确定答案 ②解析 方程y=3x-2表示的曲线是一条直线,当x≥1时,它表示一条射线.2.曲线C的方程为y=2x-1(1<x<5),则下列四个点中在曲线C上的是________.(填序号)① (0,0) ②(7,15) ③(2,3) ④(4,4)答案 ③解析 由y=2x-1(1<x<5)得①,②的横坐标不满足题意,④中坐标代入后不满足方程,故只有③符合题意.3.方程|x|+|y|=1表示的曲线所围成的平面图形的面积为________.答案 2解析 由题得该曲线所围成平面图形如下图所示,故其面积为2.4.下列方程对应的曲线是同一条曲线的是________.(填序号)x23x3①y=a log a x;②y=;③y=log a a x;④y=.答案 ③④3x3解析 由y=log a a x=x,y==x,得③④表示同一条曲线.y-25.方程(x-1)2+=0表示的是____________.答案 点(1,2)y-2y-2解析 由(x-1)2+=0,知(x-1)2=0,且=0,即x=1且y=2,所以(x-1)2+=0表示的是点(1,2).y-26.若点M到两坐标轴的距离的积为2016,则点M的轨迹方程是________.答案 xy=±2016解析 设M(x,y),则由题意得|x|·|y|=2016,所以xy=±2016.7.直线l:y=kx+1,抛物线C:y2=4x,则“k≠0”是“直线l与抛物线C有两个不同交点”的________条件.(填“充分不必要”“必要不充分”“充要”“既不充分又不必要”)答案 必要不充分解析 由(kx+1)2=4x,得k2x2+2(k-2)x+1=0,则当k ≠0时,Δ=[2(k -2)]2-4k 2=16(1-k )>0,得k <1且k ≠0,故“k ≠0”是“直线l 与抛物线C 有两个不同交点”的必要不充分条件.8.若直线kx -y +3=0与椭圆+=1有一个公共点,则k 的值为________.x 216y 24答案 ±54解析 联立方程组Error!消去y 并整理,得(4k 2+1)x 2+24kx +20=0,当Δ=16(16k 2-5)=0,即k =±时,直线与椭圆有一个公共点.549.如果曲线C 上的点满足方程F (x ,y )=0,有以下说法:①曲线C 的方程是F (x ,y )=0;②方程F (x ,y )=0的曲线是C ;③坐标满足方程F (x ,y )=0的点在曲线C 上;④坐标不满足方程F (x ,y )=0的点不在曲线C 上.其中正确的是________.(填序号)答案 ④10.已知两定点A (-2,0),B (1,0),若动点P 满足PA =2PB ,则点P 的轨迹所围的面积为________.答案 4π解析 设P (x ,y ),∵PA =2PB ,∴(x +2)2+y 2=4(x -1)2+4y 2,∴(x -2)2+y 2=4.∴点P 的轨迹为以(2,0)为圆心,以2为半径的圆,∴所围成的面积S =π·22=4π.11.下列命题正确的是________.(填序号)①△ABC 的顶点坐标分别为A (0,3),B (-2,0),C (2,0),则中线AO 的方程是x =0;②到x 轴距离为5的点的轨迹方程是y =5;③曲线2x 2-3y 2-2x +m =0通过原点的充要条件是m =0.答案 ③解析 对照曲线和方程的概念,①中“中线AO 的方程是x =0 (0≤y ≤3)”;而②中,动点的轨迹方程为|y |=5.从而只有③是正确的.二、解答题12.已知曲线C 的方程为x =,说明曲线C 是什么样的曲线,并求该曲线与y 轴围4-y 2成的图形的面积.解 由x =,得x 2+y 2=4.4-y 2又x ≥0,∴方程x =表示的曲线是以原点为圆心,2为半径的右半圆,从而该曲线C4-y 2与y 轴围成的图形是半圆,其面积S =π·4=2π.12所以所求图形的面积为2π.13.已知两曲线f (x ,y )=0与g (x ,y )=0的一个交点为P (x 0,y 0).求证:点P 在曲线f (x ,y )+λg (x ,y )=0(λ∈R )上.证明 因为P (x 0,y 0)是两曲线的交点,所以点P 的坐标既满足方程f (x ,y )=0,又满足方程g (x ,y )=0,即f (x 0,y 0)=0且g (x 0,y 0)=0,故f (x 0,y 0)+λg (x 0,y 0)=0,所以P (x 0,y 0)的坐标是方程f (x ,y )+λg (x ,y )=0的解,故点P 在曲线f (x ,y )+λg (x ,y )=0(λ∈R )上.三、探究与拓展14.已知方程①x -y =0;②-=0;③x 2-y 2=0;④=1,其中能表示直角坐标系的x y xy 第一、三象限的角平分线C 的方程的序号是________.答案 ①解析 ①是正确的;②不正确,如点(-1,-1)在第三象限的角平分线上,但其坐标不满足方程-=0;③不正确.如点(-1,1)满足方程x 2-y 2=0,但它不在曲线C 上;④不x y 正确.如点(0,0)在曲线C 上,但其坐标不满足方程=1.xy 15.方程(2x +3y -5)(-1)=0表示的曲线是什么?x -3解 因为(2x +3y -5)(-1)=0,x -3所以可得Error!或者-1=0,即2x +3y -5=0(x ≥3)或者x =4,故方程表示的曲线为x -3一条射线2x +3y -5=0(x ≥3)和一条直线x =4.。
高二数学圆锥曲线统一定义知识精讲 苏教版

高二数学圆锥曲线统一定义知识精讲 苏教版一. 本周教学内容:圆锥曲线统一定义二. 重点、难点:重点:理解圆锥曲线的统一定义,并能运用统一定义解题. 难点:对定义的变形使用.三. 知识点回顾:1、圆锥曲线的统一定义平面内到一个定点F 的距离和到一条定直线l (F 不在l 上)的距离的比是一个常数e 的点的轨迹.当e>1是双曲线,当e =1为抛物线,当0<e <1时为椭圆. 2、焦半径:圆锥曲线上的动点到焦点的距离简称为焦半径.设焦点为F (c ,0),动点P (x ,y )到相应准线l ,(x =2a c)的距离为PH .分析:仅以焦点在x 轴正半轴上的抛物线为例说明.2200()()x c y PF e PF e x x PH -+==⇒=+, 当e =1时,得PF =x+2p,以下根据不同情况可以得到准线l 的方程,可以计算出相应的PF 值.OHxFyP例1. 设椭圆的右焦点为F 2,AB 为椭圆中过F 2的弦,试分析以AB 为直径的圆和右准线l 的位置关系.分析:只要判断圆心到直线的距离与半径的大小关系即可.XY O A ' BA B 'F 2 M M设AB 的中点为M ,A ',M ',B '分别为A ,M ,B 在直线l 上的射影.由第二定义得|'AA ||AF |2=e (e 为离心率)|'BB ||BF |2=e ,则|AB|=|AF 2|+|BF 2|=e (|AA '|+|BB '|)=e ·2|MM'|, ∴|AB|2 =e| MM '|,又∵0<e<1,∴|AB|2<| MM '|.即圆心到准线的距离大于半径,∴准线与圆相离.变式1:(双曲线)设双曲线的右焦点为F 2,AB 为双曲线中过F 2的弦,试分析以AB 为直径的圆和右准线l 的位置关系.∵e>1∴|AB|2=e| MM ,|>MM ′直线l 与双曲线相交.变式2:(抛物线)设抛物线的焦点为F ,AB 为抛物线中过F 的弦,试分析以AB 为直径的圆和准线l 的位置关系.∵e =1∴|AB|2=e| MM ,|=MM ′直线l 与抛物线相切.变式3:过抛物线y 2=2px (p>0)的焦点F 的直线与其相交于A 、B 两点,过A ,B 两点向准线l 作垂线,垂足分别为C ,D .求证:∠CFD =90°.D CxO F yAB证明:∵AC =AF ∴∠AFC =∠ACF ∵BD =BF ∴∠BFD =∠BDF∵AC ∥BD ∴∠CAF +∠DBF =180° ∴2∠AFC +2∠BFD =180° ∴∠AFC +∠BFD =90° ∠CFD =90°例2. 已知椭圆2222by a x =1(a>b>0),P 为椭圆上一点,求证满足下列条件的k PM ·k PN 为一定值,①M 、N 为长轴的两个端点;②M 、N 为在椭圆上关于原点对称的两点.证明:①由题意得M (-a ,0)、N (a ,0),设P (x 0,y 0)∵P 在椭圆上, ∴220220by a x +=1,变形得x 02-a 2=-a 2b 2 y 02,又∵k PM ·k PN =220200000a x y a x y a x y -=-⋅+,∴k PM ·k PN =-b2a 2 .OxyP(x 0,y 0)M (-a ,0) N (a ,0)证明:②由题意可设M (m ,n )、N (-m ,-n ),P (x 0,y 0) ∵M 、P 在椭圆上,∴m 2a 2 +n 2b 2 =1,220220bya x +=1,变形得 y 02=b 2(1-220a x ),n 2=(1-m 2a 2 ),y 02-n 2=22022a )x m (b -, ∴k PM ·k PN =222202200000ab m x n y m x n y m x n y -=--=++⋅--.x yOP(x 0,y 0)M (m ,n )N (-m ,-n )变式:已知双曲线x 2a 2 -y2b2 =1(a>0,b>0),P 为椭圆上一点,求证满足下列条件的k PM ·k PN为一定值,①M 、N 为长轴的两个端点;②M 、N 为在椭圆上关于原点对称的两点.方法同上可得在双曲线的结论为k PM ·k PN =b2a 2例3. F 1,F 2是双曲线2213y x -=的左、右焦点,M (6,6)为双曲线内部的一点,P 为双曲线右支上的一点,求:(1)PM+PF 2的最小值; (2)PM+12PF 2的最小值. 分析:(1)PM+PF 2与双曲线第一定义有质的区别,是否可设法转化为“差”呢?(2)关键在于处理12PF 2的系数,于是联想到,可用第二定义转化.解:(1)过点P 作准线l 的垂线,垂足为H ,PM+PF 2≥MF 1-PF 1+PF 2=8.(2)∵212PF e PH ==∴PH =12PF 2 PM+12PF 2=PM+2PF e =PM+PH ≥112(其中|PH|为P 到右准线l 的距离). 变1、若点P 在双曲线的外部,如何求解?xy变2、若将双曲线变为椭圆,又如何求解?xyOF 1F 2JMP如F 1,F 2是椭圆2211612x y +=的左、右焦点,M (2,2)为椭圆内部的一点,P 为椭圆上的一点,求:(1)PM+PF 2的最小值;(2)PM+2PF 2的最小值.(1)分析:如图1,PF 2=2a -PF 1=8- PF 1, ∴PM+PF 2=8+PM - PF 1.xyOF 1F 2MP图1当P ,M ,F 1如图2所示三点共线时,有最小值.OyxF 1F 2M P图2变:求PM+PF 2的最大值?(2)2PF 2转化为到右准线的距离.yOHF 1F 2MP【模拟试题】(满分100分,时间60分钟)一、选择题(本大题共8小题,每小题5分,共40分)1、椭圆2x 2+3y 2=6的焦距是( )A. 2B. 2(3-2)C. 25D. 2(3+2)2、方程4x 2+Ry 2=1的曲线是焦点在y 轴上的椭圆,则R 的取值范围是 ( ) A. R >0 B. 0<R <2 C. 0<R <4 D. 2<R <43、已知点M 在椭圆上,椭圆方程为252x +162y =1,M 点到左准线的距离为2.5,则它到右焦点的距离为 ( )A. 7.5B. 12.5C. 2.5D. 8.5 4、双曲线的两条准线将实轴三等分,则它的离心率为 ( )A.23B. 3C.34 D. 35、若点A 的坐标是(3,4),F 是抛物线y 2=4x 的焦点,点P 在抛物线上移动,为使得|PA|+|PF|取得最小值,则最小值是( )A. 42566、以椭圆252x +92y =1的焦点为焦点,离心率e =2的双曲线方程是( )A. 62x -122y =1B. 62x -142y =1C. 42x -142y =1D. 42x -122y =17、方程22)1(3)1(3+++y x =|x +y -2|表示的曲线是( ) A. 椭圆B. 双曲线C. 抛物线D. 不能确定8、若椭圆m x 2+n y 2=1(m >n >0)和双曲线22a x -22by =1(a >b >0)有相同的焦点F 1、F 2,P 是两条曲线的一个交点,则|PF 1|·|PF 2|的值是 ( )A. m -aB. 21(m -a ) C. m 2-a 2D. m -a二、填空题(本大题共2小题,每小题6分,共12分)9、双曲线17922=-y x 的右焦点到右准线的距离为__________________________. 10、与椭圆1251622=+y x 有相同的焦点,且两准线间的距离为310的双曲线方程为_______.三、解答题(本大题共3小题,共48分.解答应写出文字说明、证明过程或演算步骤) 11、(本小题满分14分)设椭圆的中心为坐标原点,它在x 轴上的一个焦点F 与短轴两端点A 、B 连成60°的角,两准线间的距离等于83,求椭圆方程.xy AB FO 12、(本题满分16分)某河上有座抛物线型拱桥(如图),当水面距拱顶4m 时,水面宽8m.一船宽5m ,载货后露在水面上部分高为m 1623,问水面再上涨多高时,船就不能通过拱桥?13、(本题满分18分)如图,已知点P (-1,3),F 为椭圆1273622=+y x 的右焦点,点Q 在椭圆的对称轴y 轴右侧移动,当PQ QF d 21+=取最小值时,求点Q 的坐标,并求最小值d min .[参考答案]一、选择题 1、A 2、C 3、D 4、B 5、C 6、D7、A8、A二、填空题 9、72210、22154y x -= 三、解答题11、解:依题意,设所求椭圆方程为22a x +22by =1,∵椭圆右焦点F (c ,0)与短轴两端点A 、B 连成60°的角, 如图,则∠AFB =60°,△AFB 为等边三角形, 于是有a =2B. ①…………6′又由两准线间的距离等于83,得2222ba a -=83. ②…………12′联立①②两方程,解得a =6,b =3. …………13′故所求椭圆方程为362x + 92y =1. …………14′12、解:以拱桥的拱顶为坐标原点,拱顶所在的水平线为x 轴,建立直角坐标系(如图),设抛物线方程为x 2=-2py (p>0) …………3′由已知点A (4,-4)在抛物线上)4(242--=∴p 解得:2p =4…………6′ ∴抛物线方程为x 2=-4y …………7′设水面上涨,船面两侧与拱桥接触于点C 、D ,船开始不能通过,且C (-5/2,y c ).则c y 4252-=⎪⎭⎫⎝⎛- ∴ y c =-1625 …………12′水面上涨的高度为: 4-()(1)16231625m =+-…………15′ 答:略…………16′13、解: a 2=36, b 2=27∴a =6, b =33, c =322=-b a , e =21=a c …………4′ 椭圆的右准线l :x =122=ca …………6′ 过Q 作QQ '于点l ⊥ Q 'Q 'Q Q QF '=e Q Q Q Q e QF '='=∴21…………8′ ∴d =+QF Q Q '21=PQ QQ +(21)…………10′ 显然,当点P 、Q 、Q '在同一直线时,…………12′d 取得最小值,且d min =13,此时Q 点的纵坐标为3,…………14′ 把它代入椭圆方程得x =26(舍去负值) …………16′∴当点Q 的坐标为(26,3)时,d =+QF PQ 21取得最小值13…………18′。
高二数学常用逻辑用语、圆锥曲线与方程苏教版理知识精讲

高二数学常用逻辑用语、圆锥曲线与方程苏教版理【本讲教育信息】一. 教学内容:常用逻辑用语、圆锥曲线与方程二、本周教学目标:1. 理解四种命题的关系,并能利用这个关系判断命题的真假2. 正确理解充分条件、必要条件和充要条件三个概念,并能在判断、论证中正确运用3. 能正确运用椭圆的定义与标准方程解题,学会用待定系数法与定义法求椭圆的方程三、本周知识要点:(一)常用逻辑用语1. 命题及其相互关系(1)四种命题及其形式原命题:若p则q;逆命题:若q则p;否命题:若⌝p则⌝q;逆否命题:若⌝q则⌝p互逆命题、互否命题与互为逆否命题都是说两个命题的关系,若把其中一个命题叫做原命题时,另一个命题就叫做原命题的逆命题、否命题与逆否命题。
因此,四种命题之间的相互关系,可用下图表示:(2)四种命题的真假关系一个命题的真假与其他三个命题的真假有如下三条关系:①原命题为真,它的逆命题不一定为真②原命题为真,它的否命题不一定为真③原命题为真,它的逆否命题一定为真2. 充分条件与必要条件若p⇒q,则说p是q的充分条件,q是p的必要条件.若p⇒q,但p q,则说p是q的充分而不必要条件;若p q,但p⇐q,则说p是q的必要而不充分条件;若p q,且p q,则说p是q的既不充分也不必要条件.例如,“x>2”是“x>1”的充分而不必要的条件;“x>1”是“x>2”的必要而不充分的条件;“x>0 ,y>0”是“x+y<0”的既不充分也不必要的条件.3. 简单的逻辑联结词(1)“且”、“或”、“非”(2)量词“)(,x p R x ∈∀”的否定为“)(,x p M x -∈∃”“)(,x p M x ∈∃”的否定为 “)(,x p R x -∈∀”(二)圆锥曲线 1. 椭圆定义:平面内与两个定点21,F F 的距离之和等于常数(大于||21F F )的点的轨迹叫作椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距2.椭圆标准方程:(1)12222=+by a x .(a>b>0)它所表示的椭圆的焦点在x 轴上,焦点是)0,c (F )0,c (F 21,-,中心在坐标原点的椭圆方程.其中222b c a +=(2)12222=+bx a y .(a>b>0)它所表示的椭圆的焦点在y 轴上,焦点是),0(),,0(21c F c F -,中心在坐标原点的椭圆方程其中222b c a +=3. 椭圆的性质:由椭圆方程)0b a (1by a x 2222>>=+(1)范围:a x a ≤≤-,b y b ≤≤-,椭圆落在b y a x ±=±=,组成的矩形中.(2)对称性:图象关于y 轴对称.图象关于x 轴对称.图象关于原点对称原点叫椭圆的对称中心,简称中心.x 轴、y 轴叫椭圆的对称轴.从椭圆的方程中直接可以看出它的范围,对称的截距(3)顶点:椭圆和对称轴的交点叫做椭圆的顶点椭圆共有四个顶点: )0,(),0,(2a A a A -,),0(),,0(2b B b B -加两焦点)0,(),0,(21c F c F -共有六个特殊点. 21A A 叫椭圆的长轴,21B B 叫椭圆的短轴.长分别为b a 2,2 b a ,分别为椭圆的长半轴长和短半轴长.椭圆的顶点即为椭圆与对称轴的交点(4)离心率发现长轴相等,短轴不同,扁圆程度不同 这种扁平性质由什么来决定呢? 概念:椭圆焦距与长轴长之比定义式:a c e =⇒2)(1ab e -= 范围:10<<e考查椭圆形状与e 的关系:0,0→→c e ,椭圆变圆,直至成为极限位置圆,此时也可认为圆为椭圆在0=e 时的特例,,1a c e →→椭圆变扁,直至成为极限位置线段21F F ,此时也可认为圆为椭圆在1=e 时的特例【典型例题】例1. 写出适合下列条件的椭圆的标准方程: (1)两个焦点坐标分别是(-4,0)、(4,0),椭圆上一点P 到两焦点的距离之和等于10; ⑵两个焦点坐标分别是(0,-2)和(0,2)且过(23-,25) 解:(1)因为椭圆的焦点在x 轴上,所以设它的标准方程为12222=+by a x )0(>>b a 9454,582,10222222=-=-=∴==∴==c a b c a c a所以所求椭圆标准方程为192522=+y x (2)因为椭圆的焦点在y 轴上,所以设它的标准方程为12222=+bx a y )0(>>b a由椭圆的定义知,22)225()23(2++-=a +22)225()23(-+-10211023+=102= 10=∴a 又2=c6410222=-=-=∴c a b所以所求标准方程为161022=+x y例2. 求椭圆400251622=+y x 的长轴和短轴的长、离心率、焦点和顶点的坐标,并用描点法画出它的图形.解:把已知方程化成标准方程1452222=+y x所以,345,4,522=-===c b a ,因此,椭圆的长轴的长和短轴的长分别为82,102==b a ,离心率53==a c e ,两个焦点分别为)0,3(),0,3(21F F -,椭圆的四个顶点是)0,5(A ),0,5(A 21-,)4,0(B ),4,0(B 21- 将已知方程变形为22554x y -±=,根据22554x y -=,在50≤≤x 的范围内算出几个点的坐标),(y x :3.93.73.2例3. 求适合下列条件的椭圆的标准方程.(1)焦点在x 轴上,且经过点(2,0)和点(0,1).(2)焦点在y 轴上,与y 轴的一个交点为P (0,-10),P 到它较近的一个焦点的距离等于2.解:(1)因为椭圆的焦点在x 轴上,所以可设它的标准方程为:)0(12222>>=+b a by a x ∵椭圆经过点(2,0)和(0,1)∴⎪⎩⎪⎨⎧==∴⎪⎪⎩⎪⎪⎨⎧=+=+14a 1101022222222b b a b a 故所求椭圆的标准方程为1422=+y x (2)∵椭圆的焦点在y 轴上,所以可设它的标准方程为:)0(12222>>=+b a bx a y ∵P (0,-10)在椭圆上,∴a =10. 又∵P 到它较近的一焦点的距离等于2, ∴-c -(-10)=2,故c =8. ∴36222=-=c a b .∴所求椭圆的标准方程是13610022=+x y .例4. 已知椭圆的一个焦点将长轴分为3:2两段,求其离心率 解:由题意,)(:)(c a c a -+=3:2,即2311=-+e e ,解得 625-=e例5. 如图,求椭圆12222=+by a x ,(0>>b a )内接正方形ABCD 的面积解:由椭圆和正方形的中心对称性知,正方形BFOE 的面积是所求正方形面积的1/4,且B 点横纵坐标相等,故设B (t t ,),代入椭圆方程求得22222ba b a t +=,即正方形ABCD 面积为22224b a b a +【模拟试题】(答题时间:30分钟)1. 椭圆192522=+y x 上一点P 到一个焦点的距离为5,则P 到另一个焦点的距离为( ) A. 5 B. 6 C. 4 D. 102. 椭圆11692522=+y x 的焦点坐标是( ) A. (±5,0) B.(0,±5) C. (0,±12) D. (±12,0)3. 已知椭圆的方程为18222=+my x ,焦点在x 轴上,则其焦距为( )A. 228m -B. 2m -22C. 282-m D. 222-m4. 已知椭圆方程为1112022=+y x ,那么它的焦距是( ) A. 6 B. 3 C. 331 D. 315. 如果方程222=+ky x 表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( )A. (0,+∞)B. (0,2)C. (1,+∞)D. (0,1) 6. 1,6==c a ,焦点在y 轴上的椭圆的标准方程是 .7. 平面内两个定点21,F F 之间的距离为2,一个动点M 到这两个定点的距离和为6.建立适当的坐标系,推导出点M 的轨迹方程.【试题答案】1. A2. C3. A4. A5. D6.1353622=+x y 7. 解:建立直角坐标系xoy ,使x 轴经过点21,F F ,并且点O 与线段21F F 的中点重合。
苏教版数学高二-数学苏教版选修2-1教案 第二章 圆锥曲线与方程 复习总结

圆锥曲线定义的应用要的解题策略.如:(1)在求轨迹方程时,若所求轨迹符合某种圆锥曲线的定义,则根据圆锥曲线的定义,写出所求的轨迹方程;(2)涉及椭圆、双曲线上的点与两个焦点构成的三角形问题时,常用定义结合解三角形的知识来解决;(3)在求有关抛物线的最值问题时,常利用定义把到焦点的距离转化为到准线的距离,结合几何图形,利用几何意义去解决.已知A(4,0),B(2,2),M是椭圆9x2+25y2=225上的动点,求MA+MB 的最大值与最小值.【思路点拨】A(4,0)为椭圆的右焦点,B为椭圆内一点,画出图形,数形结合,并且利用椭圆定义转化.【规范解答】如图所示,由题意,知点A(4,0)恰为椭圆的右焦点,则A关于O的对称点为A1(-4,0)(左焦点).由椭圆的定义,得MA+MA1=2a,∴MA=2a-MA1,∴MA+MB=(2a-MA1)+MB=2a+(MB-MA1).∵|MB -MA 1|≤A 1B =210,即-210≤MB -MA 1≤210,又2a =10,∴MA +MB 的最大值是10+210,最小值为10-210.已知抛物线C :y 2=8x 的焦点为F ,准线与x 轴的交点为K ,点A 在抛物线C 上,且AK =2AF ,求△AFK 的面积.【解】 抛物线C :y 2=8x 的焦点为F (2,0),准线为x =-2,∴K (-2,0),设A (x 0,y 0),如图,过点A 向准线作垂线,垂足为B ,则B (-2,y 0), ∵AK =2AF ,又AF =AB =x 0-(-2)=x 0+2,∴由BK 2=AK 2-AB 2得y 20=(x 0+2)2,即8x 0=(x 0+2)2,解得x 0=2,y 0=±4. ∴△AFK 的面积为12KF ·|y 0|=12×4×4=8.圆锥曲线的标准方程和几何性质圆锥曲线的方程,重在考查基础知识、基本思想方法,属容易题,其中对离心率的考查是重点.(2013·浙江高考改编)如图2-1,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是________.图2-1【思路点拨】由椭圆可求出|AF1|+|AF2|,由矩形求出|AF1|2+|AF2|2,再求出|AF2|-|AF1|即可求出双曲线方程中的a,进而求得双曲线的离心率.【解析】由椭圆可知|AF1|+|AF2|=4,|F1F2|=2 3.因为四边形AF1BF2为矩形,所以|AF1|2+|AF2|2=|F1F2|2=12,所以2|AF1||AF2|=(|AF1|+|AF2|)2-(|AF1|2+|AF2|2)=16-12=4,所以(|AF2|-|AF1|)2=|AF1|2+|AF2|2-2|AF1|·|AF2|=12-4=8,所以|AF2|-|AF1|=22,因此对于双曲线有a=2,c=3,所以C2的离心率e=ca =62.【答案】6 2已知双曲线x2a2-y2b2=1(a>0,b>0)的两条渐近线均和圆C:x2+y2-6x+5=0相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为________.【解析】由题意知双曲线x2a2-y2b2=1的渐近线方程为y=±ba x,圆C的标准方程为(x-3)2+y2=4,∴圆心为C(3,0).由双曲线的两条渐近线均与圆C相切可知直线bx-ay=0与圆C相切,∴3ba2+b2=2,∴5b2=4a2. ①又∵x 2a 2-y 2b2=1的右焦点F 2(a 2+b 2,0)为圆心C (3,0),∴a 2+b 2=9.②由①②得a 2=5,b 2=4.∴双曲线的标准方程为x 25-y 24=1.【答案】 x 25-y 24=1直线与圆锥曲线章最常见,同时也是最重要的综合问题,它主要分为交点个数、弦长、中点、垂直、对称、定值、最值、范围等问题,解决这些问题的方法是:(1)利用一元二次方程根与系数的关系和根的判别式;(2)利用设而不求、整体代入,包括点差法;(3)解方程组,求出交点坐标;(4)利用定义.已知椭圆4x 2+y 2=1及直线y =x +m .(1)当直线和椭圆有公共点时,求实数m 的取值范围; (2)求被椭圆截得的最长弦所在的直线方程. 【思路点拨】联立、消元→一元二次方程→Δ判别式→m 的范围→韦达定理→弦长公式→求函数最值【规范解答】 (1)由⎩⎪⎨⎪⎧4x 2+y 2=1,y =x +m .得5x 2+2mx +m 2-1=0. 因为直线与椭圆有公共点, 所以Δ=4m 2-20(m 2-1)≥0, 解得-52≤m ≤52. (2)设直线与椭圆交于A (x 1,y 1),B (x 2,y 2), 由(1)知,5x 2+2mx +m 2-1=0,由根与系数的关系,得x 1+x 2=-2m 5,x 1x 2=15(m 2-1).所以d =(x 1-x 2)2+(y 1-y 2)2=2(x 1-x 2)2 =2[(x 1+x 2)2-4x 1x 2]=2[4m 225-45(m 2-1)] =2510-8m 2,所以当m =0时,d 最大,此时直线方程为y =x .圆C 1的方程为(x -2)2+(y -1)2=203,椭圆C 2的方程为x 2a 2+y 2b 2=1(a >b >0),其离心率为22,若C 1与C 2相交于A 、B 两点,且线段AB 恰好为圆C 1的直径,求线段AB 的方程和椭圆C 2的方程.【解】 由e =22,得a 2=2c 2=2b 2, ∴椭圆C 2的方程为x 22b 2+y 2b 2=1.设A (x 1,y 1)、B (x 2,y 2),由圆心(2,1), 得x 1+x 2=4,y 1+y 2=2. 又∵x 212b 2+y 21b 2=1,x 222b 2+y 22b2=1,相减整理,得(x 1+x 2)(x 1-x 2)+2(y 1+y 2)(y 1-y 2)=0. 从而y 2-y 1x 2-x 1=-1,∴直线方程为y -1=-(x -2),即y =-x +3.由⎩⎪⎨⎪⎧y =-x +3x 22b 2+y 2b 2=1⇒3x 2-12x +18-2b 2=0. ∵直线AB 与椭圆相交. ∴Δ>0,即b 2>3. 由AB =(x 2-x 1)2+(y 2-y 1)2=1+k 2|x 1-x 2|=2×(x 1+x 2)2-4x 1x 2 =2×42-4×18-2b 23=2203,得b 2=8.∴a 2=16.∴椭圆方程为x 216+y 28=1.动点轨迹方程的求法满足已知曲线的定义,若符合,就可直接利用已知的曲线方程比较简捷;若动点所满足的条件比较明了、简单,我们就使用直接法;若动点所满足的条件不明了,但与之相关的另一个点所满足的条件明了,我们就使用代入转移法;若动点的坐标之间没有什么直接关系,就需要引入参数,使用参数法.设圆(x -1)2+y 2=1的圆心为C ,过原点作圆的弦OA ,求OA 中点B的轨迹方程.【思路点拨】 画出图形,分别利用直接法,定义法,代入法,交轨法(参数法)求解.【规范解答】 法一 (直接法)设B 点坐标为(x ,y ), 由题意,得OB 2+BC 2=OC 2,如图所示,即x 2+y 2+[(x -1)2+y 2]=1,即OA 中点B 的轨迹方程为(x -12)2+y 2=14(去掉原点).法二 (定义法)设B 点坐标为(x ,y ), 由题意知CB ⊥OA ,OC 的中点记为M (12,0),则MB =12OC =12,故B 点的轨迹方程为(x -12)2+y 2=14(去掉原点).法三 (代入法)设A 点坐标为(x 1,y 1),B 点坐标为(x ,y ),由题意得⎩⎨⎧x =x 12,y =y12,即⎩⎪⎨⎪⎧x 1=2x ,y 1=2y .又因为(x 1-1)2+y 21=1,所以(2x -1)2+(2y )2=1.即(x -12)2+y 2=14(去掉原点).法四 (交轨法)设直线OA 的方程为y =kx ,当k =0时,B 为(1,0);当k ≠0时,直线BC 的方程为y =-1k(x -1),直线OA ,BC 的方程联立消去k 即得其交点轨迹方程:y 2+x (x -1)=0,即(x -12)2+y 2=14(x ≠0,1), 显然B (1,0)满足(x -12)2+y 2=14,故(x -12)2+y 2=14(去掉原点)为所求.已知点H (-3,0),点P 在y 轴上,点Q 在x 轴的正半轴上,点M 在直线PQ 上,且满足HP ⊥PM ,PM →=-32MQ →.当点P 在y 轴上移动时,求动点M 的轨迹方程.【解】 设M (x ,y ),P (0,b ),Q (a,0),其中a >0, 则PM →=(x ,y -b ),MQ →=(a -x ,-y ). ∵PM →=-32MQ →,即(x ,y -b )=-32(a -x ,-y ).∴y -b =-32(-y ),b =-y2.∴PH →=(-3,y 2),PM →=(x ,32y ).∵PH ⊥PM ,∴PH →·PM →=0,即-3x +y 2·3y2=0,整理得y 2=4x ,∴动点M 的轨迹方程为y 2=4x .函数与方程思想入手,通过联想与类比,将题目的条件转化为方程或方程组,然后通过方程或方程组从而使问题获解.本章中函数与方程思想应用广泛,尤其是方程思想,在讨论直线与圆锥曲线问题时,应用广泛.点A 、B 分别是椭圆x 236+y 220=1长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PA ⊥PF .(1)求点P 的坐标;(2)设M 是椭圆长轴AB 上的一点,M 到直线AP 的距离等于MB ,求椭圆上的点到点M 的距离d 的最小值.【思路点拨】 (1)由PA ⊥PF 得P 点的轨迹方程,与椭圆方程联立,求P 点的坐标. (2)由M 到直线AP 的距离等于MB 求出M 点坐标,将距离d 表示成关于椭圆上点的横坐标的函数,转化为函数最值.【规范解答】 (1)由已知可得点A (-6,0),F (4,0).设点P (x ,y ),则k AP ·k PF =-1.由已知可得⎩⎪⎨⎪⎧x 236+y 220=1,y x +6·yx -4=-1.则2x 2+9x -18=0.解得x =32,或x =-6(舍去).所以x =32,由于y >0,故y =532.所以点P 的坐标是(32,532).(2)易知直线AP 的方程是x -3y +6=0. 设点M (m,0),则M 到直线AP 的距离是|m +6|2.于是|m +6|2=|m -6|.又-6≤m ≤6,解得m =2.椭圆上的点(x ,y )到点M 的距离的平方为: d 2=(x -2)2+y 2=x 2-4x +4+20-59x 2=49(x -92)2+15. 由于-6≤x ≤6,所以当x =92时,d 取得最小值15.图2-2如图2-2所示,已知正方形ABCD 的两个顶点A ,B 在抛物线y 2=x 上,C ,D 在直线l :y =x +4上,求正方形的面积.【解】 法一 设A (y 21,y 1),B (y 22,y 2),正方形的边长为d ,则D (y 22-2d ,y 2),C (y 21,2d +y 1),C ,D 在直线l 上,所以⎩⎪⎨⎪⎧y 2=y 22-2d +4,①y 1+2d =y 21+4,②(y 21-y 22)2+(y 1-y 2)2=d 2,③由①②可知y 1,y 2都是t 2-t +4-2d =0的实数根, 所以y 1+y 2=1,y 1·y 2=4-2d .∴y 1-y 2=y 21-y 22,④将④代入③,得(y 1-y 2)2=12d 2,所以(y 1+y 2)2-4y 1y 2=12d 2即1-4(4-2d )=12d 2,所以d 2-82d +30=0,(d -32)(d -52)=0, 解得d 2=18或d 2=50.从而正方形ABCD 的面积为18或50. 法二 设正方形ABCD 的边长为d , 则直线AB 的方程为y =x +4-2d ,所以有方程组⎩⎪⎨⎪⎧y =x +4-2d ,y 2=x ,消去x ,得y 2-y +4-2d =0, 弦长AB =(1+1)[(y 1+y 2)2-4y 1y 2]=2(1-16+42d )=82d -30,令82d -30=d ,则d 2-82d +30=0,以下同解法一. 综合检测(二)第2章 圆锥曲线与方程(时间120分钟,满分160分)一、填空题(本大题共14小题,每小题5分,共70分,请把答案填在题中横线上) 1.(2013·大连高二检测)双曲线x 29-y 24=1的渐近线方程是________.【解析】 由题意知双曲线焦点在x 轴上a =3,b =2, ∴渐近线方程y =±23x .【答案】 y =±23x2.已知抛物线C 与椭圆x 25+y 24=1有相同的焦点,且顶点在原点,则抛物线C 的标准方程是________.【解析】 ∵抛物线的焦点为(±1,0),∴抛物线的方程为y 2=±4x . 【答案】 y 2=±4x3.(2013·合肥高二检测)方程x 2(a -1)2+y 2a 2=1表示焦点在x 轴上的椭圆,则a 的取值范围是________.【解析】 (a -1)2>a 2,a 2-2a +1>a 2,a <12,又∵(a -1)2≠0,a 2≠0, ∴a ∈(-∞,0)∪(0,12).【答案】 (-∞,0)∪(0,12)4.以x 24-y 212=1的焦点为顶点,顶点为焦点的椭圆方程为________.【解析】 对于双曲线:a 1=2,c 1=4,∴对于椭圆:a 2=4,c 2=2,∴椭圆方程为:x 216+y 212=1.【答案】 x 216+y 212=15.过已知点P (3,0)且与抛物线x 2=4y 只有一个公共点的直线有________条. 【解析】 数形结合知:有两条切线,一条对称轴的平行线.【答案】 36.若椭圆2kx 2+ky 2=1的一个焦点坐标为(0,4),则实数k 的值为________. 【解析】 椭圆方程可化为:x 212k +y 21k =1(k >0).∴c 2=1k -12k =16,∴k =132.【答案】1327.(2013·广东高考改编)已知中心在原点的双曲线C 的右焦点为F (3,0),离心率等于32,则C 的方程是________.【解析】 右焦点为F (3,0)说明两层含义:双曲线的焦点在x 轴上;c =3.又离心率为ca =32,故a =2,b 2=c 2-a 2=32-22=5,故C 的方程为x 24-y 25=1.【答案】 x 24-y 25=18.下列双曲线中离心率为62的是________.①x22-y24=1;②x24-y22=1;③x24-y26=1;④x24-y210=1.【解析】由e=62得c2a2=32,即1+b2a2=32,b2a2=12,则只有②正确.【答案】②9.(2012·全国新课标改编)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,AB=43,则C的实轴长为________.【解析】设等轴双曲线方程为x2-y2=m(m>0),抛物线的准线为x=-4,由AB=43,则|y A|=23,把坐标(-4,23)代入双曲线方程得m=x2-y2=16-12=4,所以双曲线方程为x2-y2=4,即x24-y24=1,所以a2=4,a=2,所以实轴长2a=4.【答案】 4图110.(2012·福建高考改编)如图1,等边三角形OAB的边长为83,且其三个顶点均在抛物线E:x2=2py(p>0)上,则抛物线E的方程为________.【解析】依题意知,OB=83,∠BOy=30°.设B(x,y),则x=OB sin 30°=43,y=OB cos 30°=12.因为点B(43,12)在抛物线E:x2=2py(p>0)上,所以(43)2=2p×12,解得p=2.故抛物线E的方程为x2=4y.【答案】x2=4y11.(2013·苏锡常镇四市检测)如图2,已知椭圆的方程为x2a2+y2b2=1(a>b>0),A为椭圆的左顶点,B,C在椭圆上,若四边形OABC为平行四边形,且∠OAB=30°,则椭圆的离心率等于________.图2【解析】 由BC ,OA 平行且相等及椭圆的对称性,可得点C 的横坐标为a2.由∠COx =∠OAB =30°,得C (a 2,3a 6),代入椭圆的方程得14+a 212b 2=1,即a 2=9b 2,则c 2=a 2-b 2=8b 2,故椭圆的离心率e =ca=c 2a 2=8b 29b 2=223. 【答案】232 12.已知动圆P 与定圆C :(x +2)2+y 2=1相外切,又与定直线l :x =1相切,那么动圆的圆心P 的轨迹方程是________.【解析】 由抛物线定义知:点P 的轨迹是以(-2,0)为焦点,直线x =2为准线的抛物线,故点P 的轨迹方程是y 2=-8x . 【答案】 y 2=-8x13.(2013·安徽高考)已知直线y =a 交抛物线y =x 2于A ,B 两点,若该抛物线上存在点C ,使得∠ACB 为直角,则a 的取值范围为________.【解析】 设C (x ,x 2),由题意可取A (-a ,a ),B (a ,a ), 则CA →=(-a -x ,a -x 2),CB →=(a -x ,a -x 2),由于∠ACB =π2,所以CA →·CB →=(-a -x )(a -x )+(a -x 2)2=0,整理得x 4+(1-2a )x 2+a 2-a =0, 即y 2+(1-2a )y +a 2-a =0, 所以⎩⎪⎨⎪⎧-(1-2a )≥0,a 2-a ≥0,(1-2a )2-4(a 2-a )>0,解得a ≥1.【答案】 [1,+∞)14.老师在黑板上画出了一条曲线,让四名同学各回答一条性质,他们回答如下: 甲:曲线的对称轴为坐标轴;乙:曲线过点(0,1); 丙:曲线一个焦点为(3,0);丁:曲线的一个顶点为(2,0).其中有一名同学回答是错误的,请写出该曲线的方程________.(只需写出一个方程即可)【解析】 当乙错时,则曲线可以为双曲线,c =3,a =2,∴b 2=9-4=5,方程为x 24-y 25=1. 当丙错误时,曲线可以为椭圆,其中a =2,b =1,方程为x 24+y 2=1.当丁错误时,曲线可以为椭圆,其中c =3,b =1, ∴a 2=c 2+b 2=10, 方程为x 210+y 2=1.【答案】 x 210+y 2=1或x 24+y 2=1或x 24-y 25=1(只需写出一个方程即可)二、解答题(本大题共6小题,共90分,解答时应写出文字说明、证明过程或演算步骤) 15.(本小题满分14分)(2013·西安高二检测)若椭圆经过M (-2,3)和N (1,23),求椭圆的标准方程.【解】 设所求的椭圆方程为mx 2+ny 2=1(m >0,n >0,m ≠n ), 因为椭圆过M (-2,3),N (1,23),所以有⎩⎪⎨⎪⎧4m +3n =1m +12n =1,得⎩⎨⎧m =15n =115.所求椭圆方程为x 25+y 215=1.16.(本小题满分14分)(2012·安徽高考)如图3,F 1、F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,A 是椭圆C 的顶点,B 是直线AF 2与椭圆C 的另一个交点,∠F 1AF 2=60°.(1)求椭圆C 的离心率;(2)已知△AF 1B 的面积为403,求a ,b 的值.图3【解】 (1)由题意可知,△AF 1F 2为等边三角形,a =2c ,所以e =12.(2)法一 a 2=4c 2,b 2=3c 2,直线AB 的方程为y =-3(x -c ), 将其代入椭圆方程3x 2+4y 2=12c 2,得B (85c ,-335c ),所以S △AF 1B =12|F 1F 2|(y A -y B )=835c 2=403,∴c =5,故a =10,b =5 3.法二 设AB =t .因为AF 2=a ,所以BF 2=t -a . 由椭圆定义BF 1+BF 2=2a 可知,BF 1=3a -t , 再由余弦定理(3a -t )2=a 2+t 2-2at cos 60°可得,t =85a .由S △AF 1B =12a ·85a ·32=235a 2=403知,a =10,b =5 3.17.(本小题满分14分)已知抛物线的顶点在原点,它的准线过双曲线x 2a 2-y 2b 2=1的一个焦点,并且这条准线与双曲线的两焦点的连线垂直,抛物线与双曲线交于点P (32,6),求抛物线的方程和双曲线的方程.【解】 依题意,设抛物线的方程为y 2=2px (p >0), ∵点P (32,6)在抛物线上,∴6=2p ×32,解得2p =4,∴所求抛物线的方程为y 2=4x .∵双曲线的左焦点在抛物线的准线x =-1上, ∴c =1,则a 2+b 2=1,又点P (32,6)在双曲线上,∴94a 2-6b2=1, 解方程组⎩⎪⎨⎪⎧ a 2+b 2=1,94a 2-6b 2=1,得⎩⎨⎧a 2=14b 2=34或⎩⎪⎨⎪⎧a 2=9,b 2=-8(舍去).∴所求双曲线的方程为4x 2-43y 2=1.18.(本小题满分16分)(2012·广东高考)在平面直角坐标系xOy 中,已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1(-1,0),且点P (0,1)在C 1上.(1)求椭圆C 1的方程;(2)设直线l 同时与椭圆C 1和抛物线C 2:y 2=4x 相切,求直线l 的方程. 【解】 (1)因为椭圆C 1的左焦点为F 1(-1,0),所以c =1.将点P (0,1)代入椭圆方程x 2a 2+y 2b 2=1,得1b 2=1,即b =1,所以a 2=b 2+c 2=2.所以椭圆C 1的方程为x 22+y 2=1.(2)由题意可知,直线l 的斜率显然存在且不等于0,设直线l 的方程为y =kx +m ,由⎩⎪⎨⎪⎧x 22+y 2=1,y =kx +m ,消去y 并整理得(1+2k 2)x 2+4kmx +2m 2-2=0. 因为直线l 与椭圆C 1相切,所以Δ1=16k 2m 2-4(1+2k 2)(2m 2-2)=0. 整理得2k 2-m 2+1=0.①由⎩⎪⎨⎪⎧y 2=4x ,y =kx +m ,消去y 并整理得k 2x 2+(2km -4)x +m 2=0. 因为直线l 与抛物线C 2相切,所以Δ2=(2km -4)2-4k 2m 2=0, 整理得km =1.②综合①②,解得⎩⎪⎨⎪⎧k =22,m =2,或⎩⎪⎨⎪⎧k =-22,m =- 2.所以直线l 的方程为y =22x +2或y =-22x - 2. 19.(本小题满分16分)设椭圆的中心在原点,焦点在x 轴上,离心率e =32.已知点P (0,32)到这个椭圆上的点的最远距离为7,求这个椭圆的方程.【解】 设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),M (x ,y )为椭圆上的点,由c a =32得a =2b .∴PM 2=x 2+(y -32)2=-3(y +12)2+4b 2+3(-b ≤y ≤b ),若b <12,则当y =-b 时,PM 2最大,即(b +32)2=7,则b =7-32>12,故舍去.若b ≥12时,则当y =-12时,PM 2最大,即4b 2+3=7,解得b 2=1.∴所求方程为x 24+y 2=1.20.(本小题满分16分)已知直线y =ax +1与双曲线3x 2-y 2=1交于A 、B 两点, (1)若以AB 线段为直径的圆过坐标原点,求实数a 的值;(2)是否存在这样的实数a ,使A 、B 两点关于直线y =12x 对称?说明理由.【解】 (1)联立方程⎩⎪⎨⎪⎧3x 2-y 2=1y =ax +1,消去y 得(3-a 2)x 2-2ax -2=0. 设A (x 1,y 1),B (x 2,y 2),那么:⎩⎪⎨⎪⎧x 1+x 2=2a3-a 2x 1x 2=-23-a2Δ=(-2a )2+8(3-a 2)>0由于以AB 线段为直径的圆经过原点,那么:OA →⊥OB →, 即x 1x 2+y 1y 2=0. 所以x 1x 2+(ax 1+1)(ax 2+1)=0,得到(a 2+1)×-23-a2+a ×2a3-a2+1=0,a 2<6,解得a =±1.(2)假定存在这样的a ,使A (x 1,y 1),B (x 2,y 2)关于直线y =12x 对称.那么⎩⎪⎨⎪⎧3x 21-y 21=13x 22-y 22=1,两式相减得3(x 21-x 22)=y 21-y 22,从而y 1-y 2x 1-x 2=3(x 1+x 2)y 1+y 2.(*) 因为A (x 1,y 1),B (x 2,y 2)关于直线y =12x 对称,所以⎩⎪⎨⎪⎧y 1+y 22=12×x 1+x 22y 1-y2x 1-x 2=-2代入(*)式得到:-2=6,矛盾.也就是说不存在这样的a ,使A (x 1,y 1),B (x 2,y 2)关于直线y =12x 对称.。
高中数学(苏教版 选修1-1)课件第2章 圆锥曲线与方程 2 3 1精选ppt课件

(3)由题意,设双曲线方程为ax22-by22=1(a>0,b>0).∵两双曲线有相同焦点, ∴a2+b2=c2=4+2.① 又点 P(2,1)在双曲线ax22-by22=1 上. ∴a42-b12=1.② 由①、②联立,得 a2=b2=3. 故所求双曲线方程为x32-y32=1.
利用待定系数法求双曲线标准方程的步骤如下: (1)定位置:根据条件判定双曲线的焦点在 x 轴上还是在 y 轴上,不能确定时 应分类讨论. (2)设方程:根据焦点位置,设方程为ax22-by22=1 或ay22-bx22=1(a>0,b>0),焦点 不定时,亦可设为 mx2+ny2=1(m·n<0); (3)寻关系:根据已知条件列出关于 a、b(或 m、n)的方程组; (4)得方程:解方程组,将 a、b、c(或 m、n)的值代入所设方程即为所求.
【精彩点拨】 由方程满足圆、椭圆、双曲线的条件,对 k 的值分类讨论, 确定曲线类型.
【自主解答】 (1)当 k=0 时,y=±2,表示两条与 x 轴平行的直线;
(2)当 k=1 时,方程为 x2+y2=4,表示圆心在原点,半径为 2 的圆; (3)当 k<0 时,方程为y42--x24k=1,表示焦点在 y 轴上的双曲线; (4)当 0<k<1 时,方程为x42+y42=1,表示焦点在 x 轴上的椭圆;
【自主解答】 (1)设双曲线的标准方程为 mx2+ny2=1(mn<0),因为双曲线
过点 P3,145,Q-136,5,所以92m596+m2+12652n5= n=11
,解得mn==19-116
,所以所
求双曲线方程为y92-1x62 =1.
(2)因为双曲线的焦点在 x 轴上,c= 6,所以设所求双曲线方程为xλ2-6-y2 λ= 1(0<λ<6).因为双曲线过点(-5,2),所以2λ5-6-4 λ=1,解得 λ=5 或 λ=30(舍去). 所以所求双曲线的标准方程是x52-y2=1.
高中数学第2章圆锥曲线与方程2.5圆锥曲线的统一定义课件苏教版选修2_1

25 9
5
2
且|O→M|=4,则点
P
到椭圆
C
2 的左准线的距离为________
2. 过抛物线 y=1x2 的焦点 F 作斜率为 k(k>0)的直线 l 交抛物线于 A,B 两点,若A→F
n-1BF
nn+-11e,ecos
θ=AAAB2=n+e1BF=nn+-11,所以,ecos
45°=31,e=
2 3.
变式 1 已知双曲线 C:ax22-by22=1(a>0,b>0)的右焦点为 F,过 F 且斜率为 3的
直线交
C
于
A、B
两点,若A→F=4F→B,则
C
6 的离心率为_5_______
变式 2
已知椭圆
C:ax22+by22=1(a>b>0)的离心率为
3,过右焦点 2
F
且斜率为
k(k>0)
的直线与 C 相交于 A,B 两点,若A→F=3F→B,则 k=__2______
例 4 如图所示,椭圆 E 的中心在坐标原点 O,顶点分别是 A1,A2,B1,B2,焦 点分别是 F1,F2,延长 B2F2 交 A2B1 于点 P,若∠B2PA2 是钝角,求椭圆 E 离 心率 e 的取值范围.
解析:如图所示,设椭圆 C 的离心率为 e,直线 l 的倾斜角为 θ,
设 AF =nBF ,右准线为 l:x=ac2,作 AA1⊥l,BB1⊥l,A1,B1 为垂足,BA2⊥AA1,
n-1BF A2 为垂足,AA2=AA1-BB1=AeF-BeF=n-e1BF,又 cos θ=AAAB2=n+e1BF=
高中数学 第二章 圆锥曲线与方程章末总结 苏教版选修1
第二章圆锥曲线与方程章末总结知识点一圆锥曲线的定义和性质对于圆锥曲线的有关问题,要有运用圆锥曲线定义解题的意识,“回归定义”是一种重要的解题策略;应用圆锥曲线的性质时,要注意与数形结合思想、方程思想结合起来.总之,圆锥曲线的定义、性质在解题中有重要作用,要注意灵活运用.例1已知双曲线的焦点在x轴上,离心率为2,F1,F2为左、右焦点,P为双曲线上一点,且∠F1PF2=60°,S△PF1F2=123,求双曲线的标准方程.知识点二直线与圆锥曲线的位置关系直线与圆锥曲线一般有三种位置关系:相交、相切、相离.在直线与双曲线、抛物线的位置关系中有一种情况,即直线与其交于一点和切于一点,二者在几何意义上是截然不同的,反映在代数方程上也是完全不同的,这在解题中既是一个难点也是一个十分容易被忽视的地方.圆锥曲线的切线是圆锥曲线的割线与圆锥曲线的两个交点无限靠近时的极限情况,反映在消元后的方程上,就是一元二次方程有两个相等的实数根,即判别式等于零;而与圆锥曲线有一个交点的直线,是一种特殊的情况(抛物线中与对称轴平行,双曲线中与渐近线平行),反映在消元后的方程上,该方程是一次的.例2如图所示,O为坐标原点,过点P(2,0)且斜率为k的直线l交抛物线y2=2x于M(x1,y1),N(x2,y2)两点.(1)求x1x2与y1y2的值;(2)求证:OM⊥ON.知识点三轨迹问题轨迹是解析几何的基本问题,求解的方法有以下几种:(1)直接法:建立适当的坐标系,设动点为(x,y),根据几何条件直接寻求x、y之间的关系式.(2)代入法:利用所求曲线上的动点与某一已知曲线上的动点的关系,把所求动点转换为已知动点.具体地说,就是用所求动点的坐标x、y来表示已知动点的坐标并代入已知动点满足的曲线的方程,由此即可求得所求动点坐标x、y之间的关系式.(3)定义法:如果所给几何条件正好符合圆、椭圆、双曲线、抛物线等曲线的定义,则可直接利用这些已知曲线的方程写出动点的轨迹方程.(4)参数法:当很难找到形成曲线的动点P(x,y)的坐标x,y所满足的关系式时,借助第三个变量t,建立t和x,t和y的关系式x=φ(t),y=Φ(t),再通过一些条件消掉t就间接地找到了x和y所满足的方程,从而求出动点P(x,y)所形成的曲线的普通方程.例3设点A、B是抛物线y2=4px (p>0)上除原点O以外的两个动点,已知OA⊥OB,OM⊥AB,垂足为M,求点M的轨迹方程,并说明它表示什么曲线?知识点四 圆锥曲线中的定点、定值问题 圆锥曲线中的定点、定值问题是高考命题的一个热点,也是圆锥曲线问题中的一个难点,解决这个难点没有常规的方法,但解决这个难点的基本思想是明确的,定点、定值问题必然是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变化的量所影响的某个点或值,就是要求的定点、定值.化解这类问题难点的关键就是引进变化的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量.例4 若直线l :y =kx +m 与椭圆x 24+y23=1相交于A 、B 两点(A 、B 不是左、右顶点),A 2为椭圆的右顶点且AA 2⊥BA 2,求证:直线l 过定点.知识点五 圆锥曲线中的最值、范围问题圆锥曲线中的最值、范围问题,是高考热点,主要有以下两种求解策略: (1)平面几何法平面几何法求最值问题,主要是运用圆锥曲线的定义和平面几何知识求解. (2)目标函数法建立目标函数解与圆锥曲线有关的最值问题,是常规方法,其关键是选取适当的变量建立目标函数,然后运用求函数最值的方法确定最值.例5 已知A(4,0),B(2,2)是椭圆x 225+y29=1内的两定点,点M 是椭圆上的动点,求MA +MB 的最值.例6 已知F 1、F 2为椭圆x 2+y22=1的上、下两个焦点,AB 是过焦点F 1的一条动弦,求△ABF 2面积的最大值.章末总结重点解读 例1 解如图所示,设双曲线方程为x 2a2-y 2b2=1 (a >0,b >0). ∵e =c a=2,∴c =2a .由双曲线的定义,得|PF 1-PF 2|=2a =c ,在△PF 1F 2中,由余弦定理,得:F 1F 22=PF 21+PF 22-2PF 1·PF 2cos 60°=(PF 1-PF 2)2+2PF 1·PF 2(1-cos 60°),即4c 2=c 2+PF 1·PF 2.① 又S △PF 1F 2=123, ∴12PF 1·PF 2sin 60°=123, 即PF 1·PF 2=48.②由①②,得c 2=16,c =4,则a =2,b 2=c 2-a 2=12,∴所求的双曲线方程为x 24-y 212=1.例2 (1)解 过点P (2,0)且斜率为k 的直线方程为:y =k (x -2).把y =k (x -2)代入y 2=2x ,消去y 得k 2x 2-(4k 2+2)x +4k 2=0, 由于直线与抛物线交于不同两点,故k 2≠0且Δ=(4k 2+2)2-16k 4=16k 2+4>0,x 1x 2=4,x 1+x 2=4+2k2,∵M 、N 两点在抛物线上, ∴y 21·y 22=4x 1·x 2=16, 而y 1·y 2<0,∴y 1y 2=-4.(2)证明 ∵OM → (x 1,y 1),ON →=(x 2,y 2), ∴OM →·ON →=x 1·x 2+y 1·y 2=4-4=0.∴OM →⊥ON →,即OM ⊥ON .例3 解 设直线OA 的方程为y =kx (k ≠±1,因为当k =±1时,直线AB 的斜率不存在),则直线OB 的方程为y =-x k, 进而可求A ⎝⎛⎭⎪⎫4p k 2,4p k 、B (4pk 2,-4pk ). 于是直线AB 的斜率为k AB =k1-k2,从而k OM =k 2-1k,∴直线OM 的方程为y =k 2-1k x ,①直线AB 的方程为y +4pk =-k k 2-1(x -4pk 2).②将①②相乘,得y 2+4pky =-x (x -4pk 2),即x 2+y 2=-4pky +4pk 2x =4p (k 2x -ky ),③又k 2x -ky =x ,代入③式并化简,得(x -2p )2+y 2=4p 2.当k =±1时,易求得直线AB 的方程为x =4p .故此时点M 的坐标为(4p,0),也在(x -2p )2+y 2=4p 2(x ≠0)上.∴点M 的轨迹方程为(x -2p )2+y 2=4p 2(x ≠0),∴其轨迹是以(2p,0)为圆心,半径为2p 的圆,去掉坐标原点.例4证明 设A (x 1,y 1), B (x 2,y 2),联立⎩⎪⎨⎪⎧y =kx +m ,x 24+y23=1,得(3+4k 2)x 2+8mkx +4(m 2-3)=0,则⎩⎪⎨⎪⎧Δ=64m 2k 2-+4k2m 2-,x 1+x 2=-8mk 3+4k 2,x 1x 2=m 2-3+4k2.即⎩⎪⎨⎪⎧3+4k 2-m 2>0,x 1+x 2=-8mk 3+4k 2,x 1x 2=m 2-3+4k2.又y 1y 2=(kx 1+m )(kx 2+m ) =k 2x 1x 2+mk (x 1+x 2)+m 2=m2-4k2 3+4k2.∵椭圆的右顶点为A2(2,0),AA2⊥BA2,∴(x1-2)(x2-2)+y1y2=0.∴y1y2+x1x2-2(x1+x2)+4=0.∴m2-4k23+4k2+m2-3+4k2+16mk3+4k2+4=0.∴7m2+16km+4k2=0,解得m1=-2k,m2=-2k7,且均满足3+4k2-m2>0.当m1=-2k时,l的方程为y=k(x-2),直线过定点(2,0),与已知矛盾.当m 2=-2k7时,l的方程为y=k⎝⎛⎭⎪⎫x-27,直线过定点⎝⎛⎭⎪⎫27,0,∴直线l过定点.例5解因为A(4,0)是椭圆的右焦点,设A′为椭圆的左焦点,则A′(-4,0),由椭圆定义知MA+MA′=10.如图所示,则MA+MB=MA+MA′+MB-MA′=10+MB-MA′≤10+A′B. 当点M在BA′的延长线上时取等号.所以当M为射线BA′与椭圆的交点时,(MA+MB)max=10+A′B=10+210.又如图所示,MA+MB=MA+MA′-MA′+MB=10-(MA′-MB)≥10-A′B,当M在A′B的延长线上时取等号.所以当M为射线A′B与椭圆的交点时,(MA+MB)min=10-A′B=10-210.例6解由题意,F1F2=2.设直线AB方程为y=kx+1,代入椭圆方程2x2+y2=2,得(k2+2)x2+2kx-1=0,则x A+x B=-2kk2+2,x A·x B=-1k2+2,∴|x A-x B|=k2+k2+2.S△ABF2=12F1F2·|x A-x B|=22×k2+1k2+2=22×1k2+1+1k2+1≤22×12= 2.当k2+1=1k2+1,即k=0时,S△ABF2有最大面积为 2.章末总结知识点一圆锥曲线的定义和性质对于圆锥曲线的有关问题,要有运用圆锥曲线定义解题的意识,“回归定义”是一种重要的解题策略;应用圆锥曲线的性质时,要注意与数形结合思想、方程思想结合起来.总之,圆锥曲线的定义、性质在解题中有重要作用,要注意灵活运用.例1已知双曲线的焦点在x轴上,离心率为2,F1,F2为左、右焦点,P为双曲线上一点,且∠F1PF2=60°,S△PF1F2=123,求双曲线的标准方程.知识点二直线与圆锥曲线的位置关系直线与圆锥曲线一般有三种位置关系:相交、相切、相离.在直线与双曲线、抛物线的位置关系中有一种情况,即直线与其交于一点和切于一点,二者在几何意义上是截然不同的,反映在代数方程上也是完全不同的,这在解题中既是一个难点也是一个十分容易被忽视的地方.圆锥曲线的切线是圆锥曲线的割线与圆锥曲线的两个交点无限靠近时的极限情况,反映在消元后的方程上,就是一元二次方程有两个相等的实数根,即判别式等于零;而与圆锥曲线有一个交点的直线,是一种特殊的情况(抛物线中与对称轴平行,双曲线中与渐近线平行),反映在消元后的方程上,该方程是一次的.例2如图所示,O为坐标原点,过点P(2,0)且斜率为k的直线l交抛物线y2=2x于M(x1,y1),N(x2,y2)两点.(1)求x1x2与y1y2的值;(2)求证:OM⊥ON.知识点三轨迹问题轨迹是解析几何的基本问题,求解的方法有以下几种:(1)直接法:建立适当的坐标系,设动点为(x,y),根据几何条件直接寻求x、y之间的关系式.(2)代入法:利用所求曲线上的动点与某一已知曲线上的动点的关系,把所求动点转换为已知动点.具体地说,就是用所求动点的坐标x、y来表示已知动点的坐标并代入已知动点满足的曲线的方程,由此即可求得所求动点坐标x、y之间的关系式.(3)定义法:如果所给几何条件正好符合圆、椭圆、双曲线、抛物线等曲线的定义,则可直接利用这些已知曲线的方程写出动点的轨迹方程.(4)参数法:当很难找到形成曲线的动点P(x,y)的坐标x,y所满足的关系式时,借助第三个变量t,建立t和x,t和y的关系式x=φ(t),y=Φ(t),再通过一些条件消掉t就间接地找到了x和y所满足的方程,从而求出动点P(x,y)所形成的曲线的普通方程.例3设点A、B是抛物线y2=4px (p>0)上除原点O以外的两个动点,已知OA⊥OB,OM⊥AB,垂足为M,求点M的轨迹方程,并说明它表示什么曲线?知识点四 圆锥曲线中的定点、定值问题 圆锥曲线中的定点、定值问题是高考命题的一个热点,也是圆锥曲线问题中的一个难点,解决这个难点没有常规的方法,但解决这个难点的基本思想是明确的,定点、定值问题必然是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变化的量所影响的某个点或值,就是要求的定点、定值.化解这类问题难点的关键就是引进变化的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量.例4 若直线l :y =kx +m 与椭圆x 24+y23=1相交于A 、B 两点(A 、B 不是左、右顶点),A 2为椭圆的右顶点且AA 2⊥BA 2,求证:直线l 过定点.知识点五 圆锥曲线中的最值、范围问题圆锥曲线中的最值、范围问题,是高考热点,主要有以下两种求解策略: (1)平面几何法平面几何法求最值问题,主要是运用圆锥曲线的定义和平面几何知识求解. (2)目标函数法建立目标函数解与圆锥曲线有关的最值问题,是常规方法,其关键是选取适当的变量建立目标函数,然后运用求函数最值的方法确定最值.例5 已知A(4,0),B(2,2)是椭圆x 225+y29=1内的两定点,点M 是椭圆上的动点,求MA +MB 的最值.例6 已知F 1、F 2为椭圆x 2+y22=1的上、下两个焦点,AB 是过焦点F 1的一条动弦,求△ABF 2面积的最大值.章末总结重点解读 例1 解如图所示,设双曲线方程为x 2a2-y 2b2=1 (a >0,b >0). ∵e =c a=2,∴c =2a .由双曲线的定义,得|PF 1-PF 2|=2a =c ,在△PF 1F 2中,由余弦定理,得:F 1F 22=PF 21+PF 22-2PF 1·PF 2cos 60°=(PF 1-PF 2)2+2PF 1·PF 2(1-cos 60°),即4c 2=c 2+PF 1·PF 2.① 又S △PF 1F 2=123, ∴12PF 1·PF 2sin 60°=123, 即PF 1·PF 2=48.②由①②,得c 2=16,c =4,则a =2,b 2=c 2-a 2=12,∴所求的双曲线方程为x 24-y 212=1.例2 (1)解 过点P (2,0)且斜率为k 的直线方程为:y =k (x -2).把y =k (x -2)代入y 2=2x ,消去y 得k 2x 2-(4k 2+2)x +4k 2=0, 由于直线与抛物线交于不同两点,故k 2≠0且Δ=(4k 2+2)2-16k 4=16k 2+4>0,x 1x 2=4,x 1+x 2=4+2k2,∵M 、N 两点在抛物线上,∴y 21·y 22=4x 1·x 2=16,而y 1·y 2<0,∴y 1y 2=-4.(2)证明 ∵OM → (x 1,y 1),ON →=(x 2,y 2),∴OM →·ON →=x 1·x 2+y 1·y 2=4-4=0.∴OM →⊥ON →,即OM ⊥ON .例3 解 设直线OA 的方程为y =kx (k ≠±1,因为当k =±1时,直线AB 的斜率不存在),则直线OB 的方程为y =-x k ,进而可求A ⎝ ⎛⎭⎪⎫4pk 2,4p k 、B (4pk 2,-4pk ).于是直线AB 的斜率为k AB =k1-k 2,从而k OM =k 2-1k ,∴直线OM 的方程为y =k 2-1k x ,①直线AB 的方程为y +4pk =-k k 2-1(x -4pk 2).②将①②相乘,得y 2+4pky =-x (x -4pk 2),即x 2+y 2=-4pky +4pk 2x =4p (k 2x -ky ),③又k 2x -ky =x ,代入③式并化简,得(x -2p )2+y 2=4p 2.当k =±1时,易求得直线AB 的方程为x =4p .故此时点M 的坐标为(4p,0),也在(x -2p )2+y 2=4p 2 (x ≠0)上.∴点M 的轨迹方程为(x -2p )2+y 2=4p 2 (x ≠0),∴其轨迹是以(2p,0)为圆心,半径为2p 的圆,去掉坐标原点.例4证明 设A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =kx +m ,x 24+y23=1,得(3+4k 2)x 2+8mkx +4(m 2-3)=0,则⎩⎪⎨⎪⎧ Δ=64m 2k 2-+4k 2m 2-,x 1+x 2=-8mk3+4k 2,x 1x 2=m 2-3+4k 2.即⎩⎪⎨⎪⎧ 3+4k 2-m 2>0,x 1+x 2=-8mk3+4k 2,x 1x 2=m 2-3+4k 2.又y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+mk (x 1+x 2)+m 2=m 2-4k 23+4k 2.∵椭圆的右顶点为A 2(2,0),AA 2⊥BA 2,∴(x 1-2)(x 2-2)+y 1y 2=0.∴y 1y 2+x 1x 2-2(x 1+x 2)+4=0. ∴m 2-4k 23+4k 2+m 2-3+4k 2+16mk3+4k 2+4=0.∴7m 2+16km +4k 2=0,解得m 1=-2k ,m 2=-2k 7,且均满足3+4k 2-m 2>0.当m 1=-2k 时,l 的方程为y =k (x -2),直线过定点(2,0),与已知矛盾.当m 2=-2k 7时,l 的方程为y =k ⎝ ⎛⎭⎪⎫x -27,直线过定点⎝ ⎛⎭⎪⎫27,0,∴直线l 过定点.例5 解 因为A (4,0)是椭圆的右焦点,设A ′为椭圆的左焦点,则A ′(-4,0),由椭圆定义知MA +MA ′=10.如图所示,则MA +MB =MA +MA ′+MB -MA ′=10+MB -MA ′≤10+A ′B . 当点M 在BA ′的延长线上时取等号.所以当M 为射线BA ′与椭圆的交点时,(MA +MB )max =10+A ′B =10+210.又如图所示,MA +MB =MA +MA ′-MA ′+MB=10-(MA ′-MB )≥10-A ′B ,当M 在A ′B 的延长线上时取等号.所以当M 为射线A ′B 与椭圆的交点时,(MA +MB )min =10-A ′B =10-210.例6 解 由题意,F 1F 2=2.设直线AB 方程为y =kx +1,代入椭圆方程2x 2+y 2=2,得(k 2+2)x 2+2kx -1=0,则x A +x B =-2kk 2+2,x A ·x B =-1k 2+2,∴|x A -x B |=k 2+k 2+2.S △ABF 2=12F 1F 2·|x A -x B |=22×k 2+1k 2+2 =22×1k 2+1+1k 2+1≤22×12= 2.当k 2+1=1k 2+1,即k =0时,S △ABF 2有最大面积为 2.。
苏教版学高中数学选修圆锥曲线与方程抛物线的标准方程讲义
学习目标核心素养1.掌握抛物线的标准方程,能根据已知条件求抛物线的标准方程.(重点)2.能根据抛物线的标准方程求焦点坐标和准线方程.(重点)3.能利用抛物线的定义和标准方程求最值.(难点)1.借助抛物线标准方程的推导,培养数学运算素养.2.借助最值问题,提升直观想象与逻辑推理素养.1.抛物线的标准方程图形标准方程焦点坐标准线方程y2=2px(p>0)F错误!x=—错误!y2=—2px(p>0)F错误!x=错误!x2=2py(p>0)F错误!y=—错误!x2=—2py(p>0)F错误!y=错误!思考:(2)根据抛物线方程如何确定焦点的位置?[提示] (1)p的几何意义是焦点到准线的距离.(2)根据抛物线方程中一次式±2px,±2py来确定焦点位置,“x,y”表示焦点在x轴或y轴上,系数“±2p”的正负确定焦点在坐标轴的正半轴或负半轴上.1.抛物线y2=—8x的焦点坐标是()A.(2,0)B.(—2,0)C.(4,0)D.(—4,0)B[抛物线y2=—8x的焦点在x轴的负半轴上,且错误!=2,因此焦点坐标是(—2,0).]2.抛物线y2=8x的焦点到准线的距离是()A.1B.2C.4D.8C[由y2=8x得p=4,即焦点到准线的距离为4.]3.抛物线x=4y2的准线方程是()A.y=错误!B.y=—1C.x=—错误!D.x=错误!C[由x=4y2得y2=错误!x,故准线方程为x=—错误!.]4.已知抛物线的焦点坐标是(0,—3),则抛物线的标准方程是________.x2=—12y[∵错误!=3,∴p=6,∴x2=—12y.]求抛物线的焦点及准线【例1】2.(2)若抛物线的方程为y=ax2(a≠0),则抛物线的焦点坐标为________,准线方程为________.(1)错误!x=—错误!(2)错误!y=—错误![(1)抛物线2y2—3x=0的标准方程是y2=错误!x,∴2p=错误!,p=错误!,错误!=错误!,焦点坐标是错误!,准线方程是x=—错误!.(2)抛物线方程y=ax2(a≠0)化为标准形式:x2=错误!y,当a>0时,则2p=错误!,解得p=错误!,错误!=错误!,∴焦点坐标是错误!,准线方程是y=—错误!.当a<0时,则2p=—错误!,错误!=—错误!.∴焦点坐标是错误!,准线方程是y=—错误!,综上,焦点坐标是错误!,准线方程是y=—错误!.]求抛物线的焦点及准线步骤1.把解析式化为抛物线标准方程形式.2.明确抛物线开口方向.3.求出抛物线标准方程中p的值.4.写出抛物线的焦点坐标或准线方程.1.求抛物线y=—mx2(m>0)的焦点坐标和准线方程.[解] 抛物线y=—mx2(m>0)的标准方程是x2=—错误!y.∵m>0,∴2p=错误!,错误!=错误!,焦点坐标是错误!,准线方程是y=错误!.求抛物线的标准方程(1)关于y轴对称且过点(—1,—3);(2)过点(4,—8);(3)焦点在x—2y—4=0上.[思路探究] (1)用待定系数法求解;(2)因焦点位置不确定,需分类讨论求解;(3)焦点是直线x—2y—4=0与坐标轴的交点,应先求交点再写方程.[解] (1)法一:设所求抛物线方程为x2=—2py(p>0),将点(—1,—3)的坐标代入方程,得(—1)2=—2p·(—3),解得p=错误!,所以所求抛物线方程为x2=—错误!y.法二:由已知,抛物线的焦点在y轴上,因此设抛物线的方程为x2=my(m≠0).又抛物线过点错误!,所以1=m·(—3),即m=—错误!,所以所求抛物线方程为x2=—错误!y.(2)法一:设所求抛物线方程为y2=2px(p>0)或x2=—2p′y(p′>0),将点(4,—8)的坐标代入y2=2px,得p=8;将点(4,—8)的坐标代入x2=—2p′y,得p′=1.所以所求抛物线方程为y2=16x或x2=—2y.法二:当焦点在x轴上时,设抛物线的方程为y2=nx(n≠0),又抛物线过点(4,—8),所以64=4·n,即n=16,抛物线的方程为y2=16x;当焦点在y轴上时,设抛物线的方程为x2=my(m≠0),又抛物线过点(4,—8),所以16=—8m,即m=—2,抛物线的方程为x2=—2y.综上,抛物线的标准方程为y2=16x或x2=—2y.(3)由错误!得错误!由错误!得错误!所以所求抛物线的焦点坐标为(0,—2)或(4,0).当焦点为(0,—2)时,由错误!=2,得p =4,所以所求抛物线方程为x2=—8y;当焦点为(4,0)时,由错误!=4,得p=8,所以所求抛物线方程为y2=16x.综上所述,所求抛物线方程为x2=—8y或y2=16x.求抛物线的标准方程求抛物线方程都是先定位,即根据题中条件确定抛物线的焦点位置;后定量,即求出方程中的p值,从而求出方程.1.定义法:先判定所求点的轨迹是否符合抛物线的定义,进而求出方程.2.待定系数法:先设出抛物线的方程,再根据题中条件,确定参数值.(1)对于对称轴确定,开口方向也确定的抛物线,根据题设中的条件设出其标准方程:y2=2px (p>0),或y2=—2px(p>0),或x2=2py(p>0),或x2=—2py(p>0),进行求解,关键是能够依据抛物线的几何性质首先确定出抛物线方程的形式,然后采用待定系数法求出其标准方程.(2)对于对称轴确定,而开口方向不确定的抛物线:当焦点在x轴上时,可将抛物线方程设为y2=ax(a≠0);当焦点在y轴上时,可将抛物线方程设为x2=ay(a≠0),再根据条件求a.2.以双曲线16x2—9y2=144的左顶点为焦点的抛物线方程是________.y2=—12x[双曲线16x2—9y2=144的标准方程是错误!—错误!=1,左顶点是(—3,0),由题意设抛物线的方程为y2=—2px(p>0),∴—错误!=—3,∴p=6,抛物线的标准方程是y2=—12x.]抛物线的标准方程及定义的应用2P到直线x=—1的距离之和的最小值;(2)已知抛物线y2=2x的焦点是F,点P是抛物线上的动点,又有点A(3,2),求PA+PF的最小值,并求出取得最小值时点P的坐标.[思路探究] (1)把点P到准线的距离转化为点P到焦点F的距离,利用PB+PF≥BF求解.(2)把点P到焦点F的距离转化为点P到准线的距离,利用垂线段时最短求解.[解] (1)∵抛物线的顶点为O(0,0),p=2,∴准线方程为x=—1,焦点F坐标为(1,0),∴点P到点B(—1,1)的距离与点P到准线x=—1的距离之和等于PB+PF.如图,PB+PF≥BF,当B,P,F三点共线时取得最小值,此时BF=错误!=错误!.(2)将x=3代入抛物线方程y2=2x,得y=±错误!.∵错误!>2,∴A在抛物线内部.设抛物线上点P到准线l:x=—错误!的距离为d,由定义知PA+PF=PA+d.由图可知,当AP⊥l 时,PA+d最小,最小值为错误!,即PA+PF的最小值为错误!,此时点P的纵坐标为2,代入y2=2x,得x=2,∴点P的坐标为(2,2).抛物线定义在求最值中的应用1.解此类最值、定值问题时,首先要注意抛物线定义的转化应用,其次是注意平面几何知识的应用,例如两点之间线段最短,三角形中三边间的不等关系,点与直线上点的连线垂线段最短等.2.数形结合思想是求解几何最值的常用方法之一.3.已知定长为3的线段AB的端点A,B在抛物线y2=x上移动,求AB的中点M到y轴距离的最小值.[解] 如图,设点F是抛物线y2=x的焦点,过A,B两点分别作其准线的垂线AC,BD,过AB的中点M作准线的垂线MN,C,D,N为垂足,则MN=错误!(AC+BD).由抛物线的定义,知AC=AF,BD=BF,∴MN=错误!(AF+BF)≥错误!AB=错误!.设点M的横坐标为x,MN=x+错误!,则x≥错误!—错误!=错误!.当线段AB过焦点F时,等号成立,此时点M到y轴的最短距离为错误!.与抛物线相关的轨迹方程【例4】(x,y)的轨迹方程.[思路探究] 设F(2,0),由题意MF=|x|+2,或根据点M,F在y轴的同侧或异侧分类讨论.[解] 法一:设F(2,0),由题意MF=|x|+2,错误!=|x|+2,化简得y2=4x+4|x|=错误!∴动点M的轨迹方程是y=0(x<0)或y2=8x(x≥0).法二:1当x≥0时,∵动点M(x,y)到y轴的距离比它到定点(2,0)的距离小2,∴动点M到定点(2,0)的距离与到定直线x=—2的距离相等,∴动点M的轨迹是以(2,0)为焦点,x=—2为准线的抛物线,且p=4,∴抛物线的方程为y2=8x(x≥0).2当x<0时,由于x轴上原点左侧的点到y轴距离比它到(2,0)的距离小于2,∴动点M的轨迹方程为y=0(x<0).综上,动点M的轨迹方程为y=0(x<0)或y2=8x(x≥0).解决轨迹为抛物线问题的方法抛物线的轨迹问题,既可以用轨迹法直接求解,也可以先将条件转化,再利用抛物线的定义求解.后者的关键是找到满足动点到定点的距离等于到定直线的距离的条件,有时需要依据已知条件进行转化才能得到满足抛物线定义的条件.4.已知圆C的方程为x2+y2—10x=0,求与y轴相切且与圆C外切的动圆圆心P的轨迹方程.[解] 设点P的坐标为(x,y),动圆的半径为R,∵动圆P与y轴相切,∴R=|x|.∵动圆与定圆C:(x—5)2+y2=25外切,∴|PC|=R+5.∴|PC|=|x|+5.当点P在y轴右侧时,即x>0,则|PC|=x+5,∴点P的轨迹是以(5,0)为焦点的抛物线,则圆心P的轨迹方程为y2=20x(x>0);当点P在y轴左侧时,即x<0,则|PC|=—x+5,此时点P的轨迹是x轴的负半轴,即方程y=0(x<0).故点P的轨迹方程为y2=20x(x>0)或y=0(x<0).1.焦点在x轴上的抛物线,其标准方程可以统设为y2=mx(m≠0),此时焦点为F错误!,准线方程为x=—错误!;焦点在y轴上的抛物线,其标准方程可以统设为x2=my(m≠0),此时焦点为F错误!,准线方程为y=—错误!.2.设M是抛物线上一点,焦点为F,则线段MF叫做抛物线的焦半径.若M(x0,y0)在抛物线y 2=2px(p>0)上,则根据抛物线的定义,抛物线上的点到焦点的距离和到准线的距离可以相互转化,所以焦半径|MF|=x0+错误!.3.对于抛物线上的点,利用定义可以把其到焦点的距离转化为到准线的距离,也可以把其到准线的距离转化为到焦点的距离,因此可以解决有关距离的最值问题.1.判断(正确的打“√”,错误的打“×”)(1)标准方程y2=2px(p>0)中的p的几何意义是焦点到准线的距离.()(2)抛物线的焦点位置由一次项及一次项系数的正负决定.()(3)抛物线的方程都是二次函数.()(4)抛物线的开口方向由一次项及一次项系数的正负决定.()[答案] (1)√(2)√(3)×(4)√2.抛物线y=错误!x2的焦点坐标是()A.错误!B.错误!C.(0,1)D.(1,0)C[抛物线的标准方程为x2=4y,从而焦点坐标为(0,1).]3.已知抛物线y2=2px(p>0)的焦点F1,若点A(2,—4)在抛物线上,则点A到焦点的距离为________.4[把点(2,—4)代入抛物线y2=2px,得16=4p,即p=4,从而抛物线的焦点为(2,0).故点A到焦点的距离为4.]4.若抛物线y2=—2px(p>0)上有一点M,其横坐标为—9,它到焦点的距离为10,求点M 的坐标.[解] 由抛物线方程y2=—2px(p>0),得其焦点坐标为F错误!,准线方程为x=错误!.设点M到准线的距离为d,则d=|MF|=10,即错误!—(—9)=10,得p=2,故抛物线方程为y2=—4x.由点M(—9,y)在抛物线上,得y=±6,故点M的坐标为(—9,6)或(—9,—6).。
圆锥曲线与方程知识点详细
圆锥曲线与方程知识点详细圆锥曲线是高中数学中的重要内容,包括椭圆、双曲线和抛物线。
它们在数学、物理等领域都有着广泛的应用。
接下来,让我们详细了解一下圆锥曲线与方程的相关知识点。
一、椭圆1、定义平面内与两个定点$F_1$、$F_2$的距离之和等于常数(大于$|F_1F_2|$)的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。
2、标准方程焦点在$x$轴上:$\frac{x^2}{a^2} +\frac{y^2}{b^2} =1$($a > b > 0$),其中$a$为椭圆的长半轴长,$b$为椭圆的短半轴长,$c =\sqrt{a^2 b^2}$为半焦距。
焦点在$y$轴上:$\frac{y^2}{a^2} +\frac{x^2}{b^2} =1$($a > b > 0$)。
3、椭圆的性质(1)范围:对于焦点在$x$轴上的椭圆,$a \leq x \leq a$,$b \leq y \leq b$;对于焦点在$y$轴上的椭圆,$b \leq x \leq b$,$a \leq y \leq a$。
(2)对称性:椭圆关于$x$轴、$y$轴和原点对称。
(3)顶点:焦点在$x$轴上的椭圆的顶点为$(\pm a, 0)$,$(0, \pm b)$;焦点在$y$轴上的椭圆的顶点为$(0, \pm a)$,$(\pm b, 0)$。
(4)离心率:$e =\frac{c}{a}$($0 < e < 1$),离心率反映了椭圆的扁平程度,$e$越接近$0$,椭圆越圆;$e$越接近$1$,椭圆越扁。
二、双曲线1、定义平面内与两个定点$F_1$、$F_2$的距离之差的绝对值等于常数(小于$|F_1F_2|$)的点的轨迹叫做双曲线。
这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距。
2、标准方程焦点在$x$轴上:$\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$,其中$a > 0$,$b > 0$,$c =\sqrt{a^2 + b^2}$。
(江苏专用)高考数学总复习 第十篇 圆锥曲线与方程《第61讲 直线与圆锥曲线》课件 理 苏教版
双基自测 x2 y2 1.直线y=kx-k+1与椭圆 + =1的位置关系为________. 9 4 解析 直线y=kx-k+1=k(x-1)+1恒过定点(1,1),而点(1,1) 在椭圆内部,故直线与椭圆相交. 答案 相交
x2 2.若直线y=kx+1与椭圆 16 +y2=1只有一个公共点,则k= ________. 解析 直线恒过定点A(0,1),而点A恰为椭圆的顶点,故只需k =0时,直线与椭圆只有一个公共点. 答案 0
2.圆锥曲线的弦长 (1)圆锥曲线的弦长 直线与圆锥曲线相交有两个交点时,这条直线上以这两个交点 为端点的线段叫做圆锥曲线的弦(就是连接圆锥曲线上任意两 点所得的线段),线段的长就是弦长.
(2)圆锥曲线的弦长的计算 设斜率为k(k≠0)的直线l与圆锥曲线C相交于A,B两点,A(x1, y1),B(x2,y2),则|AB|= x2-x12+y2-y12 = 1+k2 |x1-x2| = 1 2p 1+k2· |y1-y2|.(抛物线的焦点弦长|AB|=x1+x2+p=sin2θ,
3.已知以F1(-2,0),F2(2,0)为焦点的椭圆与直线x+ 3 y+4= 0有且仅有一个交点,则椭圆的长轴长为________. x2 y2 解析 根据题意设椭圆方程为 2 + b2 =1(b>0),则将x=- b +4 3 y-4代入椭圆方程,得4(b2+1)y2+8 3 b2y-b4+12b2=0, ∵椭圆与直线x+ 3y+4=0有且仅有一个交点,∴Δ=(8 3b2)2 -4×4(b2+1)· (-b4+12b2)=0,即(b2+4)(b2-3)=0,∴b2= 3,长轴长为2 b2+4=2 7. 答案 2 7
2 2 x1 y1 a2-b2=1, 2 2 x y 2 2- 2 2=1, a b
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学常用逻辑用语、圆锥曲线与方程苏教版【本讲教育信息】一. 教学内容:常用逻辑用语、圆锥曲线与方程二、本周教学目标:1. 理解四种命题的关系,并能利用这个关系判断命题的真假2. 正确理解充分条件、必要条件和充要条件三个概念,并能在判断、论证中正确运用3. 能正确运用椭圆的定义与标准方程解题,学会用待定系数法与定义法求椭圆的方程三、本周知识要点:(一)常用逻辑用语1. 命题及其相互关系(1)四种命题及其形式原命题:若p则q;逆命题:若q则p;否命题:若⌝p则⌝q;逆否命题:若⌝q则⌝p互逆命题、互否命题与互为逆否命题都是说两个命题的关系,若把其中一个命题叫做原命题时,另一个命题就叫做原命题的逆命题、否命题与逆否命题。
因此,四种命题之间的相互关系,可用下图表示:(2)四种命题的真假关系一个命题的真假与其他三个命题的真假有如下三条关系:①原命题为真,它的逆命题不一定为真②原命题为真,它的否命题不一定为真③原命题为真,它的逆否命题一定为真2. 充分条件与必要条件若p⇒q,则说p是q的充分条件,q是p的必要条件.若p⇒q,但p q,则说p是q的充分而不必要条件;若p q,但p⇐q,则说p是q的必要而不充分条件;若p q,且p q,则说p是q的既不充分也不必要条件.例如,“x>2”是“x>1”的充分而不必要的条件;“x>1”是“x>2”的必要而不充分的条件;“x>0 ,y>0”是“x+y<0”的既不充分也不必要的条件.3. 简单的逻辑联结词(1)“且”、“或”、“非”(2)量词“)(,x p R x ∈∀”的否定为“)(,x p M x -∈∃”“)(,x p M x ∈∃”的否定为 “)(,x p R x -∈∀”(二)圆锥曲线 1. 椭圆定义:平面内与两个定点21,F F 的距离之和等于常数(大于||21F F )的点的轨迹叫作椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距2.椭圆标准方程:(1)12222=+by a x .(a>b>0)它所表示的椭圆的焦点在x 轴上,焦点是)0,c (F )0,c (F 21,-,中心在坐标原点的椭圆方程.其中222b c a +=(2)12222=+bx a y .(a>b>0)它所表示的椭圆的焦点在y 轴上,焦点是),0(),,0(21c F c F -,中心在坐标原点的椭圆方程其中222b c a +=3. 椭圆的性质:由椭圆方程)0b a (1by a x 2222>>=+(1)范围:a x a ≤≤-,b y b ≤≤-,椭圆落在b y a x ±=±=,组成的矩形中.(2)对称性:图象关于y 轴对称.图象关于x 轴对称.图象关于原点对称原点叫椭圆的对称中心,简称中心.x 轴、y 轴叫椭圆的对称轴.从椭圆的方程中直接可以看出它的范围,对称的截距(3)顶点:椭圆和对称轴的交点叫做椭圆的顶点椭圆共有四个顶点: )0,(),0,(2a A a A -,),0(),,0(2b B b B -加两焦点)0,(),0,(21c F c F -共有六个特殊点. 21A A 叫椭圆的长轴,21B B 叫椭圆的短轴.长分别为b a 2,2 b a ,分别为椭圆的长半轴长和短半轴长.椭圆的顶点即为椭圆与对称轴的交点(4)离心率发现长轴相等,短轴不同,扁圆程度不同 这种扁平性质由什么来决定呢? 概念:椭圆焦距与长轴长之比定义式:a c e =⇒2)(1ab e -= 范围:10<<e考查椭圆形状与e 的关系:0,0→→c e ,椭圆变圆,直至成为极限位置圆,此时也可认为圆为椭圆在0=e 时的特例,,1a c e →→椭圆变扁,直至成为极限位置线段21F F ,此时也可认为圆为椭圆在1=e 时的特例【典型例题】例1. 写出适合下列条件的椭圆的标准方程: (1)两个焦点坐标分别是(-4,0)、(4,0),椭圆上一点P 到两焦点的距离之和等于10; ⑵两个焦点坐标分别是(0,-2)和(0,2)且过(23-,25) 解:(1)因为椭圆的焦点在x 轴上,所以设它的标准方程为12222=+by a x )0(>>b a 9454,582,10222222=-=-=∴==∴==c a b c a c a所以所求椭圆标准方程为192522=+y x (2)因为椭圆的焦点在y 轴上,所以设它的标准方程为12222=+bx a y )0(>>b a由椭圆的定义知,22)225()23(2++-=a +22)225()23(-+-10211023+=102= 10=∴a 又2=c6410222=-=-=∴c a b所以所求标准方程为161022=+x y例2. 求椭圆400251622=+y x 的长轴和短轴的长、离心率、焦点和顶点的坐标,并用描点法画出它的图形.解:把已知方程化成标准方程1452222=+y x所以,345,4,522=-===c b a ,因此,椭圆的长轴的长和短轴的长分别为82,102==b a ,离心率53==a c e ,两个焦点分别为)0,3(),0,3(21F F -,椭圆的四个顶点是)0,5(A ),0,5(A 21-,)4,0(B ),4,0(B 21- 将已知方程变形为22554x y -±=,根据22554x y -=,在50≤≤x 的范围内算出几个点的坐标),(y x :3.93.73.2例3. 求适合下列条件的椭圆的标准方程.(1)焦点在x 轴上,且经过点(2,0)和点(0,1).(2)焦点在y 轴上,与y 轴的一个交点为P (0,-10),P 到它较近的一个焦点的距离等于2.解:(1)因为椭圆的焦点在x 轴上,所以可设它的标准方程为:)0(12222>>=+b a by a x ∵椭圆经过点(2,0)和(0,1)∴⎪⎩⎪⎨⎧==∴⎪⎪⎩⎪⎪⎨⎧=+=+14a 1101022222222b b a b a 故所求椭圆的标准方程为1422=+y x (2)∵椭圆的焦点在y 轴上,所以可设它的标准方程为:)0(12222>>=+b a bx a y ∵P (0,-10)在椭圆上,∴a =10. 又∵P 到它较近的一焦点的距离等于2, ∴-c -(-10)=2,故c =8. ∴36222=-=c a b .∴所求椭圆的标准方程是13610022=+x y .例4. 已知椭圆的一个焦点将长轴分为3:2两段,求其离心率 解:由题意,)(:)(c a c a -+=3:2,即2311=-+e e ,解得 625-=e例5. 如图,求椭圆12222=+by a x ,(0>>b a )内接正方形ABCD 的面积解:由椭圆和正方形的中心对称性知,正方形BFOE 的面积是所求正方形面积的1/4,且B 点横纵坐标相等,故设B (t t ,),代入椭圆方程求得22222ba b a t +=,即正方形ABCD 面积为22224b a b a +【模拟试题】1. 椭圆192522=+y x 上一点P 到一个焦点的距离为5,则P 到另一个焦点的距离为( ) A. 5 B. 6 C. 4 D. 102. 椭圆11692522=+y x 的焦点坐标是( ) A. (±5,0) B.(0,±5) C. (0,±12) D. (±12,0)3. 已知椭圆的方程为18222=+my x ,焦点在x 轴上,则其焦距为( )A. 228m -B. 2m -22C. 282-m D. 222-m4. 已知椭圆方程为1112022=+y x ,那么它的焦距是( ) A. 6 B. 3 C. 331 D. 315. 如果方程222=+ky x 表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( )A. (0,+∞)B. (0,2)C. (1,+∞)D. (0,1) 6. 1,6==c a ,焦点在y 轴上的椭圆的标准方程是 .7. 平面内两个定点21,F F 之间的距离为2,一个动点M 到这两个定点的距离和为6.建立适当的坐标系,推导出点M 的轨迹方程.[参考答案]http//1. A2. C3. A4. A5. D6.1353622=+x y 7. 解:建立直角坐标系xoy ,使x 轴经过点21,F F ,并且点O 与线段21F F 的中点重合。
设),(y x M 是椭圆上任意一点,椭圆的焦距为2c(c=1),M 与21,F F 的距离的和等于常数6,则21,F F 的坐标分别是(-1,0),(1,0)。
∵222221)1(,)1(y x MF y x MF +-=++=∴6)1()1(2222=+-+++y x y x .将这个方程移项后,两边平方,得22222222)1(39,)1()1(1236)1(yx x y x y x y x +-=-+-++--=++两边再平方,得:222991891881y x x x x ++-=+- 整理得:729822=+y x两边除以72得:18922=+y x.。