航空模型入门知识
航模入门必读基础知识

祝小白们早日成为老鸟!加油
⑤舵面
接下来介绍各种舵面的作用。舵面主要有以下四种:副翼,襟翼,升降舵和方向舵。
在介绍各舵面的作用之前,我先说说模型飞机的三轴,横轴,纵轴,立轴。纵轴是与机身的几何对称轴,穿过机身;横轴与纵轴垂直且穿过机翼的一条直线;立轴是与上述二者皆垂直的直线。这三者交与一点,这一点就是模型飞机重力的合力点,即重心。
副翼:机翼后面可以上下运动且两侧差动的舵面;襟翼:机翼后面只能向下运动且两侧只能同向运动的舵面;升降舵:水平尾翼后面可以上下运动的舵面;方向舵:垂直尾翼后面可以左右摆动的舵面。
副翼的作用是使飞机绕纵轴做旋转运动;方向舵使飞机绕立轴做旋转运动,这个旋转运动与飞机向前的合速度即为转弯的实际速度方向;升降舵使飞机绕横轴做旋转运动;襟翼的作用是减速,也叫空气刹车。
②通道及映射
习惯性的,我们会把1通用来控制幅翼,2通用来控制升降舵,3通(不会自动回中的那个通道)用来控制油门,4通用来控制方向舵。
③具体操作及模型的响应
正反舵:首先机尾对着自己。然后从1通道,向左打(左幅翼,飞机绕纵轴逆时针旋转),左侧幅翼向上旋转;向右打(右幅翼,飞机绕纵轴顺时针旋转),右侧机翼向上旋转。2通,向下(拉杆,抬头),升降舵向上旋转;向上(推杆,低头),升降舵向下旋转。3通,杆在最下面动力应该是最小的,内燃机的话,发动机处于怠速状态,电动机的话,应该停转。4通,向左(左方向,飞机绕立轴向左旋转),方向舵向左旋转,向右(右方向,飞机绕立轴向右旋转),方向舵向右旋转。
航空模型介绍
一组成
首先,航空模型分为五个基本的部分:1机头,2机翼,3机身,4发动机,5尾翼,6起落架
二定义
航空模型的定义:凡是 1翼展小于5米;2带有或不带有动力装置;3不能载人;4密度大于空气 的飞行器统成航空模型。
航空模型知识

航空模型知识一、什么叫航空模型在国际航联制定的竞赛规则里明确规定“航空模型是一种重于空气的,有尺寸限制的,带有或不带有发动机的,不能载人的航空器,就叫航空模型。
其技术要求是:最大飞行重量同燃料在内为五千克;最大升力面积一百五十平方分米;最大的翼载荷100克/平方分米;活塞式发动机最大工作容积10亳升。
1、什么叫飞机模型一般认为不能飞行的,以某种飞机的实际尺寸按一定比例制作的模型叫飞机模型。
2、什么叫模型飞机一般称能在空中飞行的模型为模型飞机,叫航空模型。
二、模型飞机的组成模型飞机一般与载人的飞机一样,主要由机翼、尾翼、机身、起落架和发动机五部分组成。
1、机翼——是模型飞机在飞行时产生升力的装置,并能保持模型飞机飞机飞行时的横侧安定。
2、尾翼——包括水平尾翼和垂直尾翼两部分。
水平尾翼可保持模型飞机飞行时的俯仰安定,垂直尾翼保持模型飞机飞行时的方向安定。
水平尾翼上的升降舵能控制模型飞机的升降,垂直尾翼上的方向舵可控制模型飞机的飞行方向。
3、机身——将模型的各部分联结成一个整体的主干部分叫机身。
同时机身内可以装载必要的控制机件,设备和燃料等。
4、起落架——供模型飞机起飞、着陆和停放的装置。
前部一个起落架,后面两面三个起落架叫前三点式;前部两面三个起落架,后面一个起落架叫后三点式。
5、发动机——它是模型飞机产生飞行动力的装置。
模型飞机常用的动力装置有:橡筋束、活塞式发动机、喷气式发动机、电动机。
三、航空模型技术常用术语1、翼展——机翼(尾翼)左右翼尖间的直线距离。
(穿过机身部分也计算在内)。
2、机身全长——模型飞机最前端到最末端的直线距离。
3、重心——模型飞机各部分重力的合力作用点称为重心。
4、尾心臂——由重心到水平尾翼前缘四分之一弦长处的距离。
5、翼型——机翼或尾翼的横剖面形状。
6、前缘——翼型的最前端。
7、后缘——翼型的最后端。
8、翼弦——前后缘之间的连线。
9、展弦比——翼展与平均翼弦长度的比值。
展弦比大说明机翼狭长。
航模基础知识

(1)伯努利原理如果两手各拿一张薄纸,使它们之间的距离大约4~6厘米。
然后用嘴向这两张纸中间吹气,你会看到,这两张纸不但没有分开,反而相互靠近了,而且用最吹出的气体速度越大,两张纸就越靠近。
从这个现象可以看出,当两纸中间有空气流过时,压强变小了,纸外压强比纸内大,内外的压强差就把两纸往中间压去。
中间空气流动的速度越快,纸内外的压强差也就越大。
(2)机翼升力原理飞机机翼地翼剖面又叫做翼型,一般翼型的前端圆钝、后端尖锐,上表面拱起、下表面较平,呈鱼侧形。
前端点叫做前缘,后端点叫做后缘,两点之间的连线叫做翼弦。
当气流迎面流过机翼时,由于机翼地插入,被分成上下两股。
通过机翼后,在后缘又重合成一股。
由于机翼上表面拱起,是上方的那股气流的通道变窄。
根据气流的连续性原理和伯努利定理可以得知,机翼上方的压强比机翼下方的压强小,也就是说,机翼下表面受到向上的压力比机翼上表面受到向下的压力要大,这个压力差就是机翼产生的升力。
(3)失速原理在机翼迎角较小的范围内,升力随着迎角的加大而增大。
但是,当迎角加大到某个值时,升力就不再增加了。
这时候的迎角叫做临界迎角。
当超过临界迎角后,迎角再加大,阻力增加,升力反而减小。
这现象就叫做失速。
产生失速的原因是:由于迎角的增加,机翼上表面从前缘到最高点压强减小和从最高点到后缘压强增大的情况更加突出。
当超过临界迎角以后,气流在流过机翼的最高点不多远,就从翼表面上分离;了,在翼面后半部分产生很大的涡流,造成阻力增加,升力减小。
(4)人工扰流方案要推迟失速的发生,就要想办法使气流晚些从机翼上分离。
机翼表面如果是层流边界层,气流比较容易分离;如果是絮流边界层,气流比较难分离。
也就是说,为了推迟失速,在机翼表面要造成絮流边界层。
一般来说,雷诺数增大,机翼表面的层流边界层容易变成絮流边界层。
但是,模型飞机的速度很低,翼弦很小,所以雷诺数不可能增大很大。
要推迟模型飞机失速的发生,就必须要想别的办法。
(2024年)航模入门基本知识

偏航角调整
通过改变方向舵角度,控制飞机左右 转向。
滚转角调整
通过改变副翼角度,控制飞机左右倾 斜。
2024/3/26
15
性能参数评估方法
01
02
03
04
飞行速度
评估航模在不同飞行阶段的速 度表现。
爬升率与下滑率
评估航模爬升和下滑的能力及 效率。
续航时间
评估航模在一次充电或加油后 的持续飞行时间。
载荷能力
13
空气动力学基础知识
01
02
03
伯努利定理
流体流速越快,压力越低 ;流速越慢,压力越高。
2024/3/26
升力产生原因
机翼上表面空气流速快, 下表面空气流速慢,产生 向上的升力。
阻力与升力关系
在飞行中,阻力与升力并 存,需通过设计优化减小 阻力。
14
飞行姿态调整技巧
俯仰角调整
通过改变升降舵角度,控制飞机抬头 或低头。
评估航模携带设备或完成任务 的能力。
2024/3/26
16
飞行安全注意事项
飞行场地选择
选择空旷、无遮挡物的 场地进行飞行。
2024/3/26
气象条件关注
避免在恶劣天气下飞行 ,如风大、雨雪等。
电池安全管理
遥控器操作规范
确保电池充电、放电过 程安全,避免过充、过
放。
17
熟悉遥控器操作,避免 误操作导致飞行事故。
传感器技术应用
传感器技术在航模中的应用主要体现在飞行姿态的稳定和控制精度的提高上。例如,陀螺仪可以检测 航模的角速度信息,通过反馈控制实现飞行姿态的稳定;GPS则可以提供航模的精确位置信息,实现 定点悬停、自动返航等高级飞行功能。
航模基础知识

航模的材料与工艺
材料
航模的材料主要包括轻木、碳纤维、玻璃钢等轻质、高强度 材料。这些材料可以有效地减轻航模的重量,提高飞行性能 。
工艺
航模的制造工艺主要包括切割、打磨、粘接、热压等。这些 工艺的使用需要根据材料的不同特性进行选择,以保证航模 的质量和可靠性。
航模的动力系统
发动机
尾翼
尾翼是航模用来保持稳 定性的部件,包括水平 尾翼和垂直尾翼。尾翼 的位置、尺寸和形状对 航模的飞行性能有很大
影响。
机身
机身是航模的主体结构 ,用于安装发动机、接 收器、电池等部件。机 身的材料和结构对航模 的整体性能有很大影响
。
起落架
起落架是航模在地面停 放和起飞着陆时使用的 支撑机构,通常由轻质 材料制成,如铝管或碳 纤维。起落架的设计和 布局对航模的起飞和着
03
CATALOGUE
航模的组装与调试
航模的组装步骤
准备工作
确保工具齐全,阅读说明书, 了解航模的结构和原理。
机体组装
按照说明书指示,组装机身、 机翼、尾翼等部分,确保连接 牢固。
电子设备安装
安装电池、接收机、舵机等电 子设备,确保正确连接。
调试与检查
检查航模各部分工作是否正常 ,进行必要的调试,确保飞行
05
CATALOGUE
航模的进阶知识
航模的性能优化
动力系统优化
根据飞行需求选择合适的发动机和螺旋桨, 调整发动机参数以获得最佳性能。
空气动力学优化
通过改进机体设计、翼型选择和翼面布局, 减少空气阻力,提高飞行效率。
重量与平衡优化
合理分配机体各部分重量,确保航模在空中 保持稳定。
操控性能优化
航模基础知识

一、什么叫航空模型二、在国际航联制定的竞赛规则里明确规定“航空模型是一种重于空气的,有尺寸限制的,带有或不带有发动机的,不能载人的航空器,就叫航空模型。
其技术要求是:三、最大飞行重量同燃料在内为五千克;四、最大升力面积一百五十平方分米;五、最大的翼载荷100克/平方分米;六、活塞式发动机最大工作容积10亳升。
七、1、什么叫飞机模型八、一般认为不能飞行的,以某种飞机的实际尺寸按一定比例制作的模型叫飞机模型。
九、2、什么叫模型飞机十、一般称能在空中飞行的模型为模型飞机,叫航空模型。
十一、二、模型飞机的组成十二、模型飞机一般与载人的飞机一样,主要由机翼、尾翼、机身、起落架和发动机五部分组成。
十三、1、机翼——是模型飞机在飞行时产生升力的装置,并能保持模型飞机飞机飞行时的横侧安定。
十四、2、尾翼——包括水平尾翼和垂直尾翼两部分。
水平尾翼可保持模型飞机飞行时的俯仰安定,垂直尾翼保持模型飞机飞行时的方向安定。
水平尾翼上的升降舵能控制模型飞机的升降,垂直尾翼上的方向舵可控制模型飞机的飞行方向。
十五、3、机身——将模型的各部分联结成一个整体的主干部分叫机身。
同时机身内可以装载必要的控制机件,设备和燃料等。
十六、4、起落架——供模型飞机起飞、着陆和停放的装置。
前部一个起落架,后面两面三个起落架叫前三点式;前部两面三个起落架,后面一个起落架叫后三点式。
十七、5、发动机——它是模型飞机产生飞行动力的装置。
模型飞机常用的动力装置有:橡筋束、活塞式发动机、喷气式发动机、电动机。
十八、三、航空模型技术常用术语十九、1、翼展——机翼(尾翼)左右翼尖间的直线距离。
(穿过机身部分也计算在内)。
二十、2、机身全长——模型飞机最前端到最末端的直线距离。
二十一、3、重心——模型飞机各部分重力的合力作用点称为重心。
二十二、4、尾心臂——由重心到水平尾翼前缘四分之一弦长处的距离。
二十三、5、翼型——机翼或尾翼的横剖面形状。
二十四、6、前缘——翼型的最前端。
航模基础知识
航空模型基础知识教程(一)应大家的要求顶起来求精一、什么叫航空模型在国际航联制定的竞赛规则里明确规定“航空模型是一种重于空气的,有尺寸限制的,带有或不带有发动机的,不能载人的航空器,就叫航空模型。
其技术要求是:最大飞行重量同燃料在内为五千克;最大升力面积一百五十平方分米;最大的翼载荷100克/平方分米;活塞式发动机最大工作容积10亳升。
1、什么叫飞机模型一般认为不能飞行的,以某种飞机的实际尺寸按一定比例制作的模型叫飞机模型。
2、什么叫模型飞机一般称能在空中飞行的模型为模型飞机,叫航空模型。
二、模型飞机的组成模型飞机一般与载人的飞机一样,主要由机翼、尾翼、机身、起落架和发动机五部分组成。
1、机翼——是模型飞机在飞行时产生升力的装置,并能保持模型飞机飞机飞行时的横侧安定。
2、尾翼——包括水平尾翼和垂直尾翼两部分。
水平尾翼可保持模型飞机飞行时的俯仰安定,垂直尾翼保持模型飞机飞行时的方向安定。
水平尾翼上的升降舵能控制模型飞机的升降,垂直尾翼上的方向舵可控制模型飞机的飞行方向。
3、机身——将模型的各部分联结成一个整体的主干部分叫机身。
同时机身内可以装载必要的控制机件,设备和燃料等。
4、起落架——供模型飞机起飞、着陆和停放的装置。
前部一个起落架,后面两面三个起落架叫前三点式;前部两面三个起落架,后面一个起落架叫后三点式。
5、发动机——它是模型飞机产生飞行动力的装置。
模型飞机常用的动力装置有:橡筋束、活塞式发动机、喷气式发动机、电动机。
三、航空模型技术常用术语1、翼展——机翼(尾翼)左右翼尖间的直线距离。
(穿过机身部分也计算在内)。
2、机身全长——模型飞机最前端到最末端的直线距离。
3、重心——模型飞机各部分重力的合力作用点称为重心。
4、尾心臂——由重心到水平尾翼前缘四分之一弦长处的距离。
5、翼型——机翼或尾翼的横剖面形状。
6、前缘——翼型的最前端。
7、后缘——翼型的最后端。
8、翼弦——前后缘之间的连线。
9、展弦比——翼展与平均翼弦长度的比值。
航模技术知识点总结
航模技术知识点总结航空模型是指模拟飞行器或飞行器部件的机型,通常用于模拟实际飞行器的设计、操作和性能。
在航空模型领域,有许多技术知识点需要掌握,涉及到飞行器的设计、动力系统、控制系统、材料科学、飞行技术等方面。
本文将对航模技术知识点进行总结,以帮助模型爱好者更好地了解和掌握航模技术。
1. 飞行器设计飞行器设计是航模技术中的一个重要环节,它涉及到飞行器的外形设计、结构设计、气动设计和重心位置等方面。
在飞行器的外形设计中,需要考虑飞行器的气动性能和飞行稳定性,以及飞行器的外观美感和造型设计。
在飞行器的结构设计中,需要考虑飞行器的结构强度和轻量化设计,以满足飞行器的飞行性能和耐用性要求。
在飞行器的气动设计中,需要考虑飞行器的升力和阻力特性,以及飞行器的气动性能和飞行稳定性。
2. 动力系统动力系统是航模技术中的另一个重要环节,它涉及到飞行器的动力来源、动力传输和动力控制等方面。
在动力系统中,常见的动力来源包括电动动力、燃气动力和弹射动力等。
在动力传输中,需要考虑动力传输装置的传动效率和传动稳定性,以及动力传输装置的选用和安装。
在动力控制中,需要考虑动力控制装置的控制精度和控制可靠性,以及动力控制装置的响应速度和响应灵敏度。
3. 控制系统控制系统是航模技术中的另一个重要环节,它涉及到飞行器的姿态控制、飞行控制和导航控制等方面。
在控制系统中,需要考虑飞行器的姿态稳定性和飞行性能,以及飞行器的控制精度和控制可靠性。
在姿态控制中,需要考虑姿态控制装置的稳定性和精度,以及姿态控制装置的控制方法和控制原理。
在飞行控制中,需要考虑飞行控制装置的飞行性能和飞行稳定性,以及飞行控制装置的控制方式和控制逻辑。
4. 材料科学材料科学是航模技术中的另一个重要环节,它涉及到飞行器的材料选择、材料性能和材料加工等方面。
在材料科学中,需要考虑飞行器的材料强度和材料韧性,以及飞行器的材料耐久性和材料疲劳性。
在材料选择中,需要考虑材料的重量和材料的成本,以及材料的可加工性和材料的可靠性。
航模的基本原理和基本知识
一、航空模型的基本原理与基本知识1)航空模型空气动力学原理1、力的平衡飞行中的飞机要求手里平衡,才能平稳的飞行。
如果手里不平衡,依牛顿第二定律就会产生加速度轴力不平衡则会在合力的方向产生加速度。
飞行中的飞机受的力可分为升力、重力、阻力、推力﹝如图1-1﹞。
升力由机翼提供,推力由引擎提供,重力由地心引力产生,阻力由空气产生,我们可以把力分解为两个方向的力,称x 与y 方向﹝当然还有一个z方向,但对飞机不是很重要,除非是在转弯中﹞,飞机等速直线飞行时x方向阻力与推力大小相同方向相反,故x方向合力为零,飞机速度不变,y方向升力与重力大小相同方向相反,故y方向合力亦为零,飞机不升降,所以会保持等速直线飞行。
图1-1弯矩不平衡则会产生旋转加速度,在飞机来说,X轴弯矩不平衡飞机会滚转,Y轴弯矩不平衡飞机会偏航、Z轴弯矩不平衡飞机会俯仰﹝如图1-2﹞。
图1-22、伯努利定律伯努利定律是空气动力最重要的公式,简单的说流体的速度越大,静压力越小,速度越小,静压力越大,流体一般是指空气或水,在这里当然是指空气,设法使机翼上部空气流速较快,静压力则较小,机翼下部空气流速较慢,静压力较大,两边互相较力﹝如图1-3﹞,于是机翼就被往上推去,然后飞机就飞起来,以前的理论认为两个相邻的空气质点同时由机翼的前端往后走,一个流经机翼的上缘,另一个流经机翼的下缘,两个质点应在机翼的后端相会合﹝如图1-4﹞,经过仔细的计算后发觉如依上述理论,上缘的流速不够大,机翼应该无法产生那么大的升力,现在经风洞实验已证实,两个相邻空气的质点流经机翼上缘的质点会比流经机翼的下缘质点先到达后缘﹝如图1-5﹞。
图1-3图1-4图1-53、翼型的种类1全对称翼:上下弧线均凸且对称。
2半对称翼:上下弧线均凸但不对称。
3克拉克Y翼:下弧线为一直线,其实应叫平凸翼,有很多其它平凸翼型,只是克拉克Y翼最有名,故把这类翼型都叫克拉克Y翼,但要注意克拉克Y翼也有好几种。
航空模型入门知识
航空模型活动
如航空模型展览、飞行表演等,让公 众近距离感受航空模型的魅力,提高 社会认知度。
技术改进与创新
材料应用
随着科技的发展,新型材料 如碳纤维、玻璃纤维等在航 空模型领域得到广泛应用, 提高模型强度和轻量化。
动力系统升级
改进发动机、推进器等动力 系统,提高航空模型的飞行 性能和效率,如使用电动发 动机、油动发动机等。
正确组装与调试
起飞前应检查模型的各个部件 是否正确组装,并进行必要的 调试。
正确握持与投掷
使用正确的握持姿势,顺着风 向将模型平稳投掷出去。
着陆技巧
在模型接近地面时,适当调整 油门和方向,确保模型平稳着
陆。
飞行控制技巧
01
02
03
04
平衡控制
保持模型在空中飞行时的平衡 ,避免翻滚或失速。
油门控制
根据飞行需要,适当调整油门 大小,以控制飞行速度和高度
了解模型发动机所需的燃料以及点 火系统的原理。
螺旋桨与传动系统
熟悉螺旋桨的设计与选择,以及它 们如何与发动机配合工作。
控制系统
遥控器与接收器
01
了解如何使用遥控器控制航空模型,以及接收器的工作原理。
舵机与控制系统
02
了解舵机的工作原理以及如何通过控制系统调整模型的飞行姿态。源自编程与自动控制系统03
了解如何使用编程和自动控制系统实现对模型的更高级控制。
03 航空模型制作流程
设计阶段
确定设计目标
根据飞行要求和预算,确定模型 飞机的类型、尺寸、性能等目标。
绘制设计图
使用绘图软件或手绘方式,绘制 模型飞机的平面图和立体图,标
注尺寸和细节。
评估与优化
根据设计图的评估结果,对设计 进行优化,提高模型飞机的性能
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
HiModel 4600mAh22.2V 6S1P聚合物锂电池22C
HiModel 2800毫安7.2V大容量车船用镍氢电池组
HiModel 850mAh 7.4V锂聚合物动力电池(20C)
3. 遥控设备
► ► ► ► ► ►
遥控设备由发射机、接收机、伺服器等组成。 操纵手通过发射机发送信号,接收机安装在飞机上,能接收信号,并将信号 传送给伺服器,伺服器做出相应的动作。 发射机和接收机的频率必须一致。 遥控设备按通道数量分,有二通到十四通不等。协会目前拥有九通道和六通 道设备各一套,四通道设备若干套。 设备的制式有AM、PPM(FM)、PCM三种。 四大品牌:Futaba、JR、SANWA(三和)、Hitec。
1.3.3 蒙皮
► 木制飞机制作的最后一道工序是贴蒙皮。
► 现多用热缩膜做蒙皮。 ► 优秀的热缩蒙皮加热后能牢牢地粘在轻木上,收缩
率较高且重量轻。
德国蒙皮
2.1.1 发动机
► 目前航模用的发动机有二行程/四行程电热式发动机
(以甲醇为燃料)、单缸/多缸汽油发动机和涡轮喷气 发动机。 ► 电热式发动机按级数来分,不同级数的发动机对应不同 的气缸容量,如21级发动机对就3.5cc工作容积,47级 对应7.7cc工作容积。 ► 汽油发动机则直接按气缸容积来分,一般说**cc汽油机。 ► 不同大小的发动机必须配相应的桨。桨的规格一般用 “直径*螺距”,如47级发动机一般配11*6的桨,11是 桨的直径,6是螺距。
Futaba T4VF
Futaba 6EX
左上:JR 9XII
右上:Futaba FF9
左下:SANWA RD6000
天地飞(国产) 9通
Futaba S3003舵机
Futaba S9250高速数码舵机
发射晶体和接收晶体 Futaba R146iP微型6通接收机
CRRCPRO GF26i 汽油机
三叶五缸汽油机 ATM 涡轮喷气发动机
2.1.2 油箱
不同级别的发动机对应不同级 别的油箱,如15级发动机一 般与120cc油箱配套。一箱油 应该能让发动机工作至少15 分钟。 ► 油箱共有三根油管引出来。一 根是输油管,一头接重锤,另 一头接发动机的化油器;一根 是增压管,一头接发动机消音 器上的增压嘴;还有一根是加 油管。
1.3.1 主要制作材料
►
►
常见的遥控飞机的主要制作材料是轻木和桐木。轻木非常轻,但 价格昂贵;桐木便宜,但是不易加工,且比重较大。目前越来越 多的飞机采用轻木。 高档飞机(以像真机和F3A为多)和大型飞机(如喷气式飞机) 多采用玻璃钢。
轻木
1.3.2 粘合剂
► ► ► ►
白乳胶:木制飞机多用白乳胶。白乳胶干后重量很轻,且强度大, 是粘接木材的最理想材料。缺点是干结时间太长且不防水。 树脂胶:一般用3~4份环氧树脂加1份环氧树脂固化剂搅拌均匀 即可使用。2~8小时干结。 302(AB胶):树脂胶的一种。A胶和B胶各一份混合即可使用。优点 是凝固时间短。 502:瞬间凝固,但是比较脆。
能完成一系列的标准 特技飞行动作。特点 是外形流畅,飞行速 度很快。
阿波罗50级F3A特 技机
全球SPOT*ON 50
PEAK50
1.2.3 3D特技机
►
3D机能完成吊机等花式特技动作,与F3A不同的是,花式特 技一般是在较低的速度下完成的。从外观上看,3D机一般有 较大的舵面,飞机的减轻做到了极致。
► 3.遥控设备
3.飞机的制作:1.主要制作材料
2.粘合剂 3.蒙皮
制作:戚培杰
1.1.1 机身
► 机身是动力系统和遥控设备直尾翼连成一体的部分。
A.机身一般由几个舱组成,以层板制成的隔框分开。 ► B.机身里装有动力系统和遥控设备。以油动飞机为例,经典的安 装顺序,从机头到机尾,依次是发动机、油箱、接收机和接收机 电池、舵机。
蝴蝶40级3D机
eagle-3D 40级3D机
吊机
舞鸢25
1.2.4 像真机
►
像真机在外观上高度模仿真飞机,不过为了 追求逼真的外观,很多像真机的操控性不是很理 想。
P51 MUSTANNG
PITTS双翼机
全球Piper J-3 Cub
塞斯纳182
1.2.5 滑翔机
►
滑翔机重量较轻,展弦比很大,能够在无动力的情况 下在天空中长时间滑翔而高度损失很小。滑翔机又分牵引 滑翔机、电动滑翔机、手掷滑翔机等,近年比较流行的是 山坡滑翔机。 联合模型Glider 2003
►
2.2.1 电机
► 分有刷电机和无刷电机两种。
380有刷电机
新西达A2208外转子无刷电机
2.2.2 电子调速器
►
遥控设备通过电子调速器改变电机的电流大小,以实现对电机转 速的控制。
新西达RPULSE-20AP
2.2.3 动力电池组
► 动力电池组用于给电机供电,分镍镉、镍氢、锂聚合物
电池等几种,容量和电流一般较大。
1.1.4 垂直安定面
► 垂直安定面又称垂直尾翼,可维持飞机直线飞行,
后有方向舵,可改变飞机飞行方向。
1.2.1 教练机
► 教练机飞行稳定性非常好,适合初学者练习飞行。一般
采用克拉克Y之类较厚的平凸翼型,能以较低的速度飞 行而不失速。
康克高级下单翼练习机
联合模型TUT40级教练机
1.2.2 F3A特技机
►
1.1.2 机翼
► 机翼为飞机提供升力。机翼后缘处有副翼,可控制飞机
做出横滚等动作。
A.机翼翼弦的25%~30%处是飞机的重心所在。 B.机翼的形状(即翼型)由翼肋维持,翼肋由前缘、主梁和后缘 连起来。
1.1.3 水平安定面
► 水平安定面又称水平尾翼,可维持飞机水平飞行,
后有升降舵,可改变飞机俯仰状态。
应用最多的是二行程电热发动机,重量轻,结构简 单,价格低。
OS MAX-46AX发动机
三叶 S46A发动机
GMS 46A发动机
四行程电热发动机工作较二行程的稳定,且声音和真飞 机较像,多用在像真机上。
OS FS-91 SII 四行程发动机
三叶 FS61AR 四冲程发动机
汽油发动机和涡轮喷气发动机多用在大型飞机上。
遥控固定翼基础知识
► 1.飞机
►
► ► ►
1.飞机的组成:1.机身
2.机翼 3.水平安定面 4.垂直安定面
► 2.动力系统
► 1.油动动力系统:1. 发动机
►
2.油箱
►
► ►
2.电动动力系统:1.电机
2.电子调速器 3.动力电池组
►
► ► ► ► ► ► ►
2.飞机的分类:1.教练机
2.F3A特技机 3.3D机 4.像真机 5.滑翔机