2017届高考数学第一轮考点复习题组训练18
2017年11月6日 双曲线的定义及其标准方程(1)-每日一题2018年高考数学(文)一轮复习

双曲线的定义及其标准方程(1)高考频度:★★★☆☆ 难易程度:★★★☆☆实轴长为2,虚轴长为4的双曲线的标准方程是A .2214y x -= B .2214x y -= C .222211416416x y y x -=-=或 D .22221144y x x y -=-=或 【参考答案】D【解题必备】求双曲线的标准方程时常用待定系数法:(1)根据已知条件设出双曲线的标准方程;(2)利用已知条件确定,a b 或22,a b ,注意双曲线定义的应用;(3)确定双曲线的标准方程.特别地,若已知双曲线上两点的坐标,则双曲线的标准方程可能有两个,把点的坐标代入,得到关于,a b 的两个关系式,由此求解.也可设双曲线方程为221(0)Ax By AB +=<,把点的坐标代入求出,A B 的值,此种方法计算过程简单,也避免了分类讨论.1.若双曲线221:1742x y C a-=+与双曲线222:1116y x C a -=-的焦距相等,则实数a 的值为 A .−1 B . 1 C .2 D .42.已知双曲线的方程为,则它的右焦点坐标为A .B .C .D .3.双曲线221169x y -=上一点A 到点(5,0)的距离为15,则点A 到点(−5,0)的距离为_________________. 4.双曲线的焦距为_________________.学-3.【答案】7或23【解析】双曲线221169x y -=,()()28,5,05,0a ∴=-是双曲线的两个焦点,点A 在双曲线上,128PF PF ∴-=,点A 到点()5,0的距离为15,则点A 到点()5,0-是15823+=或1587-=,故答案为7或23.学*4.【答案】8 【解析】双曲线221259x y k k+=--,即由题意(25−k )(9−k )<0,∴9<k <25,∴2c =25−k +k −9=16,∴c =4, ∴2c =8,故答案为8.。
江西省南昌市2017-2018学年高三一轮复习(一)数学试题 Word版含答案

数学(一)(集合、简易逻辑和推理与证明)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.已知集合{}2|20A x x x =-=,{}0,1,2B =,则A B =( )A .{}0,2B .{}0C .{}0,1D .{}22.已知集合{}2|20A x x x =->,{|B x x =<<,则( ) A .AB =∅ B .A B R =C .B A ⊆D .A B ⊆3.设集合{}1,2A =,则满足{}1,2,3A B =的集合B 的个数是( )A .2B .3C .4D .54.设命题p :n N ∃∈,22n n >,则p ⌝为( ) A .n N ∀∈,22n n > B .n N ∃∈,22n n ≤ C .n N ∀∈,22n n ≤D .n N ∃∈,22n n =5.用反证法证明命题“设3()3||()f x x x a a R =+-∈为实数,则方程()0f x =至少有一个实根”时,要做的假设是( ) A .方程()f x 没有实根 B .方程()0f x =至多有一个实根 C .方程()0f x =至多有两个实根D .方程()0f x =恰好有两个实根6.已知全集{}1,2,3,4U =,集合{}1,2A =,{}2,3B =,则()U A B =ð( )A .{}1,3,4B .{}3,4C .{}3D .{}47.观察下列各式:1a b +=,223a b +=,334a b +=,447a b +=,…,则1010a b +=( ) A .28B .76C .123D .1998.命题“对任意x R ∈,都有20x ≥”的否定为( )A .对任意x R ∈,都有20x <B .不存在x R ∈,使得20x <C .存在0x R ∈,使得200x ≥D .存在0x R ∈,使得200x <9.“1x >”是“12log (2)0x +<”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件10.设x Z ∈,集合A 是奇数集,集合B 是偶数集,若命题p :x A ∀∈,2x B ∈,则( ) A .p ⌝:x A ∀∈,2x B ∉ B .p ⌝:x A ∀∉,2x B ∉ C .p ⌝:x A ∃∉,2x B ∈D .p ⌝:x A ∃∈,2x B ∉11.已知集合{}0,1,2A =,则集合{}|,B x y x A y A =-∈∈中元素的个数是( ) A .1B .3C .5D .912.在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( ) A .()()p q ⌝∨⌝B .()p q ∨⌝C .()()p q ⌝∧⌝D .p q ∨第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知全集为R ,集合1|()12x A x ⎧⎫=≤⎨⎬⎩⎭,{}2|680B x x x =-+≤,则()R A B =ð .14.在数列{}n a 中,11a =,11nn na a a +=+(1,2,3,n =…),则此数列的通项公式可归纳为 .15.在等差数列{}n a 中,若10a =,s ,t 是互不相等的正整数,则有等式(1)(1)0t s s a t a ---=成立.类比上述性质,相应地,在等比数列{}n b 中,若11b =,s ,t 是互不相等的正整数,则由等式 成立.16.已知命题“存在x R ∈,210x ax -+≤”为假命题,则a 的取值范围为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知集合{}|3327x A x =≤≤,{}2|log 1B x x =>. (1)分别求AB ,R BA ð;(2)已知集合{}|1C x x a =<<,若C A ⊆,求实数a 的取值集合.18.已知命题p :方程2220x ax a +-=在[]1,1-上有解;命题q :只有一个实数0x 满足不等式200220x ax a ++≤,若命题“p 或 q ”是假命题,求a 的取值范围.19.已知函数2()(1)1x x f x a a x -=+>+. 求证:(1)函数()f x 在()1,-+∞上为增函数; (2)方程()0f x =没有负根.20.已知()(2)(3)f x m x m x m =-++,()22xg x =-,若同时满足条件:①x R ∀∈,()0f x <或()0g x <;②(,4)x ∃∈-∞-,()()0f x g x ⋅<,求m 的取值范围. 21.设p :函数(1)1y a x =-+在(,)x ∈-∞+∞内单调递减;q :曲线21y x ax =++与x 轴交于不同的两点.(1)若p 为真且q 为真,求a 的取值范围;(2)若p 与q 中一个为真一个为假,求a 的取值范围.22.如图所示,点P 为斜三棱柱111ABC A B C -的侧棱1BB 上一点,1PM BB ⊥交1AA 于点M ,1PN BB ⊥交1CC 于点N .(1)求证:1CC MN ⊥;(2)在任意△DEF 中有余弦定理:2222cos DE DF EF DF EF DFE =+-⋅∠. 拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系式,并予以证明.2017-2018学年度南昌市新课标高三第一轮复习训练题数学(一)答案一、选择题二、填空题13.{}|024x x x ≤<>或 14.1n a n=15.111s t t sb b --= 16.(2,2)-三、解答题解:(1)因为{}|13A x x =≤≤,{}|2B x x =>, 所以{}|23AB x x =<≤,{}|2R B x x =≤ð, {}()|3R B A x x =≤ð.(2)因为{}|13A x x =≤≤,而{}|1C x x a =<<A ⊆, 所以当C 为空集时,1a ≤;当C 为非空集时,13a <≤, 故3a ≤.18.解:由2220x ax a +-=,得(2)()0x a x a -+=, ∴2ax =或x a =-.∴2480a a ∆=-=,∴0a =或2a =. ∴当命题q 为真命题时,0a =或2a =, ∴命题“p 或q ”为真命题时,||2a ≤. ∵命题“p 或q ”为假命题,∴2a >或2a <-, 即a 的取值范围为2a >或2a <-.19.解:(1)任取1x ,2(1,)x ∈-+∞,不妨设12x x <, 则210x x ->,210x +>,110x +>,又1a >,所以21x x a a >,所以2121212122()()11x x x x f x f x a a x x ++-=-+-++2121213()0(1)(1)x x x x a a x x -=-+>++, 故函数()f x 在(1,)-+∞上为增函数.(2)设存在00x <(01x ≠-)满足0()0f x =, 则00021x x ax -=+,且001xa <<,所以002011x x -<<+,即0122x <<,与假设00x <矛盾,故方程()0f x =没有负根. 20.解:由()220xg x =-<得1x <.∵条件①x R ∀∈,()0f x <或()0g x <,∴当1x ≥时,()0f x <. 当0m =时,()0f x =,不能做到()f x 在1x ≥时,()0f x <,所以舍去.∵()f x 作为二次函数开口只能向下,∴0m <,且此时两个根为12x m =,23x m =--.为保证条件①成立,必须120,21,31,m x m x m <⎧⎪=<⎨⎪=--<⎩0,1,24m m m <⎧⎪⎪<⎨⎪>-⎪⎩,即40m -<<. 又由条件②(,4)x ∃∈-∞-,()()0f x g x ⋅<的限制, 可得(,4)x ∈-∞-时,()f x 恒负.∴就需要在这个范围内有得正数的可能,即4-应该比1x ,2x 两根中小的那个大, 由23m m =--,得1m =-,∴当(1,0)m ∈-时,34m --<-,解得交集为空集,舍去. 当1m =-时,两根同为24->-,舍去. 当(4,1)m ∈--时,24m <-,即2m <-. 综上所述,(4,2)m ∈--.21.解:依题意:p :1a <,q :2a >或2a <-.(1)p 为真且q 为真时,有1,22,a a a <⎧⎨<->⎩或所以2a <-;(2)若p 与q 中有一个为真一个为假,则p 真q 假,或p 假q 真. 当p 真q 假时,1,22,a a <⎧⎨-≤≤⎩,所以21a -≤<;当p 假q 真时,1,22,a a a ≥⎧⎨<->⎩或所以2a >.所以21a -≤<或2a >.22.解:(1)证明:∵1PM BB ⊥,1PN BB ⊥,PM PN P =,∴1BB ⊥平面PMN ,∴1BB MN ⊥. 又11//CC BB ,∴1CC MN ⊥.(2)在斜三棱柱111ABC A B C -中,有11111111112222cos ABB A BCC B ACC A BCC B ACC A S S S S S α=+-, 其中α为平面11BCC B 与平面11ACC A 所成的二面角的大小.证明:∵1CC ⊥平面PMN , ∴上述的二面角的平面角为MNP ∠. 在PMN ∆中,∵2222cos PM PN MN PN MN MNP =+-⋅∠,∴222222111112()()cos PM CC PN CC MN CC PN CC MN CC MNP ⋅=⋅+⋅-⋅⋅∠, 由于111CBB C S PN CC =⋅,111ACC A S MN CC =⋅,1111ABB A S PM BB PM CC =⋅=⋅, ∴11111111112222cos ABB A BCC B ACC A BCC B ACC A S S S S S α=+-.。
2017届高考数学大一轮 第六章 不等式与推理证明 第3课时 二元一次不等式(组)与简单的线性规划问题 理

1.(2015·高考陕西卷)某企业生产甲、乙两种产品均需用A,
B两种原料.已知生产1吨每种产品所需原料及每天原料的可用限
额如表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4
万元,则该企业每天可获得最大利润为( )
A.12万元
A(吨) B(吨)
甲 乙 原料限额
32
12
12
8
B.16万元
C.17万元
主干回顾 夯基固源 考点研析 题组冲关 素能提升 学科培优
课时规范训练
第3课时 二元一次不等式(组)与简单的线性规划问题
1.会从实际情境中抽象出二元一次不等式组. 2.了解二元一次不等式的几何意义,能用平面区域表示二 元一次不等式组. 3.会从实际情境中抽象出一些简单的二元线性规划问题, 并能加以解决.
1.(2015·高考湖南卷)若变量x,y满足约束条件
x2+x-y≥y≤-11,, 则z=3x-y的最小值为(
)
y≤1.
A.-7 C.1
B.-1 D.2
解析:画出可行域,如图中阴影部分所示.目标函数z=3x-
y可化为y=3x-z,其斜率为3,纵截距为-z,平移直线y=3x知
当直线y=3x-z经过点A时,其纵截距最大,z取得最小值.由
1.二元一次不等式表示的平面区域 (1)一般地,二元一次不等式Ax+By+C>0在平面直角坐标 系中表示直线Ax+By+C=0某一侧的所有的点组成的平面区域 (半平面) 不含 边界直线,不等式Ax+By+C≥0所表示的平 面区域(半平面)含有边界直线.
(2)对于直线Ax+By+C=0同一侧的所有的点(x,y),使得Ax
解析 当m≥0时,若平面区域存在,则平面区域内的点在第 二象限,平面区域内不可能存在点P(x0,y0)满足x0-2y0=2,因此 m<0.
18高考数学大一轮复习第一章集合与常用逻辑用语第二节命题及其关系、充分条件与必要条件课件文

解析:①命题“若x+y=0,则x,y互为相反数”的逆命 题为“若x,y互为相反数,则x+y=0”,显然①为真命 题;②不全等的三角形的面积也可能相等,故②为假命 题;③原命题正确,所以它的逆否命题也正确,故③为 真命题;④若ab是正整数,但a,b不一定都是正整数, 例如a=-1,b=-3,故④为假命题. 答案:①③
[由题悟法]
充要条件的3种判断方法 (1)定义法:根据p⇒q,q⇒p进行判断; (2)集合法:根据p,q成立的对象的集合之间的包含关系进 行判断; (3)等价转化法:根据一个命题与其逆否命题的等价性,把 判断的命题转化为其逆否命题进行判断.这个方法特别适合以 否定形式给出的问题,如“xy≠1”是“x≠1或y≠1”的某种条 件,即可转化为判断“x=1且y=1”是“xy=1”的某种条件.
[小题纠偏]
1.设a,b均为非零向量,则“a∥b”是“a与b的方向相 同”的________条件.
答案:必要不充分 2.“在△ABC中,若∠C=90° ,则∠A,∠B都是锐角”
的否命题为:________________.
解析:原命题的条件:在△ABC 中,∠C=90° , 结论:∠A,∠B 都是锐角.否命题是否定条件和结论.
2.(2017· 衡阳联考)设p:x2-x-20>0,q:log2(x-5)<2,则p 是q的 A.充分不必要条件 C.充要条件 B.必要不充分条件 D.既不充分也不必要条件 ( )
解析:∵x2-x-20>0,∴x>5或x<-4,∴p:x>5或x< -4.∵log2(x-5)<2,∴0<x-5<4,即5<x<9,∴q: 5<x<9,∵{x|5<x<9} {x|x>5或x<-4},∴p是q的必要不 充分条件.故选B. 答案:B
2017届高考数学大一轮总复习 大题规范练1 函数与导数 文 北师大版

高考大题规范练(一) 函数与导数1.(2015·重庆卷)已知函数f (x )=ax 3+x 2(a ∈R )在x =-43处取得极值。
(1)确定a 的值;(2)若g (x )=f (x )e x,讨论g (x )的单调性。
解 (1)对f (x )求导得f ′(x )=3ax 2+2x ,因为f (x )在x =-43处取得极值,所以f ′⎝ ⎛⎭⎪⎫-43=0, 即3a ·169+2·⎝ ⎛⎭⎪⎫-43=16a 3-83=0,解得a =12。
(2)由(1)得g (x )=⎝ ⎛⎭⎪⎫12x 3+x 2e x,故g ′(x )=⎝ ⎛⎭⎪⎫32x 2+2x e x +⎝ ⎛⎭⎪⎫12x 3+x 2e x=⎝ ⎛⎭⎪⎫12x 3+52x 2+2x e x=12x (x +1)(x +4)e x。
令g ′(x )=0,解得x =0,x =-1或x =-4。
当x <-4时,g ′(x )<0,故g (x )为减函数; 当-4<x <-1时,g ′(x )>0,故g (x )为增函数; 当-1<x <0时,g ′(x )<0,故g (x )为减函数; 当x >0时,g ′(x )>0,故g (x )为增函数。
综上知g (x )在(-∞,-4)和(-1,0)内为减函数,在(-4,-1)和(0,+∞)内为增函数。
2.(2015·北京卷)设函数f (x )=x 22-k ln x ,k >0。
(1)求f (x )的单调区间和极值;(2)证明:若f (x )存在零点,则f (x )在区间(1,e)上仅有一个零点。
解 (1)由f (x )=x 22-k ln x (k >0)得f ′(x )=x -k x =x 2-kx。
由f ′(x )=0解得x =k 。
f (x )与f ′(x )在区间(0,+∞)上的情况如下:k-ln k2x =k 处取得极小值f (k )=k-ln k2。
2017年8月27日 每周一测-每日一题2018年高考数学(文)一轮复习

每周一测高考频度:★★★☆☆ 难易程度:★★☆☆☆1.若,则 A . B . C .D .2.已知扇形的周长是6 cm ,面积是2 cm 2,则扇形的中心角的弧度数是 A .1B .4C .1或4D .2或43.已知α是第二象限角,5sin 13α=,则cos α= A .513-B .1213-C .513D .12134.已知角α终边上一点()()4,30P m m m <,则()()sin cos ααπ++π-= A .B .75 C .51-D .155.若(0,)4θπ∈312sin()sin()2θθπ-π+- A .sin cos θθ-B .cos sin θθ-C .()sin cos θθ±-D .sin cos θθ+6.已知()1sin cos ,0,2ααα+=∈π,则1tan 1tan αα-=+ A .7- B 7 C 3D .3-7.若()()sin cos cos sin m αββαββ-+-=-,且α为第四象限角,则cos α的值为A B .CD .8A .13 B .13± C .19-D .199.已知α、β为三角形的两个内角,cos α=17,sin(α+β)=14,则β= A .4πB .32πC .3π或32πD .3π10.函数()f x 的定义域是R ,()02f =,对任意x ∈R ,()()1f x f x '+>,则不等式()e e 1xxf x ⋅>+的解集为 A .{0}x|x >B .{0}x|x <C .{1,1}x |x <x ->或D .{1,01}x |x <x -<<或 11.sin 750︒= .12.已知角(02)αα≤≤π的终边过点=α . 13.已知1sin cos ,cos sin 22αβαβ-=--=, 则()sin αβ+= .14.若点()cos ,sin P αα在直线2y x =-的值等于 .15.当(0,)x ∈+∞时,不等式22(1)ln 0c x cx x cx -++≥恒成立,则实数c 的取值范围是 . 16.已知扇形AOB 的周长为8 cm.(1)若这个扇形的面积为3 cm 2,求该扇形的圆心角的大小; (2)求这个扇形的面积取得最大值时圆心角的大小和弦AB 的长度.17.(1)已知3tan 4θ=-,求22sin cos cos θθθ+-的值. (2)设()()()()3222cos sin 2πcos 3()22cos πcos 2πf θθθθθθ+-+--=+++-,求π()3f .(3)函数2cos 3cos 2y x x =-+的最小值是多少.1.【答案】C 【解析】,所以由不等式的性质可得,故选C.3.【答案】B【解析】因为α是第三象限角,由22sin +cos =1αα, 得22512cos 1sin 1()1313αα=-=-=-.故选B . 4.【答案】B【解析】由三角函数定义,得345,sin ,cos 55r m αα=-=-=-, 因此()()7sin cos sin cos .5ααααπ++π-=--=【解题必备】用定义法求三角函数值的两种情况:(1)已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后利用三角函数的定义求解. (2)已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后利用三角函数的定义求解相关的问题.若直线的倾斜角为特殊角,也可直接写出角α的三角函数值.5.【答案】B【解析】由诱导公式得312sin()sin()2θθπ-π+-=212sin cos(sin cos)θθθθ-=-sin cosθθ=-,又(0,)4θπ∈,所以原式=cos sinθθ-,故选B.6.【答案】A【解析】由1sin cos2αα+=,得21(sin cos)4αα+=,3sin cos8αα=-,所以cos0,sin0αα<>,27(cos sin)12sin cos4αααα-=-=,7cos sinαα-=-,所以71tan cos sin2711tan cos sin2αααααα---===-++.故选A.7.【答案】A【解析】因为()()sin cos cos sin sin mαββαββα-+-==-,且α为第四象限角,所以cos0α>,2cos1mα=-,故选A.9.【答案】D【解析】因为0<α<π,cosα=17,所以sinα231cos7α-=,故32αππ<<,又因为0<α+β<π,sin(α+β)=533142<,所以0<α+β<3π或32π<α+β<π.由3π<α<2π知32π<α+β<π,所以cos(α+β)21sin()αβ-+−1114,所以cosβ=cos[(α+β)−α]=cos(α+β)cosα+sin(α+β)sinα=12.又0<β<π,所以β=3π.【误区提示】利用三角函数值求角时,要充分结合条件,确定角的取值范围,再选取合适的三角函数进行求值,最后确定角的具体取值.11.【答案】12【解析】由三角函数诱导公式1sin 750sin(72030)sin 302︒=︒+︒=︒=. 12.【答案】116π【解析】因为22sin0,cos 033ππ><,故α是第四象限角, 又22cos sin cos()cos()cos 32366απππππ==-=-=,所以116απ=. 13.【答案】4ZXXK【解析】由11sin cos ,cos sin 22αβαβ-=--=可得221sin 2sin cos cos 4ααββ-+=①,221cos 2cos sin sin 4ααββ-+=②,①+②得()122sin cos cos sin ,2αβαβ-+=3sin cos cos sin 4αβαβ∴+=,即()3sin 4αβ+=.【解题必备】对于形如sin sin a b c αβ+=和sin cos a b c αβ+=的正、余弦的条件式,通过平方可得到乘积项sin sin αβ和sin cos αβ,再结合22sin +cos =1αα等恒等式消去平方项,使之与两角和与差的三角公式相符合,总之,“平方相加”是基本方法.学@ 14.【答案】552±【解析】 点)sin ,(cos ααP 在直线x y 2-=上,ααcos 2sin -=∴,又3cos()sin 2αα+π=,①当点P 在第二象限时,由1cos sin 22=+αα,得1sin 41sin 22=+αα,得552sin =α; ②当点P 在第四象限时,由1cos sin 22=+αα,得1sin 41sin 22=+αα,得552sin -=α.故答案为552±. 15.【答案】1[,)e+∞【解析】当0c =时,原不等式化为ln 0x ≤,不恒成立.原不等式因式分解得(1)(ln )0cx cx x +-≥,()0,x ∈+∞,当0c >时,10cx +>,由ln 0cx x -≥,有ln x c x ≥,令2ln 1ln (),()x xF x F x x x-'==,所以函数()F x 在区间(0,e)上单调递增,在(e,)+∞上单调递减,故在e x =处取得最大值,由此可得1e≥c .当0c <时,1cx +在1(0,)c -上为正数,在1(,)c -+∞上为负数,而1(ln )0cx x c x '-=-<,所以ln =-y cx x 为减函数,由于ln 0cx x c x-≥⇔≥,又c 是负数,根据前面分析可知,不成立,所以ln cx x -恒为负数,所以(1)(ln )0cx cx x +-≥不恒成立,综上,得1[,)ec ∈+∞.16.【答案】(1)23rad 或6 rad ;(2)扇形面积最大时,圆心角的大小等于2 rad,弦AB 的长度为4sin 1 cm.【解析】(1)设该扇形AOB 的半径为r ,圆心角为θ,面积为S ,弧长为l .由题意,得281·32l r l r +=⎧⎪⎨=⎪⎩,解得或.∴圆心角661l r θ===或23l r θ==, 故该扇形的圆心角的大小为23rad 或6 rad.(2)∵82r r θ-=,∴()2221824242r S r r r r r -=⋅⋅=-=--+, ∴当r =2,即8422θ-==时,2max 4cm S =. 此时弦长AB =2×2sin 1=4sin 1(cm). 故扇形面积最大时,圆心角的大小等于2 rad,弦AB 的长度为4sin 1 cm. 17.【答案】(1)22;(2)12-;(3)0. 【解析】(1)∵3tan 4θ=-,∴22sin cos cos θθθ+-=22222sin sin cos cos sin cos θθθθθθ+++=222tan tan1tan1θθθ+++=931849116-++=2225.(3)函数223cos3cos2(cos)2y x x x=-+=--14≥0,cos1x=时表达式取得最小值0.∴函数2cos3cos2y x x=-+的最小值是0.【名师点睛】同角基本关系及诱导公式要注意象限角对三角函数符号的影响,尤其是利用平方关系在求三角函数值时,进行开方时要根据角的象限或范围,判断符号后,正确取舍.。
2017年高考数学第一轮复习测试题含答案.doc
2017年高考数学第一轮复习测试题含答案现在高三学生已经着手开始2017年高考数学复习了,只有认真的进行数学复习才能在考试中轻松取得好成绩,为了帮助大家做好高考数学复习,下面为大家带来2017年高考数学第一轮复习测试题含答案这篇内容,希望高考生能够认真阅读。
第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。
)1.(2011合肥质检)集合A={1,2,3},B={xR|x2-ax+1=0,aA},则AB=B 时a的值是()A.2B.2或3C.1或3D.1或2[答案] D[解析]由AB=B知BA,a=1时,B={x|x2-x+1=0}=A;a=2时,B={x|x2-2x+1=0}={1}A;a=3时,B={x|x2-3x+1=0}={3+52,3-52}?A,故选D.2.(文)(2011合肥质检)在复平面内,复数i3-i(i是虚数单位)对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限[答案] B[解析]z=i3-i=i?3+i?3-?-1?=-14+34i的对应点-14,34在第二象限.(理)(2011蚌埠二中质检)如果复数2-bi1+2i(其中i为虚数单位,b为实数)的实部和虚部互为相反数,那么b等于()A.2B.23C.-23D.2[答案] C[解析]∵2-bi1+2i=?2-bi??1-2i?5=2-2b5+-b-45i的实部与虚部互为相反数,2-2b5+-b-45=0,b=-23,故选C.3.(文)(2011日照调研)若e1,e2是夹角为3的单位向量,且a=2e1+e2,b=-3e1+2e2,则ab等于()A.1B.-4C.-72D.72[答案] C[解析]e1e2=11cos3=12,ab=(2e1+e2)(-3e1+2e2)=-6e21+2e22+e1e2=-6+2+12=-72,故选C. (理)(2011河南豫州九校联考)若A、B是平面内的两个定点,点P为该平面内动点,且满足向量AB与AP夹角为锐角,|PB||AB|+PAAB=0,则点P的轨迹是()A.直线(除去与直线AB的交点)B.圆(除去与直线AB的交点)C.椭圆(除去与直线AB的交点)D.抛物线(除去与直线AB的交点) [答案] D[解析]以AB所在直线为x轴,线段AB中点为原点,建立平面直角坐标系,设A(-1,0),则B(1,0),设P(x,y),则PB=(1-x,-y),PA=(-1-x,-y),AB=(2,0),∵|PB||AB|+PAAB=0,2?1-x?2+?-y?2+2(-1-x)=0,化简得y2=4x,故选D.4.(2011黑龙江哈六中期末)为了了解甲,乙,丙三所学校高三数学模拟考试的情况,现采取分层抽样的方法从甲校的1260份,乙校的720份,丙校的900份模拟试卷中抽取试卷进行调研,如果从丙校抽取了50份,那么这次调研一共抽查的试卷份数为()A.150B.160C.200D.230[答案] B[解析]依据分层抽样的定义,抽样比为50900=118,故这次调研一共抽查试卷(1260+720+900)118=160份.5.(文)(2011福州市期末)设函数y=f(x)的定义域为实数集R,对于给定的正数k,定义函数fk(x)=f?x??f?x?k?k ?f?x?k?,给出函数f(x)=-x2+2,若对于任意的x(-,+),恒有fk(x)=f(x),则()A.k的最大值为2B.k的最小值为2C.k的最大值为1D.k的最小值为1[答案] B[解析]∵x(-,+)时,f(x)=-x2+22,且fk(x)=f(x)恒成立,且当f(x)k 时,fk(x)=k,故k的最小值为2.(理)(2011丰台区期末)用max{a,b}表示a,b两个数中的最大数,设f(x)=max{x2,x}(x14),那么由函数y=f(x)的图象、x轴、直线x=14和直线x=2所围成的封闭图形的面积是()A.3512B.5924C.578D.9112[答案] A[解析]如图,平面区域的面积为6.(2011北京丰台区期末)下面程序框图运行后,如果输出的函数值在区间[-2,12]内,则输入的实数x的取值范围是()A.(-,-1]B.[14,2]C.(-,0)[14,2]D.(-,-1][14,2][答案] D[解析]∵x0时,f(x)=2x(0,1),由02x12得,x-1;由-2log2x12x0得,14x2,故选D.7.(文)(2011潍坊一中期末)下列有关命题的说法错误的是()A.命题若x2-3x+2=0,则x=1的逆否命题为:若x1,则x2-3x+20B.x=1是x2-3x+2=0的充分不必要条件C.若pq为假命题,则p、q均为假命题D.对于命题p:xR使得x2+x+10,则綈p:xR,均有x2+x+10 [答案] C[解析]若pq为假命题,则p、q至少有一个为假命题,故C错误. (理)(2011巢湖质检)给出下列命题①设a,b为非零实数,则a②命题p:垂直于同一条直线的两直线平行,命题q:垂直于同一条直线的两平面平行,则命题pq为真命题;③命题xR,sinx1的否定为x0R,sinx01;④命题若x2且y3,则x+y5的逆否命题为若x+y5,则x2且y3,其中真命题的个数是()A.4个B.3个C.2个D.1个[答案] D[解析]①取a=-1,b=2满足a8.(文)(2011陕西宝鸡质检)若将函数y=cosx-3sinx的图象向左平移m(m0)个单位后,所得图象关于y轴对称,则实数m的最小值为() A.6 B.3C.23D.56[答案] C[解析]y=cosx-3sinx=2cosx+3左移m个单位得y=2cosx+m+3为偶函数,m+3=k,kZ.∵m0,m的最小值为23.(理)(2011咸阳模拟)将函数y=sin2x+4的图像向左平移4个单位,再向上平移2个单位,则所得图像的函数解析式是()A.y=2+sin2x+34B.y=2+sin2x-4C.y=2+sin2xD.y=2+cos2x[答案] A[解析]y=sin2x+4――――――――图象再向上平移4个单位用x+4代替xy=sin2x+4+4―――――――图象再向上平移2个单位用y-2代替y y-2=sin2x+4+4,即得y=sin2x+34+2,故选A.9.(2011陕西咸阳模拟)如图所示的程序框图,其输出结果是()A.341B.1364C.1365D.1366[答案] C[解析]程序运行过程依次为:a=1,a=41+1=5,a500满足a=45+1=21,a500仍满足a=421+1=85,a500满足a=485+1=341,a500满足a=4341+1=1365,a500不满足输出a的值1365后结束,故选C.[点评]要注意循环结束的条件和输出结果是什么.10.(文)(2011山东淄博一中期末)如图为一个几何体的三视图,左视图和主视图均为矩形,俯视图为正三角形,尺寸如图,则该几何体的全面积为()A.2723B.123C.24D.24+23[答案] D[解析]由三视图知,该几何体是底面边长为332=2,高为4的正三棱柱,故其全面积为3(24)+23422=24+23.(理)(2011山东日照调研)下图是某四棱锥的三视图,则该几何体的表面积等于()A.34+65B.6+65+43C.6+63+413D.17+65[答案] A[解析]由三视图知,该四棱锥底面是一个矩形,两边长分别为6和2,有一个侧面PAD与底面垂直,高为4,故其表面积S=62+1264+212242+32+12642+22=34+65.11.(2011陕西宝鸡质检)双曲线x2m-y2n=1(mn0)的离心率为2,有一个焦点与抛物线y2=4x的焦点重合,则mn的值为()A.83B.38C.316D.163[答案] C[解析]抛物线焦点F(1,0)为双曲线一个焦点,m+n=1,又双曲线离心率为2,1+nm=4,解得m=14n=34,mn=316.12.(文)(2011广东高州市长坡中学期末)方程|x-2|=log2x的解的个数为()A.0B.1C.2D.3[答案] C[解析]在同一坐标系中作出函数y=|x-2|与y=log2x的图象可知两图象有两个交点,故选C.(理)(2011山东实验中学期末)具有性质:f1x=-f(x)的函数,我们称为满足倒负变换的函数,下列函数:①y=x-1x,②y=x+1x,③y=x,?0 A.①② B.②③C.①③D.只有①[答案] C[解析]①对于函数f(x)=x-1x,∵f1x=1x-x=-x-1x=-f(x),①是倒负变换的函数,排除B;②对于函数f(x)=x+1x有f1x=1x+x=f(x)不满足倒负变换,排除A;对于③,当0第Ⅱ卷(非选择题共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上)13.(2011黑龙江哈六中期末)一个盒子里装有标号为1,2,3,4,5的5张标签,不放回地抽取2张标签,则2张标签上的数字为相邻整数的概率为________(用分数表示).[答案]25[解析](文)任取两张标签,所有可能取法有1,2;1,3;1,4;1,5;2,3;2,4;2,5;3,4;3,5;4,5;共10种,其中两数字相邻的有4种,所求概率p=410=25.(理)从5张标签中,任取2张,有C25=10种取法,两张标签上的数字为相邻整数的取法有4种,概率p=410=25.14.(2011浙江宁波八校联考)点(a,b)为第一象限内的点,且在圆(x+1)2+(y+1)2=8上,ab的最大值为________.[答案] 1[解析]由条件知a0,b0,(a+1)2+(b+1)2=8,a2+b2+2a+2b=6,2ab+4ab6,∵ab0,0[点评]作出图形可见,点(a,b)为⊙C在第一象限的一段弧,由对称性可知,当点(a,b)为直线y=x与⊙C的交点(1,1)时,ab取最大值1.15.(2011重庆南开中学期末)已知数列{an}的前n项和Sn满足Sn=2n-1,则当n2时,1a1+1a2++1an=________.[答案]2-12n-1[解析]a1=S1=1,n2时,an=Sn-Sn-1=2n-2n-1=2n-1,an=2n-1(nN*),1an=12n-1,1a1+1a2++1an=1-12n1-12=2-12n-1.16.(文)(2011北京学普教育中心)设函数f(x)的定义域为D,若存在非零实数l,使得对于任意xM(MD),有x+lD,且f(x+l)f(x),则称f(x)为M上的l高调函数.如果定义域为[-1,+)的函数f(x)=x2为[-1,+)上的m高调函数,那么实数m的取值范围是________.[答案][2,+)[解析]f(x)=x2(x-1)的图象如图所示,要使得f(-1+m)f(-1)=1,应有m2;故x-1时,恒有f(x+m)f(x),只须m2即可.(理)(2011四川资阳模拟)下图展示了一个由区间(0,1)到实数集R的映射过程:区间(0,1)中的实数m对应数轴上的点M,如图①;将线段AB围成一个圆,使两端点A、B恰好重合,如图②;再将这个圆放在平面直角坐标系中,使其圆心在y轴上,点A的坐标为(0,1),在图形变化过程中,图①中线段AM的长度对应于图③中的弧ADM的长度,如图③.图③中直线AM与x轴交于点N(n,0),则m的象就是n,记作f(m)=n.给出下列命题:①f14=1;②f(x)是奇函数;③f(x)在定义域上单调递增,则所有真命题的序号是________.(填出所有真命题的序号)[答案]③[解析]由m的象是n的定义知,f140,故①假,随着m的增大,点N沿x轴向右平移,故n增大,③为真命题;由于m是线段AM的长度,故f(x)为非奇非偶函数,②假.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)(文)(2011淄博一中期末)已知a=(cosx-sinx,2sinx),b=(cosx+sinx,3cosx),若ab=1013,且x-4,6,求sin2x的值.[解析]∵ab=cos2x-sin2x+23sinxcosx=cos2x+3sin2x=2sin2x+6=1013,sin2x+6=513,∵x-4,6,2x+6-3,2,cos2x+6=1213,sin2x=sin2x+6-6=sin2x+6cos6-cos2x+6sin6=51332-121312=53-1226. (理)(2011四川广元诊断)在△ABC中,a、b、c分别为角A、B、C 的对边,向量m=(2a-c,b),n=(cosC,cosB),且m∥n.(1)求角B的大小;(2)若b=3,求a+c的最大值.[MVC:PAGE][解析](1)由题意知(2a-c)cosB=bcosC,(2a-c)a2+c2-b22ac=ba2+b2-c22ab,a2+c2-b2=ac,cosB=a2+c2-b22ac=12,B=3.(2)由(1)知a2+c2-b2=ac,b=3,a2+c2-ac=3,(a+c)2-3ac=3,(a+c)2-3a+c223,14(a+c)23,a+c23,即a+c的最大值为23.18.(本小题满分12分)(文)(2011重庆南开中学期末)设函数f(x)=-x2+2ax+m,g(x)=ax.(1)若函数f(x),g(x)在[1,2]上都是减函数,求实数a的取值范围;(2)当a=1时,设函数h(x)=f(x)g(x),若h(x)在(0,+)内的最大值为-4,求实数m的值.[解析](1)∵f(x),g(x)在[1,2]上都是减函数,a1a0,0实数a的取值范围是(0,1].(2)当a=1时,h(x)=f(x)g(x)=-x2+2x+mx=-x+mx+2;当m0时,显然h(x)在(0,+)上单调递减,h(x)无最大值;当m0时,h(x)=-x+mx+2=-x+?-m?x+2-2-m+2.当且仅当x=-m时,等号成立.h(x)max=-2-m+2,-2-m+2=-4m=-9.(理)(2011黑龙江哈六中期末)已知函数f(x)=lnx+2x,g(x)=a(x2+x).(1)若a=12,求F(x)=f(x)-g(x)的单调区间;(2)当a1时,求证:f(x)g(x).[解析](1)a=12,F(x)=lnx+2x-12(x2+x)(x0)F(x)=1x-x+32=2-2x2+3x2x=-?2x+1??x-2?2x,∵x0,当0F(x)的增区间为(0,2),减区间为(2,+).(2)令h(x)=f(x)-g(x)(x0)则由h(x)=f(x)-g(x)=1x+2-2ax-a=-?2x+1??ax-1?x=0,解得x=1a,∵h(x)在0,1a上增,在1a,+上减,当x=1a时,h(x)有最大值h1a=ln1a+2a-a1a2+1a=ln1a+1a-1,∵a1,ln1a0,1a-10,h(x)h1a0,所以f(x)g(x).19.(本小题满分12分)(文)(2011厦门期末)已知数列{an}是公差不为零的等差数列,a1=1,且a1,a2,a4成等比数列.(1)求通项an;(2)令bn=an+2an,求数列{bn}的前n项和Sn.[解析](1)设数列{an}的公关差为d,则d0,∵a1,a2,a4成等比数列,a22=a1a4,(a1+d)2=a1(a1+3d),整理得:a1=d,又a1=1,d=1,an=a1+(n-1)d=1+(n-1)1=n.即数列{an}的通项公式为an=n.(2)由(1)可得bn=an+2an=n+2n,Sn=b1+b2+b3++bn=(1+21)+(2+22)+(3+23)++(n+2n)=(1+2+3++n)+(21+22+23++2n)=n?n+1?2+2?1-2n?1-2=n?n+1?2+2(2n-1)=2n+1+12n2+12n-2.故数列{bn}的前n项和为Sn=2n+1+12n2+12n-2.(理)(2011河北冀州期末)设各项均为正数的数列{an}的前n项和为Sn,已知2a2=a1+a3,数列{Sn}是公差为d的等差数列.(1)求数列{an}的通项公式(用n,d表示);(2)设c为实数,对满足m+n=3k且mn的任意正整数m,n,k,不等式Sm+SncSk都成立,求c的最大值.[解析](1)由题意知:d0,Sn=S1+(n-1)d=a1+(n-1)d2a2=a1+a33a2=S33(S2-S1)=S3,3[(a1+d)2-a1]2=(a1+2d)2,化简得:a1-2a1d+d2=0,a1=d,a1=d2Sn=d+(n-1)d=nd,Sn=n2d2,当n2时,an=Sn-Sn-1=n2d2-(n-1)2d2=(2n-1)d2,适合n=1的情形. 故an=(2n-1)d2.(2)Sm+SncSkm2d2+n2d2ck2d2m2+n2ck2,c又m+n=3k且mn,2(m2+n2)(m+n)2=9k2m2+n2k292,故c92,即c的最大值为92.20.(本小题满分12分)(2011山西太原调研)已知椭圆方程为x2a2+y2b2=1(ab0),它的一个顶点为M(0,1),离心率e=63.(1)求椭圆的方程;(2)设直线l与椭圆交于A,B两点,坐标原点O到直线l的距离为32,求△AOB的面积的最大值.[解析](1)依题意得b=1e=ca=a2-b2a=63解得a=3,b=1,椭圆的方程为x23+y2=1.(2)①当ABx轴时,|AB|=3,②当AB与x轴不垂直时,设直线AB的方程为y=kx+m,A(x1,y1),B(x2,y2),由已知|m|1+k2=32得,m2=34(k2+1),把y=kx+m代入椭圆方程整理得,(3k2+1)x2+6kmx+3m2-3=0,x1+x2=-6km3k2+1,x1x2=3?m2-1?3k2+1.当k0时,|AB|2=(1+k2)(x2-x1)2=(1+k2)36k2m2?3k2+1?2-12?m2-1?3k2+1=12?1+k2??3k2+1-m2??3k2+1?2=3?k2+1??9k2+1??3k2+1?2=3+12k29k4+6k2+1=3+129k2+1k2+63+1223+6=4.当且仅当9k2=1k2,即k=33时等号成立,此时|AB|=2.当k=0时,|AB|=3.综上所述:|AB|max=2,此时△AOB面积取最大值S=12|AB|max32=32.21.(本小题满分12分)(文)一个多面体的三视图及直观图如图所示,M、N分别是A1B、B1C1的中点.(1)求证:MN∥平面ACC1A1;(2)求证:MN平面A1BC.[证明]由题意,这个几何体是直三棱柱,且ACBC,AC=BC=CC1.(1)由直三棱柱的性质知,四边形ABB1A1为矩形,对角线交点M又∵N为B1C1的中点,△AB1C1中,MN∥AC1.又∵AC1平面ACC1A1,MN平面ACC1A1.MN∥平面ACC1A1.(2)∵直三棱柱ABC-A1B1C1中,平面ACC1A1平面ABC,交线为AC,又ACBC,BC平面ACC1A1,又∵AC1平面ACC1A1,BCAC1.在正方形ACC1A1中,AC1A1C.又BCA1C=C,AC1平面A1BC,∵MN∥AC1,MN平面A1BC.[点评]将几何体的三视图与线面平行垂直的位置关系判断融合在一起是立体几何新的命题方向.解答这类问题首先要通过其三视图确定几何体的形状和主要几何量,然后利用几何体的性质进行推理或计算.请再练习下题:已知四棱锥P-ABCD的三视图如图,E是侧棱PC上的动点.(1)求四棱锥P-ABCD的体积;(2)若点F在线段BD上,且DF=3BF,则当PEEC等于多少时,有EF∥平面PAB?并证明你的结论;(3)试证明P、A、B、C、D五个点在同一球面上.[解析](1)由四棱锥的三视图可知,四棱锥P-ABCD的底面是边长侧棱PC底面ABCD,且PC=2.VP-ABCD=13S正方形ABCDPC=23.(2)当PEEC=13时,有EF∥平面PAB.连结CF延长交AB于G,连结PG,在正方形ABCD中,DF=3BF. 由△BFG∽△DFC得,GFFC=BFDF=13.在△PCG中,PEEC=13=GFFC,EF∥PG.又PG平面PAB,EF平面PAB,EF∥平面PAB.(3)证明:取PA的中点O.在四棱锥P-ABCD中,侧棱PC平面ABCD,底面ABCD为正方形,可知△PCA、△PBA、△PDA均是直角三角形,又O为PA中点,OA=OP=OB=OC=OD.点P、A、B、C、D在以点O为球心的球面上.(理)(2011湖南长沙一中期末)如图,在矩形ABCD中,AB=5,BC=3,沿对角线BD把△ABD折起,使A移到A1点,过点A1作A1O平面BCD,垂足O恰好落在CD上.(1)求证:BCA1D;(2)求直线A1B与平面BCD所成角的正弦值.[解析](1)因为A1O平面BCD,BC平面BCD,BCA1O,因为BCCD,A1OCD=O,BC平面A1CD.因为A1D平面A1CD,BCA1D.(2)连结BO,则A1BO是直线A1B与平面BCD所成的角.因为A1DBC,A1DA1B,A1BBC=B,A1D平面A1BC,∵A1C平面A1BC,A1DA1C.在Rt△DA1C中,A1D=3,CD=5,A1C=4.根据S△A1CD=12A1DA1C=12A1OCD,得到A1O=125,在Rt△A1OB中,sinA1BO=A1OA1B=1255=1225.所以直线A1B与平面BCD所成角的正弦值为1225.选做题(22至24题选做一题)22.(本小题满分12分)几何证明选讲(2011北京学普教育中心联考)如图,A、B是两圆的交点,AC是小圆的直径,D和E分别是CA和CB的延长线与大圆的交点,已知AC=4,BE=10,且BC=AD,求DE的长.[解析]设CB=AD=x,则由割线定理得:CACD=CBCE,即4(4+x)=x(x+10)化简得x2+6x-16=0,解得x=2或x=-8(舍去)即CD=6,CE=12.因为CA为直径,所以CBA=90,即ABE=90,则由圆的内接四边形对角互补,得D=90,则CD2+DE2=CE2,62+DE2=122,DE=63.23.(本小题满分12分)极坐标与参数方程(2011辽宁省实验中学期末)已知直线l经过点P12,1,倾斜角=6,圆C的极坐标方程为=2cos-4.(1)写出直线l的参数方程,并把圆C的方程化为直角坐标方程;(2)设l与圆C相交于两点A、B,求点P到A、B两点的距离之积. [解析](1)直线l的参数方程为x=12+tcos6y=1+tsin6即x=12+32ty=1+12t(t为参数)由=2cos-4得=cos+sin,所以2=cos+sin,∵2=x2+y2,cos=x,sin=y,x-122+y-122=12.(2)把x=12+32ty=1+12t代入x-122+y-122=12得t2+12t-14=0,|PA||PB|=|t1t2|=14.故点P到点A、B两点的距离之积为14.24.(本小题满分12分)不等式选讲(2011大连市联考)已知函数f(x)=|x-2|,g(x)=-|x+3|+m.(1)解关于x的不等式f(x)+a-10(aR);(2)若函数f(x)的图象恒在函数g(x)图象的上方,求m的取值范围. [解析](1)不等式f(x)+a-10,即|x-2|+a-10,当a=1时,解集为x2,即(-,2)(2,+);当a1时,解集为全体实数R;当a1时,∵|x-2|1-a,x-21-a或x-2故解集为(-,a+1)(3-a,+).(2)f(x)的图象恒在函数g(x)图象的上方,即为|x-2|-|x+3|+m对任意实数x恒成立,即|x-2|+|x+3|m恒成立.又对任意实数x恒有|x-2|+|x+3||(x-2)-(x+3)|=5,于是得m5,即m的取值范围是(-,5).为大家带来了2017年高考数学第一轮复习测试题含答案,高考数学复习对大家来说很重要,希望大家能够下功夫复习好数学这一科目,从而在高考中取得好的数学成绩。
2017届高考数学一轮复习专题训练之阿波罗尼斯圆含答案
2017届高三第一轮复习专题训练之阿波罗尼斯圆引例:1。
已知点(,)M x y 与两定点(0,0),(3,0)O A 的距离之比为12,那么点M 的坐标应满足什么关系? (人教A 版《必修2》第124页习题4。
1B 组第3题)2。
已知点()()08,02,,Q P ,点M 与点P 的距离是它与点Q 的距离的51,用《几何画板》探究点的轨迹,并给出轨迹的方程。
(人教A 版《必修2》第140页例题)背景展示: 阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是他的研究成果之一。
例1。
求证:到两定点的距离的比值是不等于1的常数的点的轨迹是圆。
证明:如图,设两定点为A 、B ,|AB |=a ,动点为P ,距离的比值为常数()1λλ≠以AB 为x 轴、A 为坐标原点建立直角坐标系,则B (a ,0),设P (x ,y ),由|PA||PB |λ=得: ()2222x y x a y λ-++=()()2222222112x y a x a λλλλ+⇒--+=22222211a a x y λλλλ+⎛⎫⎛⎫⇒+= ⎪ ⎪--⎝⎭⎝⎭例2.(2008年高考数学江苏卷)若BC AC AB 22==,,则ABC S ∆的最大值为 .解:显然这是一例阿波罗圆,建立如图的直角坐标系,得:()2238x y -+=.设圆心为M ,显然当CM⊥x 轴时,△ABC 面积最大,此时22,CM =()max 1222222ABC S ∆∴=⋅⋅=.评注:既然△ABC 存在,说明其轨迹不包括与x 轴的两个交点P,Q ,现在问:P ,Q 这两点究竟有什么性质?由于2PA CAPB CB==,∴CP 为△ACB 的内角平分线;同理,CQ 为△ACB 的外角平分线。
这就是说,P ,Q 分别是线段AB 的内分点和外分点,而PQ 正是阿氏圆的直径。
高考数学一轮复习第三章导数及其应用第18课利用导数研究函数的最极值课件苏教版
(2) 将第一步中求得的极值与f(a),f(b)比较,得到函数 f(x)在[a,b]上的最大值
与最小值.
研题型 ·技法通关
分类解密 利用导数研究函数的极值 已知函数f(x)=3xln x-1,求f(x)的极值.
【解答】因为f(x)的定义域为(0,+∞), 所以f′(x)=3(ln x+1). 令f′(x)=0,得x=1e. 当x∈0,1e时,f′(x)<0; 当x∈1e,+∞时,f′(x)>0. 所以f(x)在0,1e上单调递减,在1e,+∞上单调递增.
【解答】因为f(x)<x2,所以lnx-
a x
<x2.又x>0,所以a>xlnx-x3.令g(x)=xlnx-x3,
h(x)=g′(x)=1+lnx-3x2,h′(x)=1x-6x=1-x6x2.当x∈(1,+∞)时,h′(x)<0,所
以h(x)在(1,+∞)上是减函数,所以h(x)<h(1)=-2<0,即g′(x)<0,所以g(x)在
当x∈(0, e)时,g′(x)>0,所以g(x)在(0, e)上单调递增; 当x∈( e,+∞)时,g′(x)<0,所以g(x)在( e,+∞)上单调递减. 所以g(x)max=g( e)=1e, 所以-(a+1)≥1e,即a≤-1-1e, 所以a的取值范围为-∞,-1-1e.
4. 已知函数f(x)=xlnx. (1) 求函数y=f(x)的单调区间和最小值; 【解答】因为f′(x)=lnx+1(x>0),令f′(x)≥0,则lnx≥-1=lne-1,所以x≥1e.
所以a=-32∉(-1,0),舍去. ②若a∈[-e,-1],F(x)在[1,-a]上单调递减,在[-a,e]上单调递增,所以
高考数学一轮复习 专题18 任意角、弧度制及任意角的三角函数(含解析)-人教版高三全册数学试题
专题18任意角、弧度制及任意角的三角函数最新考纲1.了解任意角的概念和弧度制的概念.2.能进行弧度与角度的互化.3.理解任意角三角函数(正弦、余弦、正切)的定义.基础知识融会贯通 1.角的概念(1)任意角:①定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;②分类:角按旋转方向分为正角、负角和零角.(2)所有与角α终边相同的角,连同角α在内,构成的角的集合是S ={β|β=k ·360°+α,k ∈Z }. (3)象限角:使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限. 2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示,读作弧度.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0.(2)角度制和弧度制的互化:180°=π rad,1°=π180 rad ,1 rad =⎝ ⎛⎭⎪⎫180π°. (3)扇形的弧长公式:l =|α|·r ,扇形的面积公式:S =12lr =12|α|·r 2.3.任意角的三角函数任意角α的终边与单位圆交于点P (x ,y )时, 则sin α=y ,cos α=x ,tan α=yx(x ≠0). 三个三角函数的性质如下表:三角函数 定义域第一象限符号第二象限符号第三象限符号 第四象限符号sinαR+ + - - cosR+--+αtanα{α|α≠k π+π2,k ∈Z } +-+-4.三角函数线如下图,设角α的终边与单位圆交于点P ,过P 作PM ⊥x 轴,垂足为M ,过A (1,0)作单位圆的切线与α的终边或终边的反向延长线相交于点T .【知识拓展】1.三角函数值的符号规律三角函数值在各象限内的符号:一全正、二正弦、三正切、四余弦. 2.任意角的三角函数的定义(推广)设P (x ,y )是角α终边上异于顶点的任一点,其到原点O 的距离为r ,则sin α=y r ,cos α=x r,tan α=y x(x ≠0).重点难点突破 【题型一】角及其表示【典型例题】已知集合{α|2k πα≤2k π,k ∈Z },则角α的终边落在阴影处(包括边界)的区域是( )A .B .C .D .【解答】解:集合{α|2k πα≤2k π,k ∈Z },表示第一象限的角,故选:B . 【再练一题】直角坐标系内,β终边过点P (sin2,cos2),则终边与β重合的角可表示成( )A .2+2πk ,k ∈ZB .2+k π,k ∈ZC .2+2k π,k ∈zD .﹣2+2k π,k ∈Z【解答】解:∵β终边过点P (sin2,cos2),即为(cos (2),sin (2))∴终边与β重合的角可表示成2+2k π,k ∈Z ,故选:A .思维升华 (1)利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需的角. (2)确定kα,αk(k ∈N *)的终边位置的方法先写出kα或αk 的X 围,然后根据k 的可能取值确定kα或αk的终边所在位置. 【题型二】弧度制 【典型例题】已知扇形的周长是6cm,面积是2cm2,试求扇形的圆心角的弧度数()A.1B.4C.1或 4D.1或 2【解答】解:设扇形的圆心角为αrad,半径为Rcm,则,解得α=1或α=4.故选:C.【再练一题】将300°化成弧度得:300°=rad.【解答】解:∵180°=π,∴1°,则300°=300.故答案为:.思维升华应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.【题型三】三角函数的概念及应用命题点1 三角函数定义的应用【典型例题】已知角θ的顶点与原点重合,始边与x轴正半轴重合,若A(x,3)是角θ终边上一点,且,则x=()A.B.C.1D.﹣1【解答】解:角θ的顶点与原点重合,始边与x轴正半轴重合,若A(x,3)是角θ终边上一点,且,则x=﹣1,故选:D.【再练一题】已知角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边上一点A(2sinα,3),则cosα=()A.B.C.D.【解答】解:∵由题意可得:x=2sinα,y=3,可得:r,∴cosα,可得:cos2α,整理可得:4cos4α﹣17cos2α+4=0,∴解得:cos2α,或(舍去),∴cosα.故选:A.命题点2 三角函数线的应用【典型例题】已知,a=sinα,b=cosα,c=tanα,那么a,b,c的大小关系是()A.a>b>c B.b>a>c C.a>c>b D.c>a>b【解答】解:作出三角函数对应的三角函数线如图:则AT=tanα,MP=sinα,OM=cosα,则sinα>0,AT<OM<0,即sinα>cosα>tanα,则a>b>c,故选:A.【再练一题】已知a =sin ,b =cos ,c =tan ,则( )A .b <a <cB .c <b <aC .b <c <aD .a <b <c【解答】解:因为,所以cos sin ,tan 1,所以b <a <c . 故选:A .思维升华 (1)利用三角函数的定义,已知角α终边上一点P 的坐标可求α的三角函数值;已知角α的三角函数值,也可以求出点P 的坐标.(2)利用三角函数线解不等式要注意边界角的取舍,结合三角函数的周期性写出角的X 围.基础知识训练1.【某某省某某市第八中学2018-2019学年高一下学期期中考试】已知角θ的终边经过点()2,3-,则( )A .5B .15-C .15D .5-【答案】A【解析】由任意角的三角函数定义可知:3 tan2θ=-本题正确选项:A2.【某某省会宁县第一中学2018-2019学年高一下学期期中考试】函数的值域是()A.B.C.D.【答案】C【解析】由题意可知:角的终边不能落在坐标轴上,当角终边在第一象限时,当角终边在第二象限时,当角终边在第三象限时,当角终边在第四象限时,因此函数的值域为,故选:C.3.【某某省某某师X大学附属实验中学2018-2019学年高一下学期第二次月考】已知角α的终边上一点P的坐标为,则sinα的值为()A.12B.1-2C3D.3【答案】B 【解析】解:角α的终边上一点P 的坐标为31,22⎛⎫- ⎪ ⎪⎝⎭, 它到原点的距离为r =1,由任意角的三角函数定义知:,故选:B .4.【某某省宁县第二中学2018-2019学年高一下学期期中考试】已知点P (sinα+cosα,tanα)在第四象限,则在[0,2π)内α的取值X 围是( )A .(2π,34π)∪(54π,32π) B .(0,4π)∪(54π,32π) C .(2π,34π)∪(74π,2π)D .(2π,34π)∪(π,32π)【答案】C 【解析】∵点P (sinα+cosα,tanα)在第四象限, ∴,由sinα+cosα2=(α4π+), 得2kπ<α4<π+2kπ+π,k∈Z,即2kπ4π-<α<2kπ34π+π,k∈Z. 由tanα<0,得kπ2π+<α<kπ+π,k∈Z.∴α∈(2π,34π)∪(74π,2π).故选:C .5.【某某省示X 高中2018-2019学年高一下学期第三次联考】若角θ是第四象限角,则32πθ+是( ) A .第一象限角 B .第二象限角C .第三象限角D .第四象限角【答案】C 【解析】角θ是第四象限角.,则故32πθ+是第三象限角.故选C. 6.【某某省某某市第一中学2018-2019学年高一下学期第四次月考】已知且sin 0α>,则下列不等式一定成立的是() A . B . C .D .【答案】D 【解析】 由于且sin 0α>,故α为第二象限角,故,故D 选项一定成立,故本小题选D. 7.【某某某某市第三中学2018-2019学年高一5月月考】半径为1cm ,中心角为150°的角所对的弧长为( )cm .A .23B .23π C .56D .56π 【答案】D 【解析】由题意,半径1r cm =,中心角,又由弧长公式,故选:D .8.【某某省会宁县第一中学2018-2019学年高一下学期期中考试】与0420-终边相同的角是( ) A .0120- B .0420C .0660D .0280【答案】C 【解析】与0420-角终边相同的角为:,当3n =时,.故选:C.9.【某某省某某师X大学附属实验中学2018-2019学年高一下学期第二次月考】下列说法正确的是()A.钝角是第二象限角B.第二象限角比第一象限角大C.大于90︒的角是钝角D.-165︒是第二象限角【答案】A【解析】解:钝角的X围为,钝角是第二象限角,故A正确;﹣200°是第二象限角,60°是第一象限角,-200°<60°,故B错误;由钝角的X围可知C错误;-180°<-165°<-90°,-165°是第三象限角,D错误.故选:A.10.直角坐标系内,角β的终边过点,则终边与角β重合的角可表示成()A.B.C.D.【答案】A【解析】因为点为第四象限内的点,角β的终边过点,所以β为第四象限角,所以终边与角β重合的角也是第四象限角,而,均为第三象限角,为第二象限角,所以BCD排除,故选A11.【某某省某某市启东中学2018-2019学年高二5月月考】给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论用角度制还是用弧度制度量一个角,它们与扇形所在半径的大小无关; ④若,则α与β的终边相同;⑤若cos 0θ<,则θ是第二或第三象限的角. 其中正确的命题是______.(填序号) 【答案】③ 【解析】 ①43απ=-,则α为第二象限角;3πβ=,则β为第一象限角,此时αβ<,可知①错误;②当三角形的一个内角为直角时,不属于象限角,可知②错误; ③由弧度角的定义可知,其大小与扇形半径无关,可知③正确; ④若3πα=,23πβ=,此时,但,αβ终边不同,可知④错误;⑤当θπ=时,,此时θ不属于象限角,可知⑤错误.本题正确结果:③12.【某某省会宁县第一中学2018-2019学年高一下学期期中考试】与02018-角终边相同的最小正角是______ 【答案】0142 【解析】 解:,即与02018-角终边相同的最小正角是0142, 故答案为:0142.13.【某某省某某市郏县第一高级中学2018-2019学年高一下学期第二次5月月考】从8:05到8:50,分针转了________(rad ). 【答案】3π2- 【解析】从8:05到8:50,过了45分钟,时针走一圈是60分钟,故分针是顺时针旋转,应为负角, 故分针转了32π-. 14.【2017届某某省某某市石室中学高三二诊模拟考试】已知角3πα+的始边是x 轴非负半轴.其终边经过点34(,)55P --,则sin α的值为__________.【答案】43310-+ 【解析】解:∵点P (1,2)在角α的终边上,∴tan α2=, 将原式分子分母除以cos α,则原式故答案为:5.16.【某某省涟水中学2018-2019学年高二5月月考】欧拉公式(i 为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,3i e -表示的复数在复平面中位于第_______象限. 【答案】三 【解析】由题e -3i=cos3-i sin3,又cos3<0, sin3>0,故3i e -表示的复数在复平面中位于第三象限. 故答案为三17.【某某省会宁县第一中学2018-2019学年高一下学期期中考试】(1)已知扇形的周长为8,面积是4,求扇形的圆心角.(2)已知扇形的周长为40,当它的半径和圆心角取何值时,才使扇形的面积最大? 【答案】(1)2;(2)当半径为10圆心角为2时,扇形的面积最大,最大值为100. 【解析】(1)设扇形的圆心角大小为α()rad ,半径为r ,则由题意可得:.联立解得:扇形的圆心角2α=. (2)设扇形的半径和弧长分别为r 和l , 由题意可得240r l +=, ∴扇形的面积.当10r =时S 取最大值,此时20l =, 此时圆心角为2l rα,∴当半径为10圆心角为2时,扇形的面积最大,最大值为100.18.【某某市徐汇区2019届高三上学期期末学习能力诊断】我国的“洋垃极禁止入境”政策已实施一年多某沿海地区的海岸线为一段圆弧AB ,对应的圆心角,该地区为打击洋垃圾走私,在海岸线外侧20海里内的海域ABCD 对不明船只进行识别查证如图:其中海域与陆地近似看作在同一平面内在圆弧的两端点A ,B 分别建有监测站,A 与B 之间的直线距离为100海里.求海域ABCD 的面积;现海上P 点处有一艘不明船只,在A 点测得其距A 点40海里,在B 点测得其距B 点海里判断这艘不明船只是否进入了海域ABCD ?请说明理由. 【答案】(1)平方海里; (2)这艘不明船只没进入了海域ABCD ..【解析】,在海岸线外侧20海里内的海域ABCD,,,平方海里,由题意建立平面直角坐标系,如图所示;由题意知,点P在圆B上,即,点P也在圆A上,即;由组成方程组,解得;又区域ABCD内的点满足,由,不在区域ABCD内,由,也不在区域ABCD内;即这艘不明船只没进入了海域ABCD.19.已知角β的终边在直线x-y=0上.①写出角β的集合S;②写出S中适合不等式-360°≤β<720°的元素.【答案】①{β|β=60°+n·180°,n∈Z};②-120°,240°,600°.【解析】①如图,直线x-y=0过原点,倾斜角为60°,在0°~360°X围内,终边落在射线OA上的角是60°,终边落在射线OB上的角是240°,所以以射线OA、OB为终边的角的集合为:S1={β|β=60°+k·360°,k∈Z},S2={β|β=240°+k·360°,k∈Z},所以,角β的集合S=S1∪S2={β|β=60°+k·360°,k∈Z}∪{β|β=60°+180°+k·360°,k∈Z}={β|β=60°+2k·180°,k∈Z}∪{β|β=60°+(2k+1)·180°,k∈Z}={β|β=60°+n·180°,n∈Z}.②由于-360°≤β<720°,即-360°≤60°+n·180°<720°,n∈Z,解得,n∈Z,所以n可取-2、-1、0、1、2、3.所以S中适合不等式-360°≤β<720°的元素为:60°-2×180°=-300°;60°-1×180°=-120°;60°-0×180°=60°;60°+1×180°=240°;60°+2×180°=420;60°+3×180°=600°.20.已知,如图所示.(1)分别写出终边落在OA,OB位置上的角的集合.(2)写出终边落在阴影部分(包括边界)的角的集合.【答案】(1) 终边落在OA位置上的角的集合为{α|α=135°+k·360°,k∈Z};终边落在OB位置上的角的集合为{α|α=-30°+k ·360°,k ∈Z};(2) {α|-30°+k ·360°≤α≤135°+k ·360°,k ∈Z}. 【解析】(1)终边落在OA 位置上的角的集合为{α|α=90°+45°+k ·360°,k ∈Z}={α|α=135°+k ·360°,k ∈Z};终边落在OB 位置上的角的集合为{α|α=-30°+k ·360°,k ∈Z}.(2)由题干图可知,阴影部分(包括边界)的角的集合是由所有介于[-30°,135°]之间的角及终边与它们相同的角组成的集合,故该区域可表示为{α|-30°+k ·360°≤α≤135°+k ·360°,k ∈Z}.能力提升训练1.【某某省某某市2019届高三模拟考试】如图,点为单位圆上一点,,点沿单位圆逆时针方向旋转角到点,则( )A .B .C .D .【答案】D 【解析】∵点A 为单位圆上一点,,点A 沿单位圆逆时针方向旋转角α到点,∴A (cos ,sin ),即A (),且cos (α),sin (α).则sinα=sin[(α)]=sin (α)cos cos (α)sin,故选:D .2.【某某省某某实验中学2018-2019学年高一下学期期中考试】在ABC ∆中,若,那么ABC∆是()A.锐角三角形B.钝角三角形C.直角三角形D.不能确定【答案】A【解析】∆中,,∵在ABC∴,∴,A B为锐角.又,∴,∴,∴C为锐角,∆为锐角三角形.∴ABC故选A.3.【某某省某某市2018-2019学年高一下学期期中考试】已知,那么角是()A.第一或第二象限角B.第二或第三象限角C.第三或第四象限角D.第一或第四象限角【答案】B【解析】由,得异号,则角是第二或第三象限角,故选:.【某某省某某市2018-2019学年高一下学期期中考试】已知角α的终边经过点P(-3,y),且y<0,cosα=-,4.则tanα=()A.B.C.D.【答案】C 【解析】由题意,角的终边经过点,且,则,∴,所以,故选:C .5.【某某省某某市2019届高三下学期第三次统考】已知角83πθ=的终边经过点(,23)P x ,则x 的值为( ) A .±2 B .2C .﹣2D .﹣4【答案】C 【解析】 ∵已知角83πθ=的终边经过点(,23)P x ,∴23x,则2x =-,故选:C .6.【某某省某某市第三中学2019届高三上学期期中考试】,则3f π⎛⎫=⎪⎝⎭( ) A .32B .33C .12D .3【答案】C 【解析】根据题意,,且123π<<,则.故选:C .7.【某某省华文大教育联盟2019届高三第二次质量检测考试】在平面直角坐标系xOy 中,已知02απ<<,点是角α终边上一点,则α的值是___________.【答案】3π 【解析】,∵02απ<<,且点P 在第一象限, ∴α为锐角,∴α的值是3π, 故答案为:3π8.【某某省某某市第一中学2018-2019学年高一下学期开学考试】函数的定义域为______.【答案】或x k π=,k Z}∈【解析】 因为所以 2sin x 0cosx≥等价于0cosx >或0sinx =所以或x k π=,k Z ∈故答案为:或x k π=,k Z}∈.9.【某某省蓉城名校联盟2018-2019学年上期期末联考高一】在平面直角坐标系中,已知一个角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点P (5,-12),则sinα+cosα的值为___. 【答案】【解析】∵一个角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点P (5,-12),∴sinα=则sinα+cosα=-,故答案为:-.10.对于任意实数,事件“”的概率为_______.【答案】【解析】由于“”,故为第二象限角,故概率为.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识改变命运高考考点基本初等函数一、选择题1.(2015·山东)设a =0.60.6,b =0.61.5,c =1.50.6,则a ,b ,c 的大小关系是( )A .a <b <cB .a <c <bC .b <a <cD .b <c <a2.(2015·四川)设a ,b 为正实数,则“a >b >1”是“log 2a >log 2b >0”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件3.(2015·湖南)设函数f (x )=ln(1+x )-ln(1-x ),则f (x )是( )A .奇函数,且在(0,1)上是增函数B .奇函数,且在(0,1)上是减函数C .偶函数,且在(0,1)上是增函数D .偶函数,且在(0,1)上是减函数4.(2015·新课标全国Ⅱ)设函数f (x )=⎩⎪⎨⎪⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( ) A .3 B .6 C .9 D .12 5.(2015·安徽)函数f (x )=ax +b(x +c )2的图象如图所示,则下列结论成立的是知识改变命运( )A .a >0,b >0,c <0B .a <0,b >0,c >0C .a <0,b >0,c <0D .a <0,b <0,c <06.(2015·天津)已知定义在R 上的函数f (x )=2|x -m |-1(m 为实数)为偶函数,记a =f (log 0.53),b =f (log 25),c =f (2m ),则a ,b ,c 的大小关系为( )A .a <b <cB .c <a <bC .a <c <bD .c <b <a7.(2015·四川)某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =e kx +b (e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0 ℃的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是( )A .16小时B .20小时C .24小时D .28小时8.(2015·山东)设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x ,x ≥1,则满足f (f (a ))=2f (a )的a 取值范围是( )A.⎣⎢⎡⎦⎥⎤23,1 B .[0,1] C.⎣⎢⎡⎭⎪⎫23,+∞ D .[1, +∞) 9.(2014·福建)若函数y =log a x (a >0,且a ≠1)的图象如图所示,则下列函数图象正确的是( )知识改变命运10.(2014·北京)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足函数关系p =at 2+bt +c (a ,b ,c 是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为()A .3.50分钟B .3.75分钟C .4.00分钟D .4.25分钟 二、填空题1.(2015·四川)lg 0.01+log 216=________2.(2015·安徽)lg 52+2lg 2-⎝ ⎛⎭⎪⎫12-1=________.3.(2015·浙江)计算:log 222=____________,2log 23+log 43=____________.4.(2015·北京)2-3,312,log 25三个数中最大的数是________.5.(2014·江苏)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,知识改变命运m +1],都有f (x )<0成立,则实数m 的取值范围是________.6.(3-a )(a +6)(-6≤a ≤3)的最大值为________. 7.设a =log 23,b =log 46,c =log 89,则a ,b ,c 的大小关系是________.8.已知函数f (x )=x 2-2ax +a 2-1,若关于x 的不等式f (f (x ))<0的解集为空集,则实数a 的取值范围是________.答案 一、选择题1.C [根据指数函数y =0.6x 在R 上单调递减可得0.61.5<0.60.6<0.60=1,根据指数函数y =1.5x 在R 上单调递增可得1.50.6>1.50=1,∴b <a <c .]2.A [若a >b >1,那么log 2a >log 2b >0;若log 2a >log 2b >0,那么a >b >1,故选A.]3.A [易知函数定义域为(-1,1),f (-x )=ln(1-x )-ln(1+x )=-f (x ),故函数f (x )为奇函数,又f (x )=ln 1+x 1-x=ln ⎝⎛⎭⎪⎫-1-2x -1,由复合函数单调性判断方法知,f (x )在(0,1)上是增函数,故选A.]4.C [因为-2<1,log 212>log 28=3>1,所以f (-2)=1+log 2[2-(-2)]=1+log 24=3,f (log 212)=2log 212-1=2log 212×2-1=12×12=6,故f (-2)+f (log 212)=3+6=9,故选C.]5.C [由图可知-c >0,∴c <0,又当x <-c 时,由图象形状可知,a <0且b >0,故选C.]6.B [由函数f (x )=2|x -m |-1为偶函数,得m =0,知识改变命运所以f (x )=2|x |-1,当x >0时,f (x )为增函数,log 0.53=-log 23, ∴log 25>|-log 23|>0,∴b =f (log 25)>a =f (log 0.53)>c =f (2m )=f (0),故选B.]7.C [由题意知⎩⎪⎨⎪⎧192=e b,48=e 22k +b,∴e 22k =48192=14,∴e 11k =12,∴x =33时,y =e33k +b=(e 11k)3·e b=⎝ ⎛⎭⎪⎫123×192=24.]8.C [当a =2时,f (a )=f (2)=22=4>1,f (f (a ))=2f (a ),∴a =2满足题意,排除A ,B 选项;当a =23时,f (a )=f ⎝ ⎛⎭⎪⎫23=3×23-1=1,f (f (a ))=2f (a ),∴a =23满足题意,排除D 选项,故答案为C.]9.B [因为函数y =log a x 过点(3,1),所以1=log a 3,解得a =3,y =3-x 不可能过点(1,3),排除A ;y =(-x )3=-x 3不可能过点(1,1),排除C ;y =log 3(-x )不可能过点(-3,-1),排除D.故选B.]10.B[由已知得⎩⎪⎨⎪⎧9a +3b +c =0.7,16a +4b +c =0.8,25a +5b +c =0.5,解得⎩⎪⎨⎪⎧a =-0.2,b =1.5,c =-2,∴p =-0.2t 2+1.5t -2=-15⎝⎛⎭⎪⎫t -1542+1316,∴当t =154=3.75时p 最大,即最佳加工时间为3.75分钟.故选B.]二、填空题知识改变命运1.2 [lg 0.01+log 216=lg 1100+log 224=-2+4=2.]2.-1 [lg 52+2lg 2-⎝ ⎛⎭⎪⎫12-1=lg 52+lg 22-2=lg ⎝ ⎛⎭⎪⎫52×4-2=1-2=-1.]3.-12 3 3 [log 222=log 22-12=-12,2log 23+log 43=2log 23+12log 23=2log 2332=3 3.]4.log 25 [2-3=18<1,又因为23<22<5,所以log 223<log 222<log 25,即3<log 25. 所以最大值为log 25.]5.⎝⎛⎭⎪⎪⎫-22,0 [作出二次函数f (x )的图象,对于任意x ∈[m ,m+1],都有f (x )<0,则有⎩⎪⎨⎪⎧f (m )<0,f (m -1)<0,即⎩⎪⎨⎪⎧m 2+m 2-1<0,(m +1)2+m (m +1)-1<0,解得-22<m <0.]6.92[令f (a )=(3-a )(a +6)=-a 2-3a +18,a ∈[-6,3], 当a =-32时,f (a )取最大值f ⎝ ⎛⎭⎪⎫-32=814,故(3-a )(a +6)知识改变命运(-6≤a ≤3)的最大值为92.]7.a >b >c [b =log 26log 24=log 26,c =log 29log 28=log 2913∵3>612=(63)16>(92)16=913,∴3>6>913, 故log 23>log 26>log 2913,即a >b >c .]8.(-∞,-2] [法一 f (f (x ))<0解集为空集等价于,对∀x ∈R ,f (f (x ))≥0恒成立,f (x )=[x -(a +1)][x -(a -1)],f (f (x ))=(x 2-2ax +a 2-a -2)(x 2-2ax +a 2-a )≥0恒成立,等价于对∀x ∈R ,x 2-2ax +a 2-a ≥2或x 2-2ax +a 2-a ≤0(舍去),即∀x ∈R ,x 2-2ax +a 2-a -2≥0,由Δ=(-2a )2-4(a 2-a -2)≤0,解得a ∈(-∞,-2].法二 令t =f (x ),由题意得∀x ∈R ,f (f (x ))≥0恒成立化为f (t )=t 2-2at +a 2-1≥0,解得t ≥a +1或t ≤a -1,即:对∀x ∈R ,t =f (x )=x 2-2ax +a 2-1≥a +1或t ≤a -1或t =f (x )=x 2-2ax +a 2-1≤a -1成立,即:∀x ∈R ,x 2-2ax +a 2-a -2≥0或x 2-2ax +a 2-a ≤0(舍).∴Δ=(-2a )2-4(a 2-a -2)≤0,解得a ∈(-∞,-2].沁园春·雪 <毛泽东>北国风光,千里冰封,万里雪飘。
望长城内外,惟余莽莽;大河上下,顿失滔滔。
山舞银蛇,原驰蜡象,欲与天公试比高。
须晴日,看红装素裹,分外妖娆。