2014-2015学年人教版初中数学九年级数学(上)(人教版)期末检测题

合集下载

2014~2015第一学年度初三数学上期末测试卷 含答案

2014~2015第一学年度初三数学上期末测试卷 含答案

BC2014-2015学年度第一学期期末初三数学试卷 2015.1一、选择题 (本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..选项是符合题意的. 1. 已知34m n=,那么下列式子中一定成立的是 A .43m n = B .34m n = C .4m n = D . 12mn =2. 如图,△ABC 中,DE ∥BC ,13AD AB =,2cm AE =, 则AC 的长是X k B 1 . c o m A .2cmB .4cmC .6cmD .8cm3. 如图,⊙O 是ABC ∆的外接圆,50A ∠=︒ ,则BOC ∠的度数为A .40︒B .50︒C .80︒D .100︒4. 将抛物线22y x =向右平移1个单位,再向上平移3个单位,得到的抛物线是A .22(1)3y x =++B .22(1)3y x =-+C .22(1)3y x =+- D .22(1)3y x =--5.如图,在Rt ABC ∆ ,90C ∠=︒ ,8AC =,6BC =,则sin B 的值等于A .34B . 34C .45D . 356. 如图,AB 是O 的直径,C D 、是圆上两点,70CBA ∠=︒,则D ∠的度数为A .10︒B .20︒C .70︒D .90︒7. 在平面直角坐标系xOy 中,以(3,4)M 为圆心,半径为5的圆与x 轴的位置关系是A .相离B .相交C .相切D .无法确定 8. 如图,ABC ∆ 中,4AB AC ==,120BAC ∠=︒. 点O 是BC 中点,点D 沿B →A →C 方向从B 运动 到C .设点D 经过的路径长为x ,OD 长为y .则函数y 的图象大致为A ABDCBADCBA二、填空题(本题共16分,每小题4分)9. 若两个相似三角形对应边的比是3:2,那么这两个相似三角形面积的比是 . 10. 若反比例函数1m y x-=的图象分布在第二、四象限,则m 的取值范围是______. 11. 若扇形的圆心角为120°,半径为3cm ,那么扇形的面积是____2cm . 12. 如图,边长为1的正方形ABCD 放置在平面直角坐标系中,顶点A 与坐标原点O 重合,点B 在x 轴上.将正方形ABCD 沿x 轴正方向作无滑动滚动,当点D 第一次落在x 轴上时,D 点的坐标是________,D 点经过的路径的总长度是________;当点D 第2014次落在x 轴上时,D 点经过的路径的总长度是_______.三、解答题(本题共50分,每小题5分) 13. 计算:sin 60cos3045tan 45︒︒+︒-︒14. 如图,在ABC ∆中,点D 在边AB 上,ACD ABC ∠=∠,1,3AD AB ==.求AC 的长.15. 已知二次函数243y x x =-+ .(1)求二次函数与x 轴的交点坐标; (2)求二次函数的对称轴和顶点坐标;(3)写出y 随x 增大而减小时自变量x 的取值范围.16. 如图,在DEF ∆中,2,4,120EF DE DEF ==∠=︒,EOD CBA17. 如图,AB 是⊙O 的弦,CD 是⊙O 的直径,CD AB ⊥,垂足为E .1,3CE ED == ,求AB 长.18. 如图,某数学兴趣小组想测量一棵树CD 的高度,他们先在点A 处测得树顶C 的仰角为30︒,然后沿AD 方向前行10m ,到达B 点,在B 处测得树顶C 的仰角高度为60︒ (A 、B 、D 三点在同一直线上)。

新人教版2014-2015学年名校九年级上学期期末数学试题及答案

新人教版2014-2015学年名校九年级上学期期末数学试题及答案

新人教版2014-2015学年名校九年级上学期期末数学试题时间120分钟满分100分 2015.8.27一、选择题(每小题3分,共30分)1.下面的图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.2.三角形的两边长分别是3和6,第三边是方程x2﹣6x+8=0的解,则这个三角形的周长是()A. 11 B. 13 C. 11或13 D. 11和133.用配方法把代数式x2﹣4x+5变形,所得结果是()A.(x﹣2)2+1 B.(x﹣2)2﹣9 C.(x+2)2﹣1 D.(x+2)2﹣54.如图,在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()A. B. C. D.5.如图,△ABC中,∠C=70°,∠B=30°,将△ABC绕点A顺时针旋转后,得到△AB′C′,且C′在边BC上,则∠B′C′B的度数为()A. 30° B. 40° C. 46° D. 60°5题图 6题图 9题图6.如图,正三角形ABC内接于圆O,动点P在圆周的劣弧AB上,且不与A,B重合,则∠BPC 等于()A. 30° B. 60° C. 90° D. 45°7.函数y=﹣x2﹣4x﹣3图象顶点坐标是()A.(2,﹣1) B.(﹣2,1) C.(﹣2,﹣1) D. 2,1)8.半径为8cm的圆的内接正三角形的边长为()A. 8cm B. 4cm C. 8cm D. 4cm9.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A. 2 B. 4 C. 6 D. 810.一个不透明的袋子中有3个红球和2个黄球,这些球除颜色外完全相同.从袋子中随机摸出一个球,它是黄球的概率为()A. B. C. D.二.填空题:(每空2分,共18分.)11.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是.12.某商店10月份的利润为600元,12月份的利润达到864元,则平均每月利润增长的百分率是.13.已知m是方程3x2﹣6x﹣2=0的一根,则m2﹣2m= .14.如图,一名男生推铅球,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系是.则他将铅球推出的距离是m.14题图 17题图15.点A(3,n)关于原点对称的点的坐标是(m,2),那么m= ,n= .16.如果圆锥的底面周长是20π,侧面展开图所得的扇形的圆心角为120°,那么该圆锥的全面积为.17.如图,PA,PB是⊙O是切线,A,B为切点,AC是⊙O的直径,若∠P=46°,则∠BAC= 度.18.在一只不透明的口袋中放入红球6个,黑球2个,黄球n个,这些球除颜色不同外,其它无任何差别.搅匀后随机从中摸出一个恰好是黄球的概率为,则放入口袋中的黄球总数n= .三.解答题(共52分)用指定的方法解下列方程:19.x2+2x﹣35=0(配方法解)20.解方程:4x2+12x+9=0.21.在正方形网格中建立如图所示的平面直角坐标系xOy.△ABC的三个顶点都在格点上,点A、B、C的坐标分别是A(4,4 )、B(1,2 )、C(3,2 ),请解答下列问题.(1)将△ABC向下平移5个单位长度,画出平移后的△A1B1C1;(2)画出△A1B1C1关于y轴对称的△A2B2C2;(3)将△ABC绕点O逆时针旋转90°,画出旋转后的△A3B3C3.并写出点A3的坐标:A3(,).22.下图是输水管的切面,阴影部分是有水部分,其中水面AB宽16cm,水最深4cm.(1)求输水管的半径.(2)当∠AOB=120°时,求阴影部分的面积.23.红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.24.如图,AB是⊙O的直径,点F,C是⊙O上两点,且==,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D.(1)求证:CD是⊙O的切线;(2)若CD=2,求⊙O的半径.25.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).(1)求售价与利润的函数关系式;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?参考答案一、1.故选:C . 2.故选B . 3.故选A . 4.故选:B . 5.故选B .6故选B . 7.故选B . 8.故选:A . 9.故选:D . 10.故选:B .二. 11 k >﹣1且k ≠0 . 12. 20% . 13. . 14. 10 m .15. m= ﹣3 ,n= ﹣2 . 16. 400π . 17. 23 度. 18. 4 .三19.解答: 解:移项得:x 2+2x=35,配方得:x 2+2x+1=35+1,即(x+1)2=36,开方得:x+1=6,x+1=﹣6,解得:x 1=5,x 2=﹣7.20解答: 解:移项,得4x 2+12x=﹣9,化二次项的系数化为1,得x 2+3x=﹣,等式两边同时加上一次项系数一半的平方 ,得(x+)2=0,解得,x 1=x 2=﹣.21解答: 解:(1)(2)(3)所作图形如图所示:,点A 3的坐标为(﹣4,4),故答案为:﹣4,4.22.解答: 解:(1)设圆形切面的半径,过点O 作OD ⊥AB 于点D ,交⊙O 于点E ,则AD=BD=AB=×16=8cm,∵最深地方的高度是4cm,∴OD=r=4,在Rt△OBD中,OB2=BD2+OD2,即r2=82+(r﹣4)2,解得r=10(cm).(2)∵∠AOB=120°,∴∠OAB=∠OBA=30°,∴OD=OA=5cm,AD=OA=5cm,∴AB=10cm,∴S阴影=S扇形﹣S△AOB=﹣×10×5=(cm)2.23.解答:解:(1)画树状图得:则共有12种等可能的结果;(2)∵恰好选派一男一女两位同学参赛的有8种情况,∴恰好选派一男一女两位同学参赛的概率为:=.24.解答:(1)证明:连结OC,如图,∵=,∴∠FAC=∠BAC,∵OA=OC,∴∠OAC=∠OCA,∴∠FAC=∠OCA,∴OC∥AF,∵CD⊥AF,∴OC⊥CD,∴CD是⊙O的切线;(2)解:连结BC,如图,∵AB为直径,∴∠ACB=90°,∵==,∴∠BOC=×180°=60°,∴∠BAC=30°,∴∠DAC=30°,在Rt△ADC中,CD=2,∴AC=2CD=4,在Rt△ACB中,BC=AC=×4=4,∴AB=2BC=8,∴⊙O的半径为4.25.解答:解:(1)由题意得:y=(210﹣10x)(50+x﹣40)=﹣10x2+110x+2100(0<x≤15且x为整数);(2)由(1)中的y与x的解析式配方得:y=﹣10(x﹣5.5)2+2402.5.∵a=﹣10<0,∴当x=5.5时,y有最大值2402.5.∵0<x≤15,且x为整数,当x=5时,50+x=55,y=2400(元),当x=6时,50+x=56,y=2400(元),∴当售价定为每件55或56元,每个月的利润最大,最大的月利润是2400元.。

2014-2015学年人教版九年级上学期期末数学试卷(精选3套,详细解析)

2014-2015学年人教版九年级上学期期末数学试卷(精选3套,详细解析)

2014-2015学年人教版九年级上学期期末数学试卷考试时间100分钟,试卷满分100分一. 选择题(每小题3分,共30分)1.“ a 是实数,0≥a ”这一事件是( )A .必然事件B .不确定事件C .不可能事件D .随机事件2. 把△ABC 三边的长度都扩大为原来的3倍,则锐角A 的正弦值( )A .不变B .缩小为原来的13C .扩大为原来的3倍D .不能确定 3.已知反比例函数xy 1=,下列结论中不正确的是( ) A .图象经过点(-1,-1) B .图象在第一、三象限C .当x >1 时, 0 <y <1D .当 x <0 时, y 随着 x 的增大而增大 4.如图,在方格纸中,△ABC 经过变换得到△DEF ,正确的变换是( ) A .把△ABC 绕点C 逆时针方向旋转90°,再向下平移2格 B .把△ABC 绕点C 顺时针方向旋转90°,再向下平移5格 C .把△ABC 向下平移4格,再绕点C 逆时针方向旋转180° D .把△ABC 向下平移5格,再绕点C 顺时针方向旋转180° 5.如果关于x 的一元二次方程22(21)10k x k x -++=有两个 不相等的实数根,那么k 的取值范围是() A .14k >-B .14k >-且0k ≠ C .14k <- D .14k ≥-且0k ≠ 6.如图,点A 、B 、O 是正方形网格上的三个格点,⊙O 的半径为OA ,点P 是优弧tan 的值是( )A .1BCD 7.如图,在大小为4×4的正方形网格中与①中三角形相似的是( )A .②B . ③C . ④和③D . ②和④8.已知抛物线k x a y +-=2)2((是常数,>k a a ,0),A (﹣3,y 1)、B (3,y 2)、C (4,y 3)是抛物线上三点,则y 1,y 2,y 3由小到大依序排列为( ) A .y 1<y 2<y 3 B .y 2<y 1<y 3 C .y 2<y 3<y 1 D .y 3<y 2<y 1 9.如图,△AOB 是等边三角形,B (2,0),将△AOB 绕O 点逆时针方向旋转90°到△A′OB′位置,则点A′ 的坐标是( )(第4题)(第6题)A .(﹣1,)B .(﹣,1)C .(,﹣1)D .(1,﹣)10. 已知二次函数c bx ax y ++=2的图象如图所示,那么 一次函数c bx y +=和反比例函数xay =在同一平面直角坐标系中的图象大致是( )A .B .C .D .二.填空题(每小题3分,共24分.) 11. 已知点M )3,21(m -关于原点对称的点在第一象限,那么的取值范围是________. 12. 如图所示,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为 13.一种药品经过两次降价,药价从原来每盒 60 元降至现在的 48.6 元,则平均每次降价的百分率是 .14. 如图,在平面直角坐标系中,点O为坐标原点,点P 在第一象限,☉P 与x 轴交于O 、A 两点,点A 的坐标为(6,0),☉P的半径为13,则点P 的坐标为 .15.如图,在△ABC 中,AB=24,AC=18,D 是AC 上一点,AD=12,AB 上取一点E ,A 、D 、E 三点为顶点组成的三角形与△ABC 相似,AE 的长是_____ _. 16.如图,在直角坐标系中,正方形的中心在原点O ,且正方形的一组对边与x 轴平行.点P (a 3,a )是反比例函数xk y =(k >0)的图象上与正方形的一个交点,若图中阴影部分的 面积等于9,则k 的值为 .(第16题) 17. 轮船从B 处以每小时50海里的速度沿南偏东30°方向匀速航行,在B 处观测灯塔A 位于南偏东75°方向上,轮船航行半小时到达 C 处,在C 处观测灯塔A 位于北偏东60°方向上,则C 处与灯塔 A 的距离是 海里.18. 二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0),下列说法:①若b 2﹣4ac=0,则抛物线的顶点一定在x 轴上; ②若a-b+c=0,则抛物线必过点(-1,0);③若a <0,且一元二次方程ax 2+bx+c=0有两根x 1,x 2(x 1<x 2),则ax 2+bx+c <0的解集为x 1<x <x 2;④若33ca b +=,则方程ax 2+bx+c=0有一根为-3. (第12题) (第14题) (第15题)其中正确的是 (把正确的序号都填上)三.解答题(本大题共有5题,满分46分) 19.(每小题6分,共12分)(1)2tan 603sin 30cos 45+--o o o . (2)解方程:2410x x ++=20.(本题8分) 如图,一次函数y 1=kx+b 的图象与反比例函数2my x=(x >0)的图象交于A (1,6),B (a ,2)两点.(1)求一次函数与反比例函数的解析式; (2)直接写出y 1≤y 2时x 的取值范围.21.(本题8分) 小华和小丽两人玩数字游戏,先由小丽心中任意想一个数记为 x ,再由小华猜小丽刚才想的数字,把小华猜的数字记为 y ,且他们想和猜的数字只能在 1、2、3、4这四个数字中.(1)请用树状图或列表法表示出他们想和猜的所有情况;(2)如果他们想和猜的数字相同,则称他们“心灵相通” .求他们“心灵相通”的概率; (3)如果他们想和猜的数字满足x y 1-≤,则称他们“心有灵犀” .求他们“心有灵犀”的概率.22. (本题8分) 如图,直线PM 切⊙O 于点M,直线PO 交⊙O 于A 、B 两点,弦AC ∥PM ,连接OM 、BC. 求证:(1)△ABC ∽△POM ;(2)2OA 2=OP·BC.23. (本题10分)某批发市场批发甲、乙两种水果,根据以往经验和市场行情,预计夏季某一段时间内,甲种水果的销售利润甲y (万元)与进货量x(吨)近似满足函数关系x y 3.0=甲;乙种水果的销售利润乙y (万元)与进货量x (吨)近似满足函数关系bx ax y +=2乙(其中0≠a ,a ,b 为常数),且进货量x 为1吨时,销售利润乙y 为1.4万元;进货量x 为2吨时,销售利润乙y 为2.6万元.(1)求乙y (万元)与x (吨)之间的函数关系式.(2)如果市场准备进甲、乙两种水果共10吨,设乙种水果的进货量为t 吨,请你写出这两种水果所获得的销售利润之和W (万元)与t (吨)之间的函数关系式.并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少?2014—2015学年第一学期九年级数学期末质量检测评分标准11.m0< 12.1413.010 14.(3,2) 15.916或16.3 17.25 18.①、②、④三.解答题(本大题共有5题,满分46分)19.(1)21-2⎛⨯⎝…………………………………3分=313+-22…………………………………5分=4………………………………………6分(2)(2)解:2x4x1+=-,2x4x 414++=-+2(x2)3+=…………………………………3分x+2=…………………………………5分12x2,x2==.………………………………………6分20. (1)∵点A(1,6),B(a,2)在y2=的图象上,∴=6,m=6.∴反比例函数的解析式为:y2=,…………………………………3分∴=2,a==3,∵点A(1,6),B(3,2)在函数y1=kx+b的图象上,∴,解这个方程组,得∴一次函数的解析式为y1=-2x+8,反比例函数的解析式为y2=;…………………6分(2)由函数图象可知,当x在A、B之间时一次函数的图象在反比例函数图象的上方,∵点A(1,6),B(3,2),∴1≤x≤3.…………………………………8分(2)根据(1)得所以可能的情况有16中,想和猜的数相同的情况有4种,∴P(心灵相通)=41164=…………………6分(3)根据(1)得所以可能的情况有16中,数字满足|x-y|≤1的情况有10种,∴P(心有灵犀)105168==…………………8分22.(1)证明:∵直线PM切⊙O于点M,∴∠PMO=90°,∵弦AB是直径,∴∠ACB=90°,∴∠ACB=∠PMO,∵AC∥PM,∴∠CAB=∠P,∴△ABC∽△POM;…………………4分(2)∵△ABC∽△POM,∴,又AB=2OA,OA=OM,∴,∴2OA2=OP·BC.…………………8分23.解:(1)由题意,得:解得∴y乙=-0.1x2+1.5x.…………………4分(2)W=y甲+y乙=0.3(10-t)+(-0.1t2+1.5t)∴W=-0.1t2+1.2t+3.W=-0.1(t-6)2+6.6.∴t=6时,W有最大值为6.6.∴10-6=4(吨).答:甲、乙两种水果的进货量分别为4吨和6吨时,获得的销售利润之和最大,最大利润是6.6万元.…………………10分2014-2015学年人教版九年级上学期期末数学试卷一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.已知=,则x的值是()A.B.C.D.2.已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定3.如图,在Rt△ABC中,∠C=90°,AB=5,BC=4,则sinB的值是()A.B.C.D.4.如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()A.m<0 B.m>0 C.m<﹣1 D.m>﹣15.如图,⊙O是△ABC的外接圆,若∠AOB=100°,则∠ACB的度数是()A.40° B.50° C.60° D.80°6.一枚质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6的点数,掷这个骰子一次,则掷得面朝上的点数为奇数的概率是()A.B.C.D.7.将抛物线y=5x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是()A.y=5(x+2)2+3 B.y=5(x﹣2)2+3 C.y=5(x﹣2)2﹣3 D.y=5(x+2)2﹣38.如图,等边△ABC边长为2,动点P从点A出发,以每秒1个单位长度的速度,沿A→B→C→A的方向运动,到达点A时停止.设运动时间为x秒,y=PC,则y关于x函数的图象大致为()A.B.C.D.二、填空题:(本题共16分,每小题4分)9.扇形的半径为9,且圆心角为120°,则它的弧长为.10.三角尺在灯泡O的照射下在墙上形成影子(如图所示).现测得OA=20cm,OA′=50cm,这个三角尺的周长与它在墙上形成的影子的周长的比是.11.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=,在下列结论中,唯一正确的是.(请将正确的序号填在横线上)①a<0;②c<﹣1;③2a+3b=0;④b2﹣4ac<0;⑤当x=时,y的最小值为.12.如图,在平面直角坐标系xOy中,正方形ABCD顶点A(﹣1,﹣1)、B(﹣3,﹣1).我们规定“把正方形ABCD先沿x轴翻折,再向右平移2个单位”为一次变换.(1)如果正方形ABCD经过1次这样的变换得到正方形A1B1C1D1,那么B1的坐标是.(2)如果正方形ABCD经过2014次这样的变换得到正方形A2014B2014C2014D2014,那么B2014的坐标是.三、解答题:(本题共30分,每题5分)13.计算:tan30°﹣cos60°×tan45°+sin30°.14.已知抛物线y=x2﹣4x+3.(1)用配方法将y=x2﹣4x+3化成y=a(x﹣h)2+k的形式;(2)求出该抛物线的对称轴和顶点坐标;(3)直接写出当x满足什么条件时,函数y<0.15.如图,在△ABC中,D是AB上一点,且∠ABC=∠ACD.(1)求证:△ACD∽△ABC;(2)若AD=3,AB=7,求AC的长.16.如图,热气球的探测器显示,从热气球看一栋高楼的顶部B的仰角为45°,看这栋高楼底部C的俯角为60°,热气球与高楼的水平距离AD为20m,求这栋楼的高度.(结果保留根号)17.如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于点E.(1)求证:∠BCO=∠D;(2)若CD=,AE=2,求⊙O的半径.18.如图,一次函数y=kx+2的图象与x轴交于点B,与反比例函数的图象的一个交点为A(2,3).(1)分别求出反比例函数和一次函数的解析式;(2)过点A作AC⊥x轴,垂足为C,若点P在反比例函数图象上,且△PBC的面积等于18,求P点的坐标.四、解答题:(本题共20分,每题5分)19.如图,在锐角△ABC中,AB=AC,BC=10,sinA=,(1)求tanB的值;(2)求AB的长.20.在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c经过点(﹣3,0)和(1,0).(1)求抛物线的表达式;(2)在给定的坐标系中,画出此抛物线;(3)设抛物线顶点关于y轴的对称点为A,记抛物线在第二象限之间的部分为图象G.点B是抛物线对称轴上一动点,如果直线AB与图象G有公共点,请结合函数的图象,直接写出点B纵坐标t的取值范围.21.如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,且BF是⊙O的切线,BF交AC的延长线于F.(1)求证:∠CBF=∠CAB.(2)若AB=5,sin∠CBF=,求BC和BF的长.22.阅读下面材料:小明遇到这样一个问题:如图1,在等边三角形ABC内有一点P,且PA=3,PB=4,PC=5,求∠APB度数.小明发现,利用旋转和全等的知识构造△AP′C,连接PP′,得到两个特殊的三角形,从而将问题解决(如图2).请回答:图1中∠APB的度数等于,图2中∠PP′C的度数等于.参考小明思考问题的方法,解决问题:如图3,在平面直角坐标系xOy中,点A坐标为(﹣,1),连接AO.如果点B是x轴上的一动点,以AB为边作等边三角形ABC.当C(x,y)在第一象限内时,求y与x之间的函数表达式.五、解答题:(本题共22分,第23题7分,第24题7分,第25题8分)23.已知关于x的方程mx2+(3m+1)x+3=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值;(3)在(2)的条件下,将关于x的二次函数y=mx2+(3m+1)x+3的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.请结合这个新的图象回答:当直线y=x+b与此图象有两个公共点时,b的取值范围.24.矩形ABCD一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处.(1)如图1,已知折痕与边BC交于点O,连接AP、OP、OA.①求证:△OCP∽△PDA;②若△OCP与△PDA的面积比为1:4,求边AB的长.(2)如图2,在(1)的条件下,擦去AO和OP,连接BP.动点M在线段AP上(不与点P、A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP 于点E.试问动点M、N在移动的过程中,线段EF的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由.25.我们规定:函数y=(a、b、k是常数,k≠ab)叫奇特函数.当a=b=0时,奇特函数y=就是反比例函数y=(k是常数,k≠0).(1)如果某一矩形两边长分别是2和3,当它们分别增加x和y后,得到新矩形的面积为8.求y与x之间的函数表达式,并判断它是否为奇特函数;(2)如图,在平面直角坐标系xOy中,矩形OABC的顶点A、C坐标分别为(6,0)、(0,3),点D是OA中点,连接OB、CD交于E,若奇特函数y=的图象经过点B、E,求该奇特函数的表达式;(3)把反比例函数y=的图象向右平移4个单位,再向上平移个单位就可得到(2)中得到的奇特函数的图象;(4)在(2)的条件下,过线段BE中点M的一条直线l与这个奇特函数图象交于P,Q两点(P在Q右侧),如果以B、E、P、Q为顶点组成的四边形面积为16,请直接写出点P的坐标.2014-2015学年人教版九年级上学期期末数学试卷答案解析参考答案与试题解析一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.已知=,则x的值是()A.B.C.D.考点:比例的性质.专题:计算题.分析:根据内项之积等于外项之积得到2x=15,然后解一次方程即可.解答:解:∵=,∴2x=15,∴x=.故选B.点评:本题是基础题,考查了比例的基本性质,比较简单.2.已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定考点:点与圆的位置关系.分析:点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).解答:解:∵OP=3<4,故点P与⊙O的位置关系是点在圆内.故选A.点评:本题考查了点与圆的位置关系,注意掌握点和圆的位置关系与数量之间的等价关系是解决问题的关键.3.如图,在Rt△ABC中,∠C=90°,AB=5,BC=4,则sinB的值是()A.B.C.D.考点:锐角三角函数的定义.分析:首先根据勾股定理求得AC的长,然后利用正弦函数的定义即可求解.解答:解:∵在Rt△ABC中,∠C=90°,AB=5,BC=4,∴AC===3,∴sinB==.故选D.点评:本题考查了三角函数的定义,求锐角的三角函数值的方法:利用锐角三角函数的定义,转化成直角三角形的边长的比.4.如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()A.m<0 B.m>0 C.m<﹣1 D.m>﹣1考点:反比例函数的性质.分析:如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()解答:解:∵反比例函数y=的图象在所在象限内,y的值随x值的增大而减小,∴m+1>0,解得m>﹣1.故选D.点评:本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.5.如图,⊙O是△ABC的外接圆,若∠AOB=100°,则∠ACB的度数是()A.40° B.50° C.60° D.80°考点:圆周角定理.分析:已知⊙O是△ABC的外接圆,∠AOB=100°,根据圆周角定理可求得∠ACB的度数.解答:解:∵⊙O是△ABC的外接圆,∠AOB=100°,∴∠ACB=∠AOB=×100°=50°.故选B.点评:本题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角是所对的圆心角的一半.6.一枚质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6的点数,掷这个骰子一次,则掷得面朝上的点数为奇数的概率是()A.B.C.D.考点:概率公式.分析:先统计出奇数点的个数,再根据概率公式解答.解答:解:∵正方体骰子共六个面,点数为1,2,3,4,5,6,奇数为1,3,5,∴点数为奇数的概率为:=.故选:C.点评:此题主要考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.7.将抛物线y=5x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是()A.y=5(x+2)2+3 B.y=5(x﹣2)2+3 C.y=5(x﹣2)2﹣3 D.y=5(x+2)2﹣3考点:二次函数图象与几何变换.专题:几何变换.分析:先确定抛物线y=5x2的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移后所得对应点的坐标,然后根据顶点式写出平移后的抛物线解析式.解答:解:抛物线y=5x2的顶点坐标为(0,0),把点(0,0)向左平移2个单位,再向上平移3个单位后得到对应点的坐标为(﹣2,3),所以新抛物线的表达式是y=5(x+2)2+3.故选A.点评:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.8.如图,等边△ABC边长为2,动点P从点A出发,以每秒1个单位长度的速度,沿A→B→C→A的方向运动,到达点A时停止.设运动时间为x秒,y=PC,则y关于x函数的图象大致为()A .B .C .D .考点: 动点问题的函数图象.分析: 分段讨论,当0≤x ≤2时,作PQ ⊥AC ,根据锐角三角函数和勾股定理求出AQ 、PQ 、CQ 、PC 2;当2<x <4时,PC 在BC 上,是一次函数;当4<x ≤6时,PC 在AC 上,是一次函数,根据函数关系式分析即可得出结论.解答: 解:当0≤x ≤2时,作PQ ⊥AC ,∵AP=x ,∠A=60°∴AQ=,PQ=, ∴CQ=2﹣,∴PC==, ∴PC 2=x 2﹣2x+4=(x ﹣1)2+3;当2<x <4时,PC=4﹣x ,当4<x ≤6时,PC=2﹣(6﹣x )=x ﹣4,故选:C .点评: 本题主要考查了动点问题的函数图形,分段讨论,列出每段函数的解析式是解决问题的关键.二、填空题:(本题共16分,每小题4分)9.扇形的半径为9,且圆心角为120°,则它的弧长为 6π .考点: 弧长的计算.分析: 直接利用弧长的计算公式计算即可.解答: 解:弧长是:=6π.故答案是:6π.点评:本题考查了弧长的计算公式,正确记忆公式是关键.10.三角尺在灯泡O的照射下在墙上形成影子(如图所示).现测得OA=20cm,OA′=50cm,这个三角尺的周长与它在墙上形成的影子的周长的比是2:5.考点:相似三角形的应用.分析:由题意知三角尺与其影子相似,它们周长的比就等于相似比.解答:解:∵,∴三角尺的周长与它在墙上形成的影子的周长的比是.点评:本题考查相似三角形的性质,相似三角形的周长的比等于相似比.11.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=,在下列结论中,唯一正确的是③⑤.(请将正确的序号填在横线上)①a<0;②c<﹣1;③2a+3b=0;④b2﹣4ac<0;⑤当x=时,y的最小值为.考点:二次函数图象与系数的关系.分析:根据二次函数的图象开口方向即可判断A;由二次函数的图象与y轴的交点位置即可判断B;把x=﹣1代入二次函数的解析式即可判断C;根据二次函数的对称轴即可求出D.解答:解:①∵二次函数的图象开口向上,∴a>0,故本选项错误;②∵二次函数的图象与y轴的交点在点(0,﹣1)的上方,∴c>﹣1,故本选项错误;③、∵二次函数的图象的对称轴是直线x=,∴﹣=,﹣3b=2a,2a+3b=0,故本选项正确;④∵二次函数的图象与x轴有两个交点,∴b2﹣4ac>0,故本选项错误;⑤∵二次函数的图象的对称轴是直线x=,∴﹣=,∴﹣3b=2a,b=﹣a,∴y最小值=a+b+c=a+×(﹣a)+c=;即y的最小值为,故本选项正确;故答案为:③⑤.点评:本题考查了二次函数的图象和系数的关系,题目具有一定的代表性,是一道比较好的题目,注意用了数形结合思想,二次函数的图象开口方向决定a的符号,二次函数的图形与y轴的交点位置决定c的符号,根据二次函数的图象的对称轴是直线x=得出﹣=,把x=代入y=ax2+bx+c(a≠0)得出y=a+b+c等等.12.如图,在平面直角坐标系xOy中,正方形ABCD顶点A(﹣1,﹣1)、B(﹣3,﹣1).我们规定“把正方形ABCD先沿x轴翻折,再向右平移2个单位”为一次变换.(1)如果正方形ABCD经过1次这样的变换得到正方形A1B1C1D1,那么B1的坐标是(﹣1,1).(2)如果正方形ABCD经过2014次这样的变换得到正方形A2014B2014C2014D2014,那么B2014的坐标是(4025,﹣1).考点:规律型:点的坐标.分析:(1)把正方形ABCD先沿x轴翻折,则点B关于x轴对称,得到B点的坐标为:(﹣3,1),再向右平移2个单位”后点B的坐标为:(﹣3+2,1),即B1(﹣1,1).(2)首先由正方形ABCD,点A、B的坐标分别是(﹣1,﹣1)、(﹣3,﹣1),然后根据题意求得第1次、2次、3次变换后的点B的对应点的坐标,即可得规律:第n次变换后的点B的对应点的为:当n为奇数时为(2n﹣3,1),当n为偶数时为(2n﹣3,﹣1),继而求得把正方形ABCD经过连续2014次这样的变换得到正方形A′B′C′D′,则点B的对应点B′的坐标.解答:解:(1)∵正方形ABCD,点A、B的坐标分别是(﹣1,﹣1)、(﹣3,﹣1),∴根据题意得:第1次变换后的点B的对应点的坐标为(﹣3+2,1),即B1(﹣1,1),(2)第2次变换后的点B的对应点的坐标为:(﹣1+2,﹣1),即(1,﹣1),第3次变换后的点B的对应点的坐标为(1+2,1),即(3,1),第n次变换后的点B的对应点的为:当n为奇数时为(2n﹣3,1),当n为偶数时为(2n﹣3,﹣1),∴把正方形ABCD经过连续2014次这样的变换得到正方形A′B′C′D′,则点B的对应点B′的坐标是:(4025,﹣1).故答案为:(﹣1,1);(4025,﹣1).点评:此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n次变换后的点B的对应点的坐标为:当n为奇数时为(2n﹣3,1),当n为偶数时为(2n ﹣3,﹣1)是解此题的关键.三、解答题:(本题共30分,每题5分)13.计算:tan30°﹣cos60°×tan45°+sin30°.考点:特殊角的三角函数值.分析:将tan30°=,cos60°=,tan45°=1,sin30°=分别代入运算,然后合并即可得出答案.解答:解:原式==.点评:本题考查了特殊角的三角函数值,属于基础题,熟练记忆一些特殊角的三角函数值是关键.14.已知抛物线y=x2﹣4x+3.(1)用配方法将y=x2﹣4x+3化成y=a(x﹣h)2+k的形式;(2)求出该抛物线的对称轴和顶点坐标;(3)直接写出当x满足什么条件时,函数y<0.考点:二次函数的三种形式;二次函数的性质.分析:(1)由于二次项系数是1,所以直接加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式;(2)根据二次函数y=a(x﹣h)2+k的顶点坐标为(h,k),对称轴为x=h求解即可;(3)先求出方程x2﹣4x+3=0的两根,再根据二次函数的性质即可求解.解答:解:(1)y=x2﹣4x+3=(x2﹣4x+4)﹣4+3=(x﹣2)2﹣1;(2)∵y=(x﹣2)2﹣1,∴对称轴为直线x=2,顶点坐标为(2,﹣1);(3)解方程x2﹣4x+3=0,得x=1或3.∵y=x2﹣4x+3,a=1>0,∴抛物线开口向上,∴当1<x<3时,函数y<0.点评:本题考查了二次函数解析式的三种形式,二次函数的性质,难度适中.利用配方法将一般式转化为顶点式是解题的关键.15.如图,在△ABC中,D是AB上一点,且∠ABC=∠ACD.(1)求证:△ACD∽△ABC;(2)若AD=3,AB=7,求AC的长.考点:相似三角形的判定与性质.分析:(1)根据两角对应相等,两三角形相似即可证明△ADC∽△ACB;(2)根据相似三角形的对应边成比例得出AC:AB=AD:AC,即AC2=AB•AD,将数值代入计算即可求出AC的长.解答:(1)证明:在△ADC与△ACB中,∵∠ABC=∠ACD,∠A=∠A,∴△ACD∽△ABC;(2)解:∵△ACD∽△ABC,∴AC:AB=AD:AC,∴AC2=AB•AD,∵AD=2,AB=7,∴AC2=7×2=14,∴AC=.点评:本题考查的是相似三角形的判定与性质,用到的知识点为:①如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似(简叙为两角对应相等,两三角形相似);②相似三角形的对应边成比例.16.如图,热气球的探测器显示,从热气球看一栋高楼的顶部B的仰角为45°,看这栋高楼底部C的俯角为60°,热气球与高楼的水平距离AD为20m,求这栋楼的高度.(结果保留根号)考点:解直角三角形的应用-仰角俯角问题.分析:在Rt△ABD中,求出BD,在Rt△ACD中,求出CD,二者相加即为楼高BC.解答:解:在Rt△ABD中,∠BDA=90°,∠BAD=45°,∴BD=AD=20.在Rt△ACD中,∠ADC=90°,∠CAD=60°,∴CD=AD=20.∴BC=BD+CD=20+20(m).答:这栋楼高为(20+20)m.点评:本题考查了解直角三角形的应用﹣﹣仰角俯角问题,将原三角形转化为两个直角三角形是解题的关键.17.如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于点E.(1)求证:∠BCO=∠D;(2)若CD=,AE=2,求⊙O的半径.考点:圆周角定理;勾股定理;垂径定理.专题:计算题.分析:(1)由OB=OC,利用等边对等角得到一对角相等,再由同弧所对的圆周角相等得到一对角相等,等量代换即可得证;(2)由弦CD与直径AB垂直,利用垂径定理得到E为CD的中点,求出CE的长,在直角三角形OCE中,设圆的半径OC=r,OE=OA﹣AE,表示出OE,利用勾股定理列出关于r 的方程,求出方程的解即可得到圆的半径r的值.解答:(1)证明:如图.∵OC=OB,∴∠BCO=∠B.∵∠B=∠D,∴∠BCO=∠D;(2)解:∵AB是⊙O的直径,且CD⊥AB于点E,∴CE=CD=×4=2,在Rt△OCE中,OC2=CE2+OE2,设⊙O的半径为r,则OC=r,OE=OA﹣AE=r﹣2,∴r2=(2)2+(r﹣2)2,解得:r=3,∴⊙O的半径为3.点评:此题考查了垂径定理,勾股定理,以及圆周角定理,熟练掌握定理是解本题的关键.18.如图,一次函数y=kx+2的图象与x轴交于点B,与反比例函数的图象的一个交点为A(2,3).(1)分别求出反比例函数和一次函数的解析式;(2)过点A作AC⊥x轴,垂足为C,若点P在反比例函数图象上,且△PBC的面积等于18,求P点的坐标.考点:反比例函数与一次函数的交点问题;三角形的面积.专题:计算题.分析:(1)先将点A(2,3)代入反比例函数和一次函数y=kx+2,求得m、k的值,(2)可求得点B的坐标,设P(x,y),由S△PBC=18,即可求得x,y的值.解答:解:(1)把A(2,3)代入,∴m=6.∴.(1分)把A(2,3)代入y=kx+2,∴2k+2=3.∴.∴.(2分)(2)令,解得x=﹣4,即B(﹣4,0).∵AC⊥x轴,∴C(2,0).∴BC=6.(3分)设P(x,y),∵S△PBC==18,∴y1=6或y2=﹣6.分别代入中,得x1=1或x2=﹣1.∴P1(1,6)或P2(﹣1,﹣6).(5分)点评:本题考查了一次函数和反比例函数的交点问题,利用待定系数法求解析式是解此题的关键.四、解答题:(本题共20分,每题5分)19.如图,在锐角△ABC中,AB=AC,BC=10,sinA=,(1)求tanB的值;(2)求AB的长.考点:解直角三角形.专题:计算题.分析:(1)过点C作CD⊥AB,垂足为D,设CD=3k,则AB=AC=5k,继而可求出BD=k,从而求出tanB的值;(2)在Rt△BCD中,先求出BC=k=10,求出k的值,继而得出AB的值.解答:解:(1)过点C作CD⊥AB,垂足为D,(1分)在Rt△ACD中,,(1分)设CD=3k,则AB=AC=5k,(1分)∴.(1分)在△BCD中,∵BD=AB﹣AD=5k﹣4k=k.(1分)∴.(1分)(2)在Rt△BCD中,,(1分)∵BC=10,∴.(1分)∴.(1分)∴AB=.(1分)点评:本题考查了解直角三角形的知识,过点C作CD⊥AB,构造直角三角形是关键.20.在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c经过点(﹣3,0)和(1,0).(1)求抛物线的表达式;(2)在给定的坐标系中,画出此抛物线;(3)设抛物线顶点关于y轴的对称点为A,记抛物线在第二象限之间的部分为图象G.点B是抛物线对称轴上一动点,如果直线AB与图象G有公共点,请结合函数的图象,直接写出点B纵坐标t的取值范围.考点:待定系数法求二次函数解析式;二次函数的图象;二次函数的性质.分析:(1)根据待定系数法即可求得;(2)正确画出图形;(3)通过图象可以看出点B纵坐标t的取值范围.解答:解:(1)∵抛物线y=﹣x2+bx+c经过点(﹣3,0)和(1,0).∴,解得,∴抛物线的表达式为y=﹣x2﹣2x+3.(2)此抛物线如图所示.(3)2<t≤4.如图,由图象可知点B纵坐标t的取值范围为2<t≤4.点评:本题考查了待定系数法求解析式,以及画图的能力和识别图形的能力,要熟练掌握.21.如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,且BF是⊙O的切线,BF交AC的延长线于F.(1)求证:∠CBF=∠CAB.(2)若AB=5,sin∠CBF=,求BC和BF的长.考点:切线的性质.分析:(1)连接AE,由圆周角定理和等腰三角形的性质,结合切线的性质可证得∠CBF=∠BAE,可证得结论;(2)由(1)结论结合正弦值,在Rt△ABE中可求得BE,可求出BC,过C作CM⊥BF,在Rt△BCM中可求得BM,CM,再利用平行线分线段成比例可求得BF.解答:(1)证明:如图1,连结AE.∵AB是⊙O的直径,∴∠AEB=90°,∴∠BAE=∠BAC.∵BF是⊙O的切线,∴∠CBF=∠BAE,∴∠CBF=∠CAB.(2)解:由(1)可知∠CBF=∠BAE,∴sin∠BAE=sin∠CBF=,在Rt△ABE中,sin∠BAE=,∴=,∴BE=,∴BC=2,如图2,过C作CM⊥BF于点M,则sin∠CBF==,即=,解得CM=2,由勾股定理可求得BM=4,又∵AB∥CM,∴=,。

新人教版2014-2015年九年级上学期期末考试数学试题及答案

新人教版2014-2015年九年级上学期期末考试数学试题及答案

新人教版2014-2015年上学期期末考试九年级数学试题(考试时间:120分钟 满分:150分)一、选择题(本题共10道题,每小题3分,共30分)1.下列方程中,是一元二次方程的是( )A. 221x x y ++=B. 2110x x+-= C. 20x = D. 2(1)(3)1x x x ++=- 2.下列汽车标志中,既是轴对称又是中心对称图形的是( )3.下列说法中正确的是( )A.不确定事件发生的概率是不确定的B.事件发生的概率可以等于事件不发生的概率C.事件发生的概率不可能等于0D.抛掷一只均匀的骰子两次,朝上一面的点数之和一定大于24.如图45,15中,∠=∠=O CBO CAO ,则AOB ∠的度数是( )A.75 B.30 C.45 D.60 5.掷一枚六面分别标有1到6的均匀骰子,向上一面的点数大于2且小于5的概率为1P ,抛两枚硬币,正面均朝上的概率为2P ,则( )A.12P P <B.12P P >C.12P P =D.不能确定6.在同圆中,下列四个命题:○1圆心角是顶点在圆心的角;○2两个圆心角相等,它们所对的弦也相等;○3两条弦相等,所对的劣弧也相等;○4等弧所对的圆心角相等。

其中真命题有( )A.4个B.3个C.2个D.1个7.抛物线22(1)3y x =---与y 轴交点的纵坐标为( )A.3-B. 4-C.5-D.1-8.用配方法解关于x 的方程20x px q ++=,方程可变形为( ) A.224()24p p q x -+= B.224()24p q p x -+= C.224()24p p q x +-= 第4题D.224()24p p q x --= 9.如图,E 、F 分别是正方形ABCD 的边BC 、CD 上的点,BE=CF ,连接AE 、BF ,将△ABE 绕正方形的中心按逆时针方向旋转到BCF △,旋转角为()0180a a <<,则a =( )A.60 B.90 C.120 D.4510.已知二次函数2y ax bx c =++的图象如图所示,其对称轴为直线1x =-,给出下列结论(1)24b ac >; (2)0abc >; (3)20a b +=; (4)0a b c ++>; (5)420a b c -+<.则正确的结论有( )A. 2个B. 3个C. 4个D. 5个第9题C第16题第17题B二、填空题(本大题共8小题,每小题3分,共24分)11.方程2x =的根是 .12.众所周知,手机的电话号码是由11位数字组成的,某人的手机号码位于中间的数字为5的概率是13.在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是54002cm ,设金色纸边的宽为,那么x 满足的方程是14.如果函数232(3)1k k y k x kx -+=-++是二次函数,那么k 值为15.一个圆锥的侧面展开图是半径为1的半圆,该圆锥的底面半径是16.二次函数2y x bx c =-++的图象如图所示,则一次函数y bx c =+的图象不经过第 象限. 17.如图所示,一条公路的转变处是一段圆弧(图中的弧AB )点O 是这段弧的圆心,C 是AB 上一点,,OC AB ⊥ 垂足为D ,AB=300m ,CD=50m ,则这段弯路的半径是18.观察下列一组数:13579,,,,,27142334⋅⋅⋅它们是按一定规律排列的,那么这一组数的第n 个数是三、解答题(本大题共96分)19.解方程:(10分)(1) 2660x x --=(2) 22760x x -+=20.△ABC 在平面直角坐标系中的位置如图所示(A 、B 、C 三点在格点上),把△ABC 绕原点O 顺时针旋转90,A 、B 、C 旋转后的对应点分别是1A 、1B 、1C(1)画出旋转后的111△ABC ,并直接写出1A、1B 、1C 的坐标; (2)在旋转过程中,求点A 到点1A 所经过的路径的长.(12分)21.某汽车经销商推出A 、B 、C 、D 四种型号的小轿车共1000辆进行展销。

2014-2015第一学期新人教版九年级数学上期末试题[1]

2014-2015第一学期新人教版九年级数学上期末试题[1]

2014-2015新人教版九年级数学上期末试题、细心选一选。

(每小题 3分,共42分)1 •下列各图中,是中心对称图形的是 ()B. 三角形任意两边之和大于第三边。

C. 在一个装着白球和黑球的袋中摸球,摸出红球。

D. 某种彩票中奖率是 1%买这种彩票100张一定会中奖。

3.已知O O 的半径是5cm,圆心O 到直线L 的距离是3cm,则直线L 与O O 的位置关系是( )。

A.相交B.相切C .相离D.以上答案都不是4•教练对小明推铅球的录像进行技术分析,发现铅球行进高度 y (m )与水平距离x ( m )之间的关系为(x - 4〕'"十3,由此可知铅球推出的距离是()A . 10mB . 3mC . 4mD . 2m 或 10m5•如果一个扇形的弧长是 -n,半径是6,那么此扇形的圆心角为()。

3A. 40° B . 45° C . 60° D . 80°6.抛物线y=x 2的图象向左平移2个单位,再向下平移1个单位,则所得抛物线的解析式为()2 2 2 2A.y=x +4x+3B.y=x +4x+5C.y=x — 4x+3D.y=x — 4x — 5A. 29.若关于 x 的一元2. A. 下列事件中是必然事件的为 打开电视,正在播放《新闻联播》节目。

头A7.下列二次函数中,图象以直线 x=2为对称轴、且经过点(0, 1)的是(x 2)2 (x+2 )2 1 (x 2)2y (x+2)23&已知x1是方程ax0的一个根, 则方程的另一个根为()。

2x m 0有两个不相等的实数根,则m的取值范围是.次方程( )11CBDm )A 80°D E=70° 90°CB85DBG) 8 16 4 CABD151515213 ☆A B)1 1 1 1 CBD824A. 60A.m (1) 3x 2 6x 50 m 1m 1A16(2) (2x3)2 25 、用心填一填(每小题4分,共16分)15.抛物线y x 2 x 4与y 轴的交点坐标 _______________________216•已知(m 2)x 3x 10是关于x 的一元二次方程,则m 的取值范围是第10题图形是()14•在一个不透明的袋子里,有 2个白球和2个红球,它们只有颜色上的区别, 从袋子里随机摸出一个球记下颜色放回,再随机地摸出一个球,则两次都摸到白球的概率为( 17•在一个不透明的口袋中,有若干个红球和白球,它们除颜色外都相同, 个球,摸到红球的概率 0.75,若白球有3个,则红球有 _______________________________________________________________ 个。

新人教版2014-2015年九年级上学期期末考试数学试题及答案

新人教版2014-2015年九年级上学期期末考试数学试题及答案

新人教版2014—2015年九年级上学期期末考试数学试题(试卷满分:120分考试时间:120分钟)2015、1、24一、选择题(本大题有10小题,每小题2分,共20分.每小题都有四个选项,其中有且只有一个选项正确)1. 下列事件中,属于必然事件的是A.任意画一个三角形,其内角和是180°B.某射击运动员射击一次,命中靶心C.在只装了红球的袋子中摸到白球D.掷一枚质地均匀的正方体骰子,向上的一面点数是32. 在下列图形中,属于中心对称图形的是A. 锐角三角形B. 直角三角形C. 钝角三角形D. 平行四边形3.二次函数y=(x-2)2+5的最小值是A. 2B. -2C. 5D.4. 如图1,点A在⊙O上,点C在⊙O内,点B在⊙O外,则图中的圆周角是A. ∠OABB. ∠OACC. ∠COAD. ∠B5. 已知一个一元二次方程的二次项系数是3,常数项是1,则这个一元二次方程可能是A.3x+1=0 B.x2+3=0 C.3x2-1=0 D.3x2+6x+1=06. 已知P(m,2m+1)是平面直角坐标系的点,则点P的纵坐标随横坐标变化的函数解析式可以是A.y=x B.y=2x C.y=2x+1 D.y=12x-127. 已知点A(1,2),O是坐标原点,将线段OA绕点O逆时针旋转90°,点A旋转后的对应点是A1,则点A1的坐标是A. (-2,1)B. (2, -1)C. (-1,2)D.(-1, -2)8.抛物线y=(1-2x)2+3的对称轴是A. x=1B. x=-1C. x=-12D. x=129. 青山村种的水稻2010年平均每公顷产7200kg,设水稻每公顷产量的年平均增长率为x,则2012年平均每公顷比2011年增加的产量是A. 7200(x+1)2 kg B.7200(x2+1) kg C.7200(x2+x) kg D.7200(x+1) kg10. 如图2,OA,OB,OC都是⊙O的半径,若∠AOB是锐角,且∠AOB=2∠BOC.图1则下列结论正确的是A. AB =2BCB. AB <2BCC. ∠AOB =2∠CABD. ∠ACB =4∠CAB二、填空题(本大题有6小题,每小题3分,共18分)11. 一个圆盘被平均分成红、黄、蓝、白4个扇形区域,向其投掷一枚飞镖,且落在圆盘内,则飞镖落在白色区域的概率是 . 12. 方程x 2-x =0的解是 .13. 已知直线y =kx +b 经过点A (0,3),B (2,5),则k = ,b = . 14. 抛物线y =x 2-2x -3的开口向 ;当-2≤x ≤0时,y 的取值范围是 . 15. 如图3,在⊙O 中, BC 是直径,弦BA ,CD 的延长线相交于点若∠P =50°,则∠AOD = .16. 一块三角形材料如图4所示,∠A =∠B =60°,用这块材料剪出一个矩形DEFG ,其中,点D ,E 分别在边AB ,AC 上,点F ,G 在边BC 上.设DE =x , 矩形DEFG 的面积s 与x 之间的函数解析式是 s =-32x 2+3x ,则AC 的长是 .三、解答题(本大题有11小题,共82分)17.(本题满分6分)如图5,已知AB 是⊙O 的直径,点C 在⊙O 上,若∠CAB =35°,求∠ABC的值.18.(本题满分6分)在平面直角坐标系中,已知点A (-4,2),B (-4,0),C (-1, 1),请在图6上画出△ABC ,并画出与△ABC 关于 原点O 对称的图形.图5图2图4GFADECB图319.(本题满分6分)甲口袋中装有3个小球,分别标有号码1,2,3;乙口袋中装有2个小球,分别标有号码1,2;这些球除数字外完全相同.从甲、乙两口袋中分别随机地摸 出一个小球,求这两个小球的号码都是1的概率.20.(本题满分6分)解方程x 2+2x -2=0.21.(本题满分7分)画出二次函数y =x 2的图象.22.(本题满分7分)如图7,已知△ABC 是直角三角形,∠C =90°,BC =3,AC =4,将线段BA 绕点B 逆时针旋转90°,设点A 旋转后的对应点是点A 1, 根据题意画出示意图并求AA 1的长.23.(本题满分7分)如图8,已知AB 是⊙O 的直径,点D 在⊙O 上,C 是⊙O 外一点,若AD ∥OC ,直线BC 与⊙O 相交,判断直线CD 与⊙O 的位置关系, 并说明理由. 图7A B C图824.(本题满分7分)已知点P 是直线y =3x -1与直线y =x +b (b >0)的交点,直线y =3x-1与x 轴交于点A ,直线y =x +b 与y 轴交于点B .若△PAB 的面积是23,求b 的值.25.(本题满分7分)若x 1,x 2是关于x 的方程x 2+bx +c =0的两个实数根,且满足x 1+2x 2=c +2,则称方程x 2+bx +c =0为“T 系二次方程” .如方程x 2-2x =0,x 2+5x +6=0,x 2-6x -16=0,x 2+4x +4=0都是“T 系二次方程” .是否存在实数b ,使得关于 x 的方程x 2+bx +b +2=0是“T 系二次方程”,并说明理由.26.(本题满分11分)在平面直角坐标系中,原点为O ,直线l 经过两点A (2,0)和点B (0,4),点P (m ,n )(mn ≠0)在直线l 上. (1)若OP =2,求点P 的坐标;(2)过点P 作PM ⊥x 轴,PN ⊥y 轴,垂足分别为M ,N ,设矩形OMPN 周长的一半为t ,面积为s .当m <2时,求s 关于t 的函数解析式.图927.(本题满分12分)已知四边形ABCD内接于⊙O,对角线AC,BD交于点P.(1)如图9,设⊙O的半径是r,若︵AB l+︵CD i=πr,求证:AC⊥BD;(2)如图10,过点A作AE⊥BC,垂足为G,AE交BD于点M,交⊙O于点E;过点D作DH⊥BC,垂足为H,DH交AC于点N,交⊙O于点F;若AC⊥BD,求证:MN=EF.图10。

人教版2014-2015九年级数学上册期末考试试题含大题答案

人教版2014-2015九年级数学上册期末考试试题含大题答案

2014 ~ 2015学年度九年级数学上学期期末考试(满分:150分 考试时间:90分钟)姓名___________ 班级__________ 分数 ________-_____一、选择题(每小题4分,共40分) 1、下列运算正确的是( )A 、325=- B 、428=+ C 、3327= D 、1)21)(21(=-+2.把方程x x 632=+配方得( )A 、12)3(2=-xB 、3)3(2=+xC 、6)3(2=-xD 、6)3(2=+x 2、已知关于x 的一元二次方程(m -2)2x 2+(2m +1)x +1=0有两个实数根,则m 的取值范围是( ) (A )43>m (B )43≥m (C )43>m 且2≠m (D )43≥m 且2≠m3)A B C4、如图,⊿ABC 内接于⊙O ,若∠OAB=28°则∠C 的大小为()(A )62° (B )56° (C )60° (D )28°5、随机掷一枚均匀的硬币两次,落地后至少有一次正面朝上的概率是 ( )(A )41 (B )21 (C )43(D )1 6、三角形两边长分别是8和6,第三边长是一元二次方程x 2-16x+60=0一个实数根,则该三角形的面积是( )A .24B .48C .24或D .D7.一个扇形的圆心角为120°,它的面积为3πcm 2,那么这个扇形的半径是 ( )A 、3cm C 、6cm D 、9cm8.一台机器原价60万元,如果每年的折旧率为x ,两年后这台机器的价位应为y 万元,则y 与x 的函数关系表达式为( )A 、260(1)y x =-B 、y=60(1+x)2C 、y = 60(1-x )D 、y=60-x29知抛物线y=ax 2+bx,当a>0,b<0时,它的图象经过( )A 、一、二、三象限B 、一、二、四象限C 、一、三、四象限D 、一、二、三、四象限10.点B 、C 、E 、F 在同一直线上.现从点C 、E 重合的位置出发,让△ABC 在直线EF 上向右作匀速运动,而△DEF 的位置不动.设两个三角形重合部分的面积为y ,运动的距离为x .下面表示y 与x 的函数关系式的图象大致是 ( )二、细心填一填(每小题4分,共20分) 11、已知式子31+-x x有意义,则x 的取值范围是 12、计算20102009)23()23(+-=13、点P 关于原点对称的点Q 的坐标是(-1,3),则P 的坐标是 14、已知圆锥的底面半径为9cm ,母线长为10cm ,则圆锥的全面积是 cm 215、已知:关于x 的一元二次方程041)(22=++-d x r R x 有两个相等的实数根,其中R 、r 分别是⊙O 1 ⊙O 2的半径,d 为两圆的圆心距,则⊙O 1 与⊙O 2的位置关系是三、解答题16、(8分)计算:)681(2)2124(+--17、(8分)解方程:x2-12x-4=0(用配方法)18.已知二次函数y=ax2+bx+c的图象经过一次函数y=-3/2x+3的图象与x 轴、y轴的交点;且过(1,1),求这个二次函数解析式,并把它化为y=a(x-h)2+k的形式。

2014-2015学年九年级上下学期数学期末测试题(含答案)

2014-2015学年九年级上下学期数学期末测试题(含答案)

人教版2014-2015学年九年级上下学期测试数学试卷注:(1)全卷共三个大题,23个小题,共4页;满分:100分;考试时间:120分钟。

(2)答题内容一定要做在答卷..上,且不能超过密封线答题,否则视为无效。

一、选择:(每小题3分,共24分)1. 在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A .B .C .D . 2.如图是某个几何体的三视图,该几何体是( )A. 正方体B. 圆柱C. 圆锥D. 球3.某药品经过两次降价,每瓶零售价由168元降为128元.已知两次降价的百分率相同,每4.已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为( ) A .B . 2πC . 3πD . 12π5.若ab >0,则一次函数y=ax+b 与反比例函数y=在同一坐标系数中的大致图象是( )A .B .C .D .6.如图,在Rt △ABC 中,∠C=90°,BC=3,AC=4, 那么cosA 的值等于( ) 3A.4 4B.3 3C.5 4.5D 7.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示, 则下列结论中正确的是( )A .a >0B .3是方程ax 2+bx+c=0的一个根C .a+b+c=0D .当x <1时,y 随x 的增大而减小 8.如图,CD 是⊙O 的直径,弦AB ⊥CD 于E ,连接 = 二、填空:(每小题3分,共18分)9.方程22x x =的根为 .10.抛物线213y x =(﹣)﹣的对称轴是 .11.已知3,a b ab b+==则 . 12.如图,在△ABC 中,D 是AB 的中点, DE ∥BC.则:ADE ABC S S ∆∆= . 13.直径为10cm 的⊙O 中,弦AB=5cm ,则弦AB 所对的圆周角是 .14.为了求1+2+22+23+…+2100的值,可令S=1+2+22+23+…+2100,则2S=2+22+23+24+…+2101,因此2S ﹣S=2101﹣1,所以S=2101﹣1,即1+2+22+23+…+2100=2101﹣1,仿照以上推理计算1+3+32+33+…+32014的值是 三、解答:(共58分)15.(5分)计算:0201511(21)(1)()2sin 303-+-+-.16.(5分)化简求值:•(),其中x =.17.(8分)已知:如图,AB 是⊙O 的直径,AB =6,延长AB 到点C ,使BC =AB ,D 是⊙O 上一点,DC =26. 求证:(1)△CDB ∽△CAD ;(2)CD 是⊙O 的切线. 18.(4分)在平面直角坐标系中,△ABC 的三个顶点坐标分别为A(﹣2,1),B (﹣4,5), C (﹣5,2).(1)画出△ABC 关于y 轴对称的△A 1B 1C 1;(2)画出△ABC 关于原点O 成中心对称的△A 2B 2C 2. 19.(6分)如图,△ABC是一块锐角三角形余料,边BC=120mm ,高AD=80mm ,要把它加工成长方形零件PQMN ,使长方形PQMN 的边QM在BC上,其余两个项点P,N 分别在AB,AC 上.求这个长方形零件PQMN 面积S 的最大值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

期末检测题本检测题满分:120分,时间:90分钟一、选择题(每小题3分,共36分)1. 已知二次函数y =2(x ﹣3)2+1,下列说法:①其图象的开口向下;②其图象的对称轴为直线x =﹣3;③其图象顶点坐标为(3,﹣1);④当x <3时,y 随x 的增大而减小.则其中说法正确的有( )A .1个B .2个C .3个D .4个 2.对于函数,使得随的增大而增大的的取值范围是( )A.B.C.D.3.如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是( ) A .14k >-B .14k >-且0k ≠C .14k <-D .14k ≥-且0k ≠ 4.定义:如果关于x 的一元二次方程20(0)ax bx c a ++=≠满足0a b c ++=,那么我们称这个方程为“凤凰”方程.已知20(0)ax bx c a ++=≠是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是( )A .a c =B .a b =C .b c =D .a b c == 5.如图所示,将正方形图案绕中心旋转180°后,得到的图案是( )6. “a 是实数,|a |≥0”这一事件是( )A.必然事件B.不确定事件C.不可能事件D.随机事件 7. 随机掷两枚硬币,落地后全部正面朝上的概率是( ) A.1 B.12 C.13 D.148.袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是( )A.3个B.不足3个C.4个D.5个或5个以上 9.在△中,∠°,,以为圆心作和相切,则的半径长为( )A.8B.4C.9.6D.4.8 10. 如图所示,⊙O 1,⊙O 2的圆心O 1,O 2在直线l 上,⊙O 1的半径为2 cm ,⊙O 2的半径为3 cm ,O 1O 2= 8 cm.⊙O 1以1 cm/s 的速度沿直线l 向右运动,7 s 后停止运动.在此过程中,⊙O 1与⊙O 2没有出现的位置关系是( )A.外切B.相交C.内切D.内含11.如图所示,ABC △为O ⊙的内接三角形,130AB C =∠=,°,则O ⊙的内接正方形的面积为( )A .2B .4C .8D .1612.如图所示,已知扇形的半径为,圆心角的度数为120°,若将此扇形围成一个圆锥,则围成的圆锥的侧面积为( ) A.B.C.D.二、填空题(每小题3分,共24分)13. (苏州中考)已知点A (x 1,y 1)、B (x 2,y 2)在二次函数y =(x 1)2+1的图象上,若x 1>x 2>1, 则y 1 y 2(填“>”“=”或“<”). 14.如果,那么的数量关系是________.15.已知点关于原点对称的点在第一象限,那么的取值范围是________.16.如图所示,一个圆形转盘被等分成五个扇形区域,上面分别标有数字,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P (偶数),指针指向标有奇数所在区域的概率为P (奇数),则P (偶数)_______P (奇数)(填“>”“<”或“=”).17.已知长度为的四条线段,从中任取三条线段能组成三角形的概率是________.18.如图所示,ABC △内接于,,30ABC ∠= ,则CAD ∠=______.19.如图所示,小方格都是边长为1的正方形,则以格点为圆心,半径为1和2的两种弧围成的“叶状”阴影图案的面积为 .20.如图所示,已知在Rt ABC △中,,4AB =,分别以AC ,BC 为直径作半圆,面积分别记为1S ,2S ,则1S +2S 的值等于__________.三、解答题(共60分)21.(8分)把抛物线向左平移2个单位,同时向下平移1个单位后,恰好与抛物线重合.请求出的值,并画出函数的示意图. 22.(8分)如图所示,正方形中,点在边上,点在边的延长线上.(1)若△按顺时针方向旋转后恰好与△重合,则旋转中心是点________ ,最少旋转了_______度; (2)在(1)的条件下,若求四边形的面积.23.(8分)已知关于x 的方程230x x m -+=的一个根是另一个根的2倍,求m 的值.24.(8分)(2012·武汉模拟)随着人们节能意识的增强,节能产品的销售量逐年增加.某第18题图第20题图CABS 1S 2地区高效节能灯的年销售量年为万只,预计年将达到万只.求该地区年到年高效节能灯年销售量的平均增长率.25.(8分)(2012·武汉中考)如图所示,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB 和矩形的三边AE 、ED 、DB 组成,已知河底ED 是水平的,ED =16米,AE =8米,抛物线的顶点C 到ED 的距离是11米,以ED 所在直线为x 轴,抛物线的对称轴为y 轴建立平面直角坐标系. (1)求抛物线的表达式;(2)已知从某时刻开始的40小时内,水面与河底ED 的距离h (单位:米)随时间t (单位:时)的变化满足函数关系h =9)2+8(0≤t ≤40),且当水面到顶点C 的距离不大于5米时,需禁止船只通行,请通过计算说明在这一时段内,需多少小时禁止船只通行? 26.(10分)如图,在以O 为圆心的两个同心圆中,AB 经过圆心O ,且与小圆相交于点A .与大圆相交于点B .小圆的切线AC 与大圆相交于点D ,且CO 平分∠ACB . (1)试判断BC 所在直线与小圆的位置关系,并说明理由; (2)试判断线段AC ,AD ,BC 之间的数量关系,并说明理由;27.(10分) 某班有50位学生,每位学生都有一个序号,将50张编有学生序号(从1号到50号)的卡片(除序号不同外其他均相同)打乱顺序重新排列,从中任意抽取1张卡片.(1)在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),求取到的卡片上序号是20的倍数或能整除20的概率.DCFBEA第22题图(2)若规定:取到的卡片上序号是k(k是满足1≤k≤50的整数),则序号是k的倍数或能整除k(不重复计数)的学生能参加某项活动,这一规定是否公平?请说明理由.(3)请你设计一个规定,能公平地选出10位学生参加某项活动,并说明你的规定是符合要求的.期末检测题参考答案1. A 解析:①∵ 2>0,∴ 图象的开口向上,故①错误; ②图象的对称轴为直线=3,故②错误; ③其图象顶点坐标为(3,1),故③错误; ④当<3时,随的增大而减小,故④正确. 综上所述,说法正确的有1个.2.D 解析:由于函数图象开口向下,所以在对称轴左侧随的增大而增大,由对称轴为直线,知的取值范围是.3.B 解析:依题意得,2220(21)410k k k ⎧≠⎪⎨+-⨯>⎪⎩,,解得14k >-且0k ≠.故选B . 4.A 解析:依题意得,2040a b c b ac ++=⎧⎨-=⎩,,代入得2()4a c ac +=,∴2()0a c -=,∴a c =.故选A .5.D 解析:图中的两个阴影三角形关于中心对称;阴影圆绕中心旋转180°后,位置在右下角,所以选D.6.A 解析:因为任何一个实数的绝对值都是一个非负数,所以a 是实数,|a |≥0是必然事件.7. D 解析:随机掷两枚硬币,有四种可能:(正,正),(正,反),(反,正),(反,反),落地后全部正面朝上的情况只有(正,正),所以落地后全部正面朝上的概率是14.8.D 解析:当袋中只有红、白两种颜色的球时,若随机取一个球,可能性大的数量就多,故白球的个数大于4个.故选D. 9.D 解析:在△中,∠°,,所以过点则的半径长为.10.D 解析:∵ O 1O 2=8 cm ,⊙O 1以1 cm/s 的速度沿直线l 向右运动,7 s 后停止运动,∴ 7 s 后两圆的圆心距为1 cm ,两圆的半径的差为3-2=1(cm ),∴ 此时两圆内切,∴ 移动过程中没有内含这种位置关系,故选D . 11.A 解析:过点因为130AB C =∠=,°,所以O ⊙的直径为,所以O ⊙的内接正方形的边长为12.D 解析:.13. > 解析:∵ a =1>0,对称轴为直线x =1,∴ 当x >1时,y 随x 的增大而增大.故由x 1>x 2>1可得y 1>y 2.14.解析:原方程可化为[]24()50x y -+=,∴.15.解析:点关于原点对称的点的坐标为,且在第一象限,所以所以.16. 解析:因为, ,所以.17.34解析:从长度为的四条线段中任取三条有四种情况:.其中不能组成三角形,所以从中任取三条线段能组成三角形的概率是34. 18.解析:,所以∠∠=60°.19.2π 4 解析:如图所示,连接AB , 则根据轴对称和旋转对称的性质,从图中可知: 阴影图案的面积=2(S 扇形AOB -S △ABO )=2×2×220.2π 解析:由勾股定理知所以1S +2S=ππ21.解:将整理得.因为抛物线向左平移2个单位,再向下平移1个单位得,所以将向右平移2个单位, 再向上平移1个单位即得,故.函数示意图如图所示.22.解:(1) ;90. (2)∵ △旋转后恰好与△重合, ∴ △≌△ ∴又∴∴23.解:设方程230x x m -+=的两根分别为1x ,2x ,且不妨设122x x =. 则由一元二次方程根与系数的关系可得代入122x x =,得∴24.解:设该地区年到年高效节能灯年销售量的平均增长率为.依据题意,列出方程化简整理,得解这个方程,得∴ .∵ 该地区年到年高效节能灯年销售量的平均增长率不能为负数,∴ 舍去,∴.答:该地区年到年高效节能灯年销售量的平均增长率为25. 分析:(1)设抛物线的表达式为y =ax 2+b (a ≠0),将(0,11)和(8,8)代入即可求出a ,b ; (2)令h =6,解方程(t 19)2+8=6得t 1,t 2,所以当h ≥6时,禁止船只通行的时间为|t 2-t 1|. 解:(1)依题意可得顶点C 的坐标为(0,11),设抛物线表达式为y =ax 2+11. 由抛物线的对称性可得B (8,8), ∴ 8=64a +11,解得a =,抛物线表达式为y =x 2+11.(2)画出h = (t -19)2+8(0≤t ≤40)的图象如图所示.当水面到顶点C 的距离不大于5米时, h ≥6,当h =6时,解得t 1=3,t 2=35.由图象的变化趋势得,禁止船只通行的时间为|t 2-t 1|=32(小时). 答:禁止船只通行的时间为32小时.点拨:(2)中求出符合题意的h 的取值范围是解题的关键,本题考查了二次函数在实 际问题中的应用.26.解:(1)BC 所在直线与小圆相切.理由如下: 如图,过圆心O 作OE BC ⊥,垂足为点E . ∵AC 是小圆的切线,AB 经过圆心O ,∴ OA AC ⊥.又∵CO 平分ACB OE BC ∠⊥,,∴ OE OA =. ∴ BC 所在直线是小圆的切线. (2)AC +AD =BC .理由如下:如图,连接OD .∵AC 切小圆O 于点A ,BC 切小圆O 于点E ,∴ CE CA =.∵ 在Rt OAD △与Rt OEB △中,90OA OE OD OB OAD OEB ==∠=∠= ,,,∴ Rt Rt OAD OEB △≌△,∴ EB AD =. ∵ BC CE EB =+,∴ BC AC AD =+. 27.分析:本题考查了概率的求法和游戏的公平性. (1)根据概率的计算公式计算即可; (2)可通过举反例判断游戏是否公平;(3)要想公平地选出10位学生参加某项活动,即设计的规定要使每一位学生被选到的概率相同.解:(1)设取到的卡片上序号是20的倍数或能整除20为事件A,在序号中,是20的倍数或者能整除20的数有7个,则P(A)=.(2)不公平.无论k取何值,都能被1整除,则序号为1的学生被抽中的概率为P=1,而很明显其他序号的学生被抽中的概率不为1.(3)将学生按序号每5人一组进行分组,如第一组序号为1~5,第二组序号为6~10等,共分成10组.再从编有学生序号的打乱的卡片中任意抽取1张卡片,取到的卡片上的序号是k(k是50张卡片中的任意一张的序号),看此序号在分组的第几位,如抽中6,则在分组的第一位,则每一组的第一位同学参加活动.如此规定,能公平抽出10位学生参加活动.点拨:(1)概率的计算公式为:P(E)=;(2)“规定”的公平性问题经常和概率结合在一起考查,通常通过比较各个成员被选中的概率是否相等来确定“规定”是否公平.。

相关文档
最新文档