logistics生长模型拟合树高与林龄
林木胸径与材积的关系——Logistic衍生模型

林木胸径与材积的关系——Logistic 衍生模型张连翔,林 阳(辽宁省干旱地区造林研究所,辽宁 朝阳,122000)摘 要: 基于著名的Logistic 模型,以时间因子作媒介,推导出一个能较准确描述林木V D -关系的一元材积模型——Logi stic 衍生模型。
这是一个既有理论依据,又有实用价值的新模型。
实践证明,Logistic 衍生模型具有较强的数据拟合能力和广泛的适用性,除林木V D -关系外,尚可应用于林木H D -关系和植病S I -关系等项研究,具有理论和实用上的双重意义。
关键词: Logistic 衍生模型;林木V D -关系; H D -关系;一元材积式分类号: S 757.1林木胸径与材积的关系(V D -关系)是测树学中的一个重要概念,作为一元材积式,广泛应用于森林调查中。
特别是随着电子计算机的普及应用,不仅使材积表的准确度得到提高,更使复杂模型的求解以及多个材积式的选优与检验成为可能。
尽管迄今为止各国林学家相继提出了几十个类型各异的一元材积模型[1],然而令人遗憾的是,有关方法和模型大都属经验式的,缺乏理论依据,同时模型的拟合精度也不很尽如人意。
因此,有必要从理论上研究胸径与材积的关系,探讨建立既有理论依据,又有较高拟合精度的一元材积回归模型。
基于Logistic 模型,笔者推导出一个能准确描述林木胸径与材积关系的新模型——Logistic 衍生模型,经实例验证,效果良好,具有理论和实用上的双重意义。
1 Logistic 衍生模型的导出众所周知,林木生长包括3个基本过程,即细胞分裂、细胞延长和细胞分化。
虽然从理论上讲细胞和组织的生长潜力是无限的,可按指数式增长,但因受“环境阻力”的影响,使整个生长曲线呈现慢—快—慢—停的“S ”形生长节律。
显示同样生长进程的调查因子有直径、树高、材积和质量等。
因此可见,在林木生长过程中,时间始终是一个重要因子,利用时间动态方程描述林木生长进程,已有不少学者进行过较为深入的探讨[1]。
基于Logistic曲线的黄皮树生长模型研究

摘
要: 研 究环 境 因 素 对 黄 皮 树 生 长 的 影 响 , 利 用 广 东 科 学 中心 实 验 室 的 无 线 传 感 器 系 统 持 续 监 测 黄 皮 树 生 长 过
程 的温度 、 空 气 湿度 、 光照 、 土壤 湿度 等 , 基 于L o g i s t i c曲 线 , 运用 S P S S软 件 进 行 非 线 性 回 归 分 析 , 建 立 单 因 子 生 长
2 0 1 5年 1 月 l 1日。
}基 金 项 目 : 2 0 1 2年 广 东 省部 产 学 研 结 合项 目“ 生 态 环境 科 普 设 备 的控 制 和 仿 真 系统 研 发 ” ( 2 0 1 2 B 0 9 1 0 0 0 1 5 0 )
78 广东科技2 0 1 5 7第1 4 期
现 环 境 因子 监 测 ,见 图 1 。该 系 统 以单 片机 A r d u i n o
郁南 、 广州 、 英德 、 清 远 等地 种植 黄 皮 面 积 已达 1 5万 亩 …. 已成为 我省 重要 的经济 作物 之一 。 环境 因子 对 植 物 的生 长 、 发育 润 , 需 要湿 润 的环境 和充足 的水 分 、 光 照 。最适 宜 地 区为年 平均 气温 2 O ℃以上 , 1 月平 均温 度 1 2 ℃以上 的地 区 ; 黄皮 树在 不 同 的生 长 阶 段 对水分 有 不 同的要 求 , 要 适 当 提供 或控 制 水分 才 能 保 证植 株 的生长 : 充 足 的光照 有 利 于叶 片进 行光 合作 用. 但光 照过 强 则会抑 制 枝梢 抽 发 ; 以土 层深 厚 、 土 质
果 树生 长情 况方 面 , 以植株 高 度作 为果 树 生 长 的 衡 量 因子 , 利用 直尺测 量植 株高 度 。
柞树树高与年龄相关关系的研究

柞树树高与年龄相关关系的研究
王晓林;蒋衍和
【期刊名称】《科技创新与应用》
【年(卷),期】2012(000)024
【摘要】本文使用Logistic方程、Bertalanffy方程、Gompertz方程、Meyer 方程、Mitscherlich方程、Schumacher方程等6种理论生长方程,通过对不同立地、不同年龄的柞木生长数据进行拟合,选出最佳模型.研究结果显示:通过比较拟合统计量,Logistic模型的各项指标均优于其他五个模型,最终选定Logistic式为柞树树高生长的最佳模型.将检验数据的年龄代入最优树高生长模型中,求出树高预测值,并对树高实测值与预测值进行T检验,研究发现柞树实测值与预测值之间无显著差异(P=0.98888>0.05),表明最优方程可用来较好预测柞树树高.
【总页数】2页(P270-270,271)
【作者】王晓林;蒋衍和
【作者单位】吉林省延边州林管局,吉林延边 133001;黑龙江省大海林林业局太平沟林场,黑龙江大兴安岭 165000
【正文语种】中文
【相关文献】
1.七姊妹山自然保护区黄杉年龄胸径树高的相关性研究
2.麻栎树高与胸径相关关系的研究
3.柞树树高与胸径相关关系的研究
4.新疆天山不同区域云杉树高、胸径、年龄相关关系研究
5.新疆天山不同区域云杉树高、胸径、年龄相关关系分析
因版权原因,仅展示原文概要,查看原文内容请购买。
基于混合效应模型及EBLUP预测美国黄松林分优势木树高生长过程

基于混合效应模型及EBLUP预测美国黄松林分优势木树高生长过程祖笑锋;倪成才;Gorden Nigh;覃先林【期刊名称】《林业科学》【年(卷),期】2015(000)003【摘要】【目的】基于加拿大哥伦比亚省美国黄松79株解析木数据,研究如何用经验线性无偏最优预测法( EBLUP)预测优势木树高生长过程,并分析预测精度与观测次数、观测间隔和预测时长的关系。
【方法】随机抽取49株解析木数据拟合树高生长混合效应模型,30株解析木数据用于 EBLUP 的预测分析。
树高生长模型以Richards,Logistic,Korf等为基础模型,选用AIC,BIC及Loglik 3个统计量评价模型的拟合效果。
模型拟合用R软件的 nlme函数实现,预测分析以预测误差均方( MSPE)为评价标准。
在分析观测间隔、观测次数和预测时长对 MSPE 的影响时,为分离出1个因素的影响效果,将2个因素保持不变,以分析第3个因素的影响作用。
在 R 软件拟合结果的基础上,用SAS的IML过程进行EBLUP 预测分析。
【结果】拟合结果表明,Logistic方程的拟合精度最高,选为EBLUP 预测分析的基本模型。
预测分析结果表明,观测次数、观测间隔和预测时长对预测精度均有显著影响。
随着观测次数的增加,MSPE一般表现出减少的趋势,但下降幅度与观测间隔有关:当间隔较大时,不同的观测值可以提供更充分的生长过程信息,因而可以显著降低 MSPE 值;但当间隔较小时,观测值所提供的生长信息相互重叠,对提高预测精度的增益有限。
从预测时长角度看,在观测值附近一定区域内,EBLUP预测结果非常精确,但随着预测时长增加,预测误差呈逐渐增加的趋势。
【结论】EBLUP 预测相当于两阶段拟合过程的第二阶段。
第一阶段拟合为估计混合参数模型确定参数的过程,而第二阶段则是在第一阶段拟合结果的基础上,依据一个特定林分的若干树高观测值用 EBLUP法预测此林分的随机效应值,并进一步预测树高生长过程。
作物生长模型拟合方程

作物生长模型拟合方程《作物生长模型的拟合方程》作物生长是一个复杂的过程,受到环境因素和遗传因素的共同影响。
为了更好地理解作物的生长规律并进行科学管理,科研人员通过对作物生长数据的分析和研究,提出了各种作物生长模型。
一种常用的作物生长模型是生长曲线模型。
生长曲线模型可以用来描述作物生长过程中各生长期的特征和规律,从而对作物的生长和发育进行预测和管理。
生长曲线模型的数学表达方式多种多样,其中一种常用的模型是Logistic模型。
Logistic模型是基于生物生长过程中的饱和性增长规律而建立的,它将作物的生长过程分为生长初期、生长中期和生长后期三个阶段。
在生长初期,作物的生长速度较慢,受到环境因素的限制,因此生长曲线的斜率较小。
随着时间的推移和环境条件的改善,作物进入生长中期,生长速度加快,生长曲线的斜率逐渐增大。
最后,在生长后期,作物的生长速度逐渐减慢,生长曲线的斜率趋近于零。
Logistic模型的数学表达式为:Y = L / (1 + e^(-k(X-X0)))其中,Y 表示作物生长量,L 表示作物生长的最大值,k 表示生长速率,X 表示时间,X0 表示生长曲线的中心位置。
通过对已知的作物生长数据进行拟合,可以得到相应的模型参数,从而实现对作物生长过程的预测和管理。
除了Logistic模型,还有其他的作物生长模型,如Gompertz模型、Richards模型等。
这些模型都是根据作物生长的特点和规律而建立的,可以在一定程度上描述作物的生长过程。
作物生长模型是科学研究和管理作物生长的重要工具。
通过对作物生长数据的拟合,可以得到作物生长模型的参数,从而对作物的生长和发育进行预测和管理。
不同的作物生长模型适用于不同的作物和生长阶段,科研人员可以根据实际情况选择合适的模型进行研究和应用。
浅析理查德方程拟合树木高生长模型及参数求定

E-m ail:376141298@ qq.tom
到著 名 的理查 德生 长方 程 :
W=A(1_Be-k,) …
(3)
2.2 理 查德 方程 在 林业 中的应 用
收 稿 日期 :2015—03—08
修 回 日期 :2015—05—07
作者 简介 :向南海(1967一 ),男,林业工程师 ,主要从事林业调查规 划设 计和 森林 资源资产评估咨询工作。
树 木 生 长 方 程 是 描 述 某 树 种 (组 )各 调 查 因 子 总 生长 量 v(t)随年龄 (t)生 长 变化 规律 的数学 模 型 。 它 是该 树 种某 调 查 因子 的平均 生 长 过 程 ,也 就是 在 均值 意义 上 的生长 方程 。主要特 点 如下 :
当 t=0时 y(t)=0。此 条件 称 之 为树 木 生长 方 程应 满足 的初 始条 件 。
安徽 林 业科技 ,2015,41(3):71~74 Anhui Forestry Science and Technology
浅析理查德方程拟合树木 高 生长模型及 参数求定
向南 海
(旌德 县蔡 家桥 林场 ,安徽 宣城 242600)
摘 要 :在 林学方面 ,描述树木及林分生长过程 时 ,理查德方程是近代应用最为广泛、适应性较 强的一 类生长曲线方
找 出树 木 生 长规 律 测 定树 木生 长 量 ,在 森 林 经 营 管 理上 有 着很 重 要 的 意义 ,它既 反 映立 地 条 件 的 好坏 ,又可以作为判断营林效果和森林生产能力以 及确 定年 伐 量和 主伐 年龄 的重 要依 据 。
在现代林业特别是集体林权制度深化改革 中, 森林资源作为资产纳入资本运作 ,给林业发展增 添 了新 的活 力 ,且 森林 资 源 资 产评 估 工作 已经 作 为 必 不 可少 的工 作环 节纳 人 多个经 济领 域 。在 一个 森林 经 理期 内 ,测 定 林木 生 长 量 的预 期 收 获值 直 接 影 响 森林 资 产 价值 评 估结 果 ,给林 业 资本 运 作 也 带来 一 定 的牵 引作用 。 1.2 树 木 生 长方程 的基 本概 念
基于Logistic方程的真菌对林木分解率的数学模型

85% 相对湿度
D
25269~87122
6 48 62~10 477 7
E
99475
138509
A
2.758~2.380
3.617~3.175
B
0.186~1.203
0.261~3.089
C
0.186
0.260
D
1.203~3.111
3.089~3.742
E
1.776
2.473
F
2610~25269
(6)
其中袁k 为枯叶物腐解系数袁与枯落物以及林木种类有关袁t
是分解时间遥
3 数据模拟
根据资料[2]可查得黑龙江省大亮子河森林公园内八种白腐
真菌的相关数据袁基于已查得的真菌生长周期数据袁本文依此
对八种真菌的生长规律进行模拟袁在计算机中基于此区间随机
产生八种代号分别为 A尧B尧C尧D 尧E 尧F尧G 的真菌生长周期数据袁
关键词院生长速率曰耐湿性曰林木类型曰种间竞争曰林木分解率
中图分类号院O 242.1
文献标识码院A
文章编号院2096-4390渊2021冤20-0065-03
1 研究背景 真菌在碳循环中对植物物质和木质纤维的分解起着重要 的作用遥 真菌活性包括生长速率和耐湿性袁这两者对林木分解 速率有直接的影响遥 此外袁对于不同的林木类型袁同一菌种的分 解速率也存在差异遥 在实际的自然环境中袁同一片区域有多种 真菌存在袁它们之间的种间竞争也对总分解率产生影响遥 因此袁 有必要对碳循环中的这一部分进行详细的分析遥 2 基于 Logistic 方程的真菌对林木分解率的数学模型建立 通过对真菌的生长速率尧 耐湿性以及不同林木类型的分 析袁建立将三个因素与总分解速率联系到一起的数学模型遥 由 于不同菌株之间存在相互竞争作用袁这对分解速率也有一定的 影响遥 βi 表示真菌竞争系数袁用于反映真菌间相互竞争作用的 强弱对总分解率所造成的影响遥 若变量因素相互独立袁则时间 序列各时期的发展水平为各影响因素之和袁 符合可加性模型遥 若变量间相互影响袁则非独立袁即时间序列的发展水平是多种 因素共同作用的结果袁符合可乘性模型遥 不同菌株生存在不同 树种的环境中袁对林木的分解率存在差异袁且二者存在相关性袁 所以它们之间的关系是相乘的遥 同时袁为了独立探究菌株内部 相 关 因 子 渊 生长 速 率 和 耐 湿 性冤袁 分 别 添 加 了 生 长 速 率 G row-D ecom 子模型和耐湿性 M ois-D ecom 子模型遥 综上所述袁 基于 Logistic 方程的真菌对林木分解率的总数 学模型如公式渊 1冤 所示院
树木生长方程的拟合

B.方法与步骤---树木生长方程的拟合
主要生长方程候选模型 : ?(1)舒马克(Schumacher)方程 Y( t)? ae ? b / t
?(2)单分子(Mitscherlich)式 ?(4)坎派兹(Gompertz)方程
Y(t ) ? a (1 ? e? bt )
树木生长理论方程与经验方程之间有何区别?
红松各调查因子的生长规律?
A.樟子松各调查因子3种生长方程的参数拟合结果。 B.利用各调查因子的最佳生长方程绘制生长曲线。 C.绘制樟子松树高连年生长曲线和平均生长曲线。
树木生长曲线规律: 呈“S”形曲线的生长方程 曲线上有两个弯或3个阶段
树木生长曲线示意图
树木生长方程示意图
树木生长方程的特点
? 树木生长方程初始条件-- 当t=0时y(t)=0
? 树木生长极大值-- A 。 y(t) 存在一条渐进线 y(t)=A
? y(t)是关于年龄( t)的单调非减函数-- 树木的生长是不可逆的
主要内容
? 实验目的 ? 实验工具与资料 ? 树木的生长方程 ? 方法与步骤 ? 思考题 ? 实习报告
实验目的
熟悉树木 生长方程性质
分析树木生长 特点及生长规律
掌握利用理论 生长方程拟合 树木生长过程
实验工具与资料
实验工具
实验资料
计算机 统计软件 (Statistics 6.0)
一株树木的胸径、 树高、断面积 和材积生长数据
30 25 20 15 10
5 0
0 10 20 30 40 50 60 70 80 90
t (a)
C.方法与步骤---实验数据
?采用一株红松解析木数据(HS-grow2.xls)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
logistics生长模型拟合树高与林龄
一、引言
随着我国森林资源的日益减少,研究树木生长的规律变得尤为重要。
其中,logistics 生长模型作为一种常用的生长模型,被广泛应用于树木生长的研究中。
本文主要研究logistics 生长模型拟合树高与林龄的关系,以期为我国森林资源的合理利用提供科学依据。
二、logistics 生长模型的原理
logistics 生长模型是一种典型的S 型生长模型,其基本公式为:
H(t) = H0 * (1 - e^(-r*t))
其中,H(t) 表示树高,H0 表示初始树高,r 表示生长速率,t 表示生长时间。
该模型认为,树木的生长过程分为两个阶段:第一阶段是指数增长阶段,生长速率恒定;第二阶段是S 型增长阶段,生长速率逐渐减小。
三、数据采集与处理
本文采用我国某森林观测站提供的树高与林龄数据进行研究。
数据采集方法为实地测量,数据处理过程包括数据清洗、缺失值处理、异常值处理等步骤,最终得到完整的数据集。
四、logistics 模型拟合树高与林龄
首先,根据数据特点和模型原理,选择合适的模型参数。
然后,利用最小二乘法等优化方法对模型参数进行估计。
最后,通过模型检验,确定所选模型与数据的符合程度。
五、结果与分析
经过logistics 模型拟合,得到树高与林龄的关系模型。
通过分析模型拟合结果,发现树高与林龄之间存在显著的正相关关系,且logistics 模型能较好地描述这种关系。
六、结论
本文通过对logistics 生长模型拟合树高与林龄的研究,得出树高与林龄之间存在显著的正相关关系,为我国森林资源的合理利用提供了科学依据。