平面与平面所成的角与二面角的区别
直线与直线、直线与平面、平面与平面所成的角

【课题】9.3 直线与直线、直线与平面、平面与平面所成的角【教学目标】知识目标:了解线线、线面、面面所成交的概念能力目标:(1)会找出线线、线面、面面所成的角;(2)利用线线、线面、面面所成的角,解释生活空间的一些实例;(3)培养学生的空间想象能力和数学思维能力.情感目标:(1)经历对线线、线面、面面所成的角及对应直观图形的认知,发展空间想象思维.(2)参与数学实验,感受各种位置关系的特征,培养数学直觉,感受科学思维.(3)关注生活中的数学模型,体会数学知识的应用.(4)经历合作学习的过程,尝试探究与讨论,树立团队合作意识.【教学重点】异面直线的概念与两条异面直线所成的角的概念、直线与平面所成的角的概念、二面角及其平面角的概念.【教学难点】两条异面直线所成的角的概念、二面角的平面角的确定.【教学设计】两条异面直线所成的角可用来刻画两条异面直线之间的位置关系,它是本节教学的难点.学生一般会有疑问:异面直线不相交怎么能成角?教学时要讲清概念.例1是求异面直线所成的角的巩固性题目,一般来说,这类题目要先画出两条异面直线所成的角,然后再求解.斜线在平面内的射影是本节的重要概念之一,是理解直线与平面所成的角的基础.要讲清这一概念,可采取“一边演示,一边讲解,一边画图”的方法,结合图形讲清斜线、斜足、斜线段、垂足、垂线段、斜线在平面内的射影与斜线段在平面内的射影.要讲清斜线在平面内的射影与斜线段在平面内的射影的区别.两个平面相交时,它们的相对位置可用两个平面所成的角来确定.教材从观察建筑房屋、修筑河堤两个实例,结合实验引入二面角的概念,二面角的概念可以与平面几何中的角的概念对比进行讲解.二面角的平面角的大小只与二面角的两个面的相对位置有关,而与平面角的顶点在棱上的位置无关.因此二面角的大小可以用它的平面角来度量.规定二面角的范围为[0,180].【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】9.3.1题图在白纸上画出一条线,沿着这条线将白纸对折,然后打开进行观察. 过棱上的一点,分别在二面角的两个面内作与棱垂直的射线,以这两条射线为边的最小正角叫做所示,在二面角α−l 为垂足,在面α与面β内分别作就是这个二面角的平面角.创设情境 兴趣导入用纸折成一个二面角,在棱上选择不同的点作出二面角的平面角,度量它们是否相等,想一想是什么原因.动脑思考 探索新知二面角的平面角的大小由点在棱上的位置无关,当二面角给定后,它的平面角的大小也就随之确定.因此,二面角的大小用它的平面角来度量.当二面角的两个半平面重合时,规定二面角为零角;当二面角的两个半平面合成一个平面时,规定二面角为平角.因此图9−40CD(2)(1)平面角是直角的二面角叫做直二面角继续探索活动探究(1)读书部分:教材(2)书面作业:教材习题(3)实践调查:用发现的眼睛寻找生活中的异面直线实例【教师教学后记】第9章立体几何(教案)。
直线和平面所成的角与二面角3

课 题:9.7直线与平面所成的角和二面角(三)教学目的:1.两个平面垂直的定义、画法. 2.两个平面垂直的判定定理.3.两个平面垂直的性质定理.理解面面垂直问题可能化为线面垂直的问题 教学重点:两个平面垂直的判定和性质 教学难点:两个平面垂直的判定及应用 授课类型:新授课 课时安排:1课时教 具:多媒体、实物投影仪 教学过程:一、复习引入:1.直线和平面所成角(1)定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角一直线垂直于平面,所成的角是直角一直线平行于平面或在平面内,所成角为0︒角直线和平面所成角范围: [0,2π] (2)定理:斜线和平面所成角是这条斜线和平面内经过斜足的直线所成的一切角中最小的角2.公式:已知平面的斜线a 与内一直线b 相交成θ角,且a 与相交成1角,a 在上的射影c 与b 相交成2角,则有θϕϕcos cos cos 21=3 二面角的概念:平面内的一条直线把平面分为两个部分,其中的每一部分叫做半平面;从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面若棱为l ,两个面分别为,αβ的二面角记为l αβ--;二面角的图形表示: 第一种是卧式法,也称为平卧式:ED CBAβα第二种是立式法,也称为直立式:l B'O'A'B O A βα4.二面角的平面角:(1)过二面角的棱上的一点O 分别在两个半平面内作棱的两条垂线,OA OB ,则AOB ∠叫做二面角l αβ--的平面角(2)一个平面垂直于二面角l αβ--的棱l ,且与两半平面交线分别为,,OA OB O 为垂足,则AOB ∠也是l αβ--的平面角说明:(1)二面角的平面角范围是[0,180];(2)二面角的平面角为直角时,则称为直二面角,组成直二面角的两个平面互相垂直 二、讲解新课:1 两个平面垂直的定义:两个相交成直二面角的两个平面互相垂直;相交成直二面角的两个平面叫做互相垂直的平面2.两平面垂直的判定定理: 如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直已知:直线AB ⊂平面α,AB ⊥平面β,垂足为B , 求证:αβ⊥.(线面垂直⇒面面垂直) 证明:如图所示,令CD αβ=,则B CD ∈,在β内过B 作BE CD ⊥,∵,AB CD ββ⊥⊂,∴AB CD ⊥, ∴ABE ∠是二面角CD αβ--的平面角, 又∵AB BE ⊥,∴ABE ∠是直角,NMPCBA aγβαPOABC所以,α与β所成的二面角是直角,即αβ⊥.实例:建筑工地在砌墙时,常用铅垂的线来检查所砌的墙是否和水平面垂直 3.两平面垂直的性质定理: 若两个平面互相垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面已知:,,,CD AB AB CD αβαβα⊥=⊂⊥于点B ,求证:AB β⊥.(面面垂直⇒线面垂直)证明:在β内过B 作BE CD ⊥,则由题意得ABE ∠是CD αβ--的平面角, ∵αβ⊥知AB BE ⊥,又∵AB CD ⊥, ∴AB β⊥. 三、讲解范例:例1 如图,已知AB 是圆O 的直径,PA 垂直于O 所在的平面,C 是圆周上不同于,A B 的任一点,求证:平面PAC ⊥平面PBC . 分析:根据“面面垂直”的判定定理,要证明两平面互相垂直,只要在其中一个平面中寻找一条与另一平面垂直的直线即可解:∵AB 是圆O 的直径,∴AC BC ⊥,又∵PA 垂直于O 所在的平面,∴PA BC ⊥,∴BC ⊥平面PAC ,又BC 在平面PBC 中, 所以,平面PAC ⊥平面PBC .说明:由于平面PAC 与平面PBC 相交于PC ,所以如果平面PAC ⊥平面PBC ,则在平面PBC 中,垂直于PC 的直线一定垂直于平面PAC ,这是寻找两个平面的垂线的常用方法例2.已知,,a αβαγβγ=⊥⊥,求证:a γ⊥.证明:设,AB AC αγβγ==,在γ内取点P ,过P 作PM AB ⊥于M ,PN AC ⊥于点N , ∵αγ⊥,∴PM α⊥, 又∵a αβ=,∴PM a ⊥,同理可得PN a ⊥,αHDCBADCBA∴a γ⊥.例3.已知在一个60的二面角的棱长有两点,A B ,,AC BD 分别是在这个二面角的两个平面内,且垂直于线段AB ,又知4,6,8AB cm AC cm BD cm ===,求CD 的长解:由已知,,,18060120CA AB AB BD CA BD ⊥⊥<>=-=,∴22||()CD CA AB BD =++222||||||268cos120CA AB BD =+++⨯⨯⨯22216482682=++-⨯⨯⨯68=, ||217()CD cm =四、课堂练习:1.直角ABC ∆的斜边AB 在平面α内,,AC BC 与α所成角分别为30,45,CD 是斜边AB 上的高线,求CD 与平面α所成角的正弦值解:过点C 作CH α⊥于点H ,连接,,AH BH OH ,则30CAH ∠=,45CBH ∠=,CDH ∠为所求CD 与α所成角,记为θ, 令CHa =,则2,AC a BC ==,则在Rt ABC∆中,有3AC BC CD a AB ⋅== 在Rt CDH ∆中,sin 2CH CD θ== ∴CD 与平面αβαlP C B图1AE D'B'C'A'ODACB2.如果二面角l αβ--的平面角是锐角,点P 到,,l αβ的距离分别为4,,求二面角的大小分析:点P 可能在二面角l αβ--内部,也可能在外部,应区别处理解:如图1是点P 在二面角l αβ--的内部时,图2是点P 在二面角l αβ--外部时,∵PA α⊥ ∴PA l ⊥ ∵AC l ⊥ ∴面PAC l ⊥ 同理,面PBC l ⊥而面PAC 面PBC PC = ∴面PAC 与面PBC 应重合 即,,,A C P B 在同一平面内,则ACB ∠是二面角l αβ--的平面角在Rt APC ∆中,1s i n 2PA ACP PB ∠=== ∴30ACP ∠=在Rt BPC ∆中,sin 2PB BCP PC ∠===∴45BCP ∠= 故304575ACB ∠=+=(图1)或453015ACB ∠=-=(图2) 即二面角l αβ--的大小为75或15说明:作一个垂直于棱的平面,此平面与两个半平面的交线所成的角就是二面角的平面角3.如图,正方体的棱长为1,'B C BC O '=,求:(1)AO 与A C ''所成角;(2)AO 与平面ABCD 所成角的正切值; (3)平面AOB 与平面AOC 所成角 解:(1)∵//A C AC '' ∴AO 与A C ''所成角就是OAC ∠ βαlPCB图2A∵,OC OB AB ⊥⊥平面BC ' ∴OC OA ⊥(三垂线定理)在Rt AOC ∆中, ,2OC AC ==∴30OAC ∠= (2)作OE BC ⊥,平面BC '⊥平面ABCD∴OE ⊥平面ABCD ,OAE ∠为OA 与平面ABCD 所成角在Rt OAE ∆中,1,2OE AE === ∴tan 5OE OAE AE ∠== (3)∵,OC OA OC OB ⊥⊥ ∴OC ⊥平面AOB 又∵OC ⊂平面AOC ∴平面AOB ⊥平面AOC 即平面AOB 与平面AOC 所成角为90说明:本题包含了线线角,线面角和面面角三类问题,求角度问题主要是求两条异面直线所成角(0,]2π,直线和平面所成角[0,]2π,二面角[0,]π三种;求角度问题解题的一般步骤是:(1)找出这个角;(2)证明该角符合题意;(3)作出这个角所在的三角形,解三角形,求出角;求角度问题不论哪种情况都归结到两条直线所成角问题,即在线线成角中找到答案五、小结 :1.两个平面垂直的定义、画法2.两个平面垂直的判定方法(判定方法有两种,一是利用定义,二是利用判定定理.) 3.应用两个平面垂直的判定定理的关键是将面面垂直的问题转化为线面垂直的问题;4.两个平面垂直的性质. 六、课后作业:七、板书设计(略)八、课后记:。
高中数学必修二立体几何角的问题-教师版(含几何法和向量法)

立体几何线线、线面、面面所成角的问题几何法1、两异面直线及所成的角:不在同一个平面的两条直线,叫做异面直线,已知异面直线a,b,经过空间任一点O 作直线a '∥a ,b '∥b ,我们把a '与b '所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).如果两条异面直线所成的角是直角,我们就说这两条直线互相垂直.2、直线和平面所成的角:一条直线PA 和一个平面α相交,但不和这个平面垂直,这条直线叫做这个平面的斜线,斜线和平面的交点A 叫做斜足。
过斜线上斜足以外的一点向平面引垂线PO ,过垂足O 和斜足A 的直线 AO 叫做斜线在这个平面上的射影。
平面的一条斜线和它在平面内的摄影所成的锐角,叫做这条直线和这个平面所成的角。
一条直线垂直于平面,我们就说它们所成的角是直角。
一条直线和平面平行,或在平面内,我们说它们所成的角是00.3、二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。
在二面角βα--l 的棱l 上任取一点O ,以点O 为垂足,在半平面α和β内分别作垂直于棱l 的射线OA 和OB ,则射线OA 和OB 构成的∠AOB 叫做二面角的平面角。
二面角的大小可以可以用它的平面角来度量,二面角的平面角是多少度,就说这个二面角是多少度。
常见角的取值范围:① 异面直线所成的角⎥⎦⎤ ⎝⎛20π,,直线与平面所成的角⎥⎦⎤⎢⎣⎡20π,,二面角的取值范围依次[]π,0② 直线的倾斜角[)π,0、到的角[)π,0、与的夹角的取值范围依次是⎥⎦⎤⎢⎣⎡20π,4、点到平面距离:求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足,当然别忘了转化法与等体积法的应用. 向量法1、两异面直线及所成的角:设异面直线a ,b 的夹角为θ,方向向量为a ,b ,其夹角为ϕ,则有cos cos a b a bθϕ⋅==.2、直线和平面所成的角:设直线l 的方向向量为l ,平面α的法向量为n ,l 与α所成的角为θ,l 与n 的夹角为ϕ,则有sin cos l n l nθϕ⋅==.3、二面角:设1n ,2n 是二面角l αβ--的两个面α,β的法向量,则向量1n ,2n 的夹角(或其补角)就是二面角的平面角的大小.若二面角l αβ--的平面角为θ,则1212cos n n n n θ⋅=.4、点到平面距离:点P 是平面α外一点,A 是平面α内的一定点,n 为平面α的一个法向量,则点P 到平面α的距离为cos ,n d n nPA⋅=PA 〈PA 〉=.例题例1.长方体ABCD -A 1B 1C 1D 1中,AB =AA 1=2,AD =1,E 为CC 1的中点,则异面直线BC 1与AE 所成角的余弦值为( )A.1010B.3010C.21510D.31010 解析:建立空间直角坐标系如图.则A (1,0,0),E (0,2,1),B (1,2,0),C 1(0,2,2).BC 1→=(-1,0,2),AE →=(-1,2,1),cos 〈BC 1→,AE →〉=BC 1→·AE →|BC 1→|·|AE →|=3010.所以异面直线BC 1与AE 所成角的余弦值为3010.答案:B例 2.已知ABCD 是矩形,PA ⊥平面ABCD ,2AB =,4PA AD ==,E 为BC 的中点.(1)求证:DE ⊥平面PAE ;(2)求直线DP 与平面PAE 所成的角. 证明:在ADE ∆中,222AD AE DE =+,∴AE DE ⊥ ∵PA ⊥平面ABCD ,DE ⊂平面ABCD ,∴PA DE ⊥又PA AE A ⋂=,∴DE ⊥平面PAE (2)DPE ∠为DP 与平面PAE 所成的角在Rt PAD ∆,PD =Rt DCE ∆中,DE =在Rt DEP ∆中,2PD DE =,∴030DPE ∠=例3.如图,在四棱锥P ABCD -中,底面ABCD 是060DAB ∠=且边长为a 的菱形,侧面PAD 是等边三角形,且平面PAD 垂直于底面ABCD . (1)若G 为AD 的中点,求证:BG ⊥平面PAD ; (2)求证:AD PB ⊥;(3)求二面角A BC P --的大小.证明:(1)ABD ∆为等边三角形且G 为AD 的中点,∴BG AD ⊥ 又平面PAD ⊥平面ABCD ,∴BG ⊥平面PAD(2)PAD 是等边三角形且G 为AD 的中点,∴AD PG ⊥ 且AD BG ⊥,PG BG G ⋂=,∴AD ⊥平面PBG ,PB ⊂平面PBG ,∴AD PB ⊥(3)由AD PB ⊥,AD ∥BC ,∴BC PB ⊥ 又BG AD ⊥,AD ∥BC ,∴BG BC ⊥∴PBG ∠为二面角A BC P --的平面角在Rt PBG ∆中,PG BG =,∴045PBG ∠=例4.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为棱AA 1、BB 1的中点,G 为棱A 1B 1上的一点,且A 1G =λ(0≤λ≤1),则点G 到平面D 1EF 的距离为( D ) A.3 B.22C.32λ D.55练习:1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点,(1)求证:EFGH 是平行四边形;(2)若BD=AC=2,EG=2。
二面角、判定、性质

ι
β
3、二面角的平面角 二面角的平面角
以二面角的棱上任意一点为端点, 在两个半平面内分别作垂直于棱的两 条射线,这两条射线所成的角叫作二 面角的平面角.如图
20:15
ι
P
β
B A
α
注:二面角的平面角取值范围是: [ 00,1800]
直二面角:平面角是直角的二面角.
思考: 思考: 一个平面垂直于二面角 α −ι − β 的棱,并与两半平
1)角的顶点在棱上 ) 2)角的两边分别在两个面内 ) 3)角的边都要垂直于二面角的棱 ) α A α A O β B
l
O
20:15
10
β B
(1)
(2)
二面角
二.作二面角的平面角的常用方法 作二面角的平面角的常用方法
①、点P在棱上 —定义法 、 在棱上 定义法 ②、点P在一个半平面上 —三垂线定理法 、 在一个半平面上 三垂线定理法 ③、点P在二面角内 —垂面法 、 在二面角内 垂面法
面分别相交于射线 PA、 PB 、 垂足为P, 垂足为 ,则∠APB是二面
ι
β
B` A`
α γ`
γ
P`
角α − l − β的平面角吗? 是
利用等角定理) 相等(利用等角定理 利用等角定理 20:15
P A
B
思考: 思考: ∠ A`P`B` 与∠ APB是否相等 是否相等? 是否相等
α
注: 二面角的平面角的特点: 二面角的平面角的特点:
∵a / /b, a ⊄ α, b ⊂ α, ∴a / /α.
β
∵ b / /α , b ⊂ β , α ∩ β = a ∴ a / /b
∴∠PMC是二面角P-AB-C的 平面角.
两面角的概念

注意:
α A
1)角的顶点在棱上 )角的顶点在棱 2)角的两边分别在两个面内 )角的两边分别在两个面内 3)角的边都要垂直于二面角的棱 )角的边都要垂直于二面角的棱 垂直 α
l
O
10
A O
β B β B
二面角的平面角的作法: 二面角的平面角的作法:
1、定义法 、 A
α
在棱上找一点, 在棱上找一点,在两 个半平面分别作棱垂线
S 射影 S原形
A
A1 300 450 E C
α B
1.如图,在直三棱柱 底面是等腰直角三角形, 1.如图,在直三棱柱ABC-A1B1C1中,底面是等腰直角三角形, 如图 中点, 且AB⊥BC, E为CC1中点 点F在BB1 上 , 且BF = ⊥ 为 在 BB1=BC, 求平面 求平面EFA与平面 与平面ABC所成的角的大小 所成的角的大小. 与平面 所成的角的大小
二面角的大小用它的平面角来度量 二面角的大小用它的平面角来度量 平面角
∠A O B
B1 B β
?
l
O1
∠A1O1B1 平面角是直角的二面角 平面角是直角的二面角 直角 叫做直二面角 叫做直二面角
O
9
A
A1
α
⑵二面角的平面角的取 值范围是 [0o ,180o ]
以二面角的棱上任意一点为端点, 以二面角的棱上任意一点为端点,在 棱上任意一点为端点 两个面内分别作垂直于棱的两条射线 分别作垂直于棱的两条射线, 两个面内分别作垂直于棱的两条射线,这 两条射线所成的角叫做二面角的平面角 二面角的平面角。 两条射线所成的角叫做二面角的平面角。 二面角的平面角必须满足: 二面角的平面角必须满足:
二 面 角
一、二面角的定义: 二面角的定义:
二面角的求法(总结)

2、三垂线定理、平面的 法向量。
探究准备: 答
二、想一想:
1、怎样做出二面 角的平面角?
:1、做二面角的平面角主 要有3种方法:
(1)、定义法:在棱上取一 点,在两个半平面内作垂直于 棱的2 条射线,这2条所夹 的 角; (2)、垂面法:做垂直于棱 的一个平面,这个平面与2个 半平面分别有一条交线,这2 条交线所成的角; (3)、三垂线法:过一个半 平面内一点(记为A)做另一 个半平面的一条垂线,过这个 垂足(记为B)再做棱的垂线, 记垂足为C,连接AC,则 ∠ACB即为该二面角的平面角。 α C α β
2 2
S
E A D C
B
议一议:刚才的证明过
程中,是用什么方法找到 二面角的平面角的? 请各小组讨论交流一下。
2
2
2
2
探究二:
试一试 例二:如图:直四棱柱ABCDA1B1C1D1,底面ABCD是菱形, AD=AA1 ,∠DAB=600,F为棱AA1的中 点。 求:平面BFD1与平面ABCD所 成的二面角的大小。
1D1C1B1A1(θ是所求二面角的平面角) 以下求面积略。
F
D
A B
C
点评:这种解法叫做“射影面积法”
在选择和填空题中有时候用起来会很 好
总一总:求二面角的方法你都
学会了哪些?每一种方法在使用 上要注意什么问题?
请同学们先自己思考,然后小 组内交流学习一下。
二面角的几种主要常用的求法:
1、垂面法。见例一和例二的解法一; 2、三垂线法。见例二的解法二; 3、射影面积法。见例二的解法三; 4、法向量夹角法。见例二的解法四。
A1 F A D1 B1 C1
D
B
C
要求:1、各人思考;2、小组讨论;
二面角

0
H
A C
G
B
0
0
0
0
A C G
0
0
D
H
25 3 43.3(m)
答:沿这条路向上走 100 米,升高约 43.3 米.
B
观看动画演示
课堂练习 1、如图,将等腰直角三角形纸片沿 斜线BC上的高AD折成直二面角. 求证: BDCD, BAC 60
0
A
分 析 : 由 直 二 面 角 的 定 义 可 知 , BDC 为直角 , 就是这个直二面角的平面角 .所 以 BDCD . B 若设 AD a ,则 BD CD a ,即可求得: AB AC BC 2a , 那么 BAC 为等边三角形, 0 BAC 60 所以 .
O
l
l
l
一. 二面角: 从一条直线出发的两个半平面所组成的图形
这条直线叫做二面角的棱。 这两个半平面叫做二面角的面。
二面角: 半平面--线--半平面 二面角的表示
二面角 l 二面角 AB
B
l
A
A
二面角C-AB- D
C
B
D
二面角的画法
第一种是卧式法,也称为平卧式
F E
A
CDC1 60.
AO 3 在Rt AOD中,sinADO . AD 2
在RtABC中,BC 6a. AB AC 2 AD a. BC 3
O
B
D
C
即AD与平面 所成的角600.
练习 如图,∠BOC 在平面 α 内,OA 是平面 α 的斜线,若 ∠AOB=∠AOC=60° ,OA=OB=OC=a,BC= 2a. 求:OA 与平面 α 所成的角.
平面与平面的夹角

uuur B 1O(1, 1, 2)
D O
C1 B1
y
C
A(2, 0, 0), C(0, 2, 0), M(0, 0, 1), A
B
B1(2, 2, 2), O(1, 1, 0)。
x
u u u r u u u r
u u u r u u u u r
B 1 O M A 2 0 2 0 , B 1 O M C 0 2 2 0
PPT学习交流
16
例题选 三棱讲锥P-ABC中,PA ⊥平面ABC, PA=3,AC=4,PB=PC=BC
(1)求二面角A-PC-B的大小
P
BD= 5 3
2
D DE= 15 8
AE
C
3 COS =
4
B
PPT学习交流
17
例题选 四棱讲锥P-ABCD的底面是边长为4的正方形, PD⊥面ABCD,PD=6,M,N是PB,AB的中点,
C uuD ur2(C uuA u ru A uB uru B uD ur)2
D
A
uuu ruuur uuu ruuur
B
(217)26242822CABDcosCA,BD C
E
cos
uuur CA,
uuur BD
1
2
cos
uuur uuur AC, BD
1
3
2
PPT学习交流
29
例.正三棱柱 ABC A1B1C1中,D是AC的中点, 当AB1 BC1时,求二面角DBC1C的余弦值。
By
在 RtCC1B中,CE1BE
CC
2 1
BC 2
b2 a2
1 2
x
DA
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面与平面所成的角与二面角的区别
1.平面与平面所成的角:平面与平面所成的角是指两个平面之间的夹角。
两个平面可以通过它们的法向量来确定夹角的大小。
当两个平面相交时,它们所成的角是两个平面的法向量之间的夹角。
平面与平面所成的角的度量范围是0°到180°之间。
2.二面角:二面角是指由四个不在同一平面上的点所确定的空间角。
四个点分别位于两个平面上,两个平面相交于一条直线。
二面角可以通过这条直线和两个平面的法向量来确定。
二面角的度量范围是0°到360°之间。
总结来说,平面与平面所成的角是在二维平面上的角度,而二面角是在三维空间中的角度。
平面与平面所成的角是由两个平面的法向量决定,而二面角是由四个点和两个平面的法向量决定。
此外,平面与平面所成的角度范围为0°到180°,而二面角的度量范围为0°到360°。