高中二面角的平面角的详细讲解

合集下载

(完整版)找二面角的平面角的方法汇总

(完整版)找二面角的平面角的方法汇总

找二面角的平面角的方法汇总二面角是高中立体几何中的一个重要内容,也是一个难点.对于二面角方面的问题,学生往往无从下手,他们并不是不会构造三角形或解三角形,而是没有掌握寻找二面角的平面角的方法.我们试将寻找二面角的平面角的方法归纳为以下六种类型.一、根据平面角的定义找出二面角的平面角例1在60 :的二面角:-a的两个面内,分别有A和B两点•已知A和B到棱的距离分别为2和4,且线段AB =10,试求:(1)直线AB与棱a所构成的角的正弦值;(2)直线AB与平面〉所构成的角的正弦值.分析:求解这道题,首先得找出二面角的平面角,也就是找出60 :角在哪儿•如果解决了这个问题,这道题也就解决了一半.根据题意,在平面1内作AD — a ;在平面:-内作BE —〉,CD//EB,连结BC、AC •可以证明CD_a,则由二面角的平面角的定义,可知• ADC为二面角:-a —的平面角•以下求解略.二、根据三垂线定理找出二面角的平面角例2如图,在平面一:内有一条直线AC与平面-成30 ?, AC与棱BD成45:,求平面〉与平面:的二面角的大小.分析:找二面角的平面角,可过A作AF - BD ; AE -平面-■,连结FE .由三垂线定理可证BD _ EF,则/ AFE为二面角的平面角.总结:(1)如果两个平面相交,有过一个平面内的一点与另一个平面垂直的垂线,可过这一点向棱作垂线,连结两个垂足.应用三垂线定理可证明两个垂足的连线与棱垂直,那么就可以找到二面角的平面角.(2 )在应用三垂线定理寻找二面角的平面角时,注意“作”、“连”、“证”,即“作AF丄BD ”、“连结EF ”、“证明EF丄BD ”.三、作二面角棱的垂面,垂面与二面角的两个面的两条交线所构成的角,即为二面角的平面角例3如图1,已知P为〉- CD -:内的一点,PA—:•于A点,PB —:于B点,如果/APB二n [试求二面角:--CD -:的平面角.图1第1页共3页图2UiJ C cPA丄an PA 丄CD分析: c n CD丄平面PAB.PB 丄B = PB 丄CD因此只要把平面PAB与平面〉、1的交线画出来即可•证明• AEB为〉-CD - 一:的平面角,.AEB =180 :-n :(如图2).注意:这种类型的题,如果过A作AE _ CD,垂足为E,连结EB,我们还必须证明EB _ CD,及AEBP为平面图形,这样做起来比较麻烦.例4已知斜三棱柱ABC - A1B1C1中,平面AB!与平面AG构成的二面角的平面角为830 [平面AB i与平面BC i构成的二面角为70匚试求平面AC i与平面BG构成的二面角的大小.分析:作三棱柱的直截面,可得△ DEF , 其三个内角分别为斜三棱柱的三个侧面两两构成的二面角的平面角.总结:对棱柱而言,其直截面与各个侧棱的交点所形成的多边形的各个内角,分别为棱柱相邻侧面构成的二面角的平面角.四、平移平面法例5如图,正方体ABCD-A i BQ i D i中,E为AA的中点,H为CC i上的点,且CH : C I H =i:2 .设正方体的棱长为a,求平面D I EH与底面A I B I C I D I构成的锐角的正切.分析:本题中,仅仅知道二面角棱上的一点D i,在这种情况下,寻找二面角的平面角较困难.根据平面平移不改变它与另一个平面构成的角的大小的原理,如果能把二面角中的一个平面平移,找出辅助平面与另一个平面的交线,就可以作出二面角的平面角.有了平面角之后,只需要进行常规构造三角形和解三角形的计算,就可以解决问题了.如图,过点E作EM //AD i与D i D相交于M点,过M点作MN —CP,与D i H相交于N点.可证平面EMN //平面ABiGD i .这样,求平面D i EH与平面ABQ i D i的二面角的平面角就转化为求平面D i EH与平面EMN的二面角的平面角.显然EN 为这两个平面的交线,过点M作MF - EN , F为垂足,连结D i F , 可证— EN .则.D i FM为本题要寻找的二面角.五、找垂面,作垂线例6 如图,正方体ABCD - A I B i C i D i中,M为棱AD的中点,求平面B i C i CB和平面BC i M所构成的锐二面角的正切.分析:平面AC与二面角M -BG-C的一个面B i C垂直,与另一个平面MBC i相交,过M点作MP — BC,垂足为P,过P作PN — BC,交BC i于N点,连结MN,由三垂线定理可证MN — BC i ,则• MNP为二面角M - BC i -C的平面角.总结:当一个平面与二面角的一个平面垂直,与另一个平第2页共3页面相交时,往往过这个面上的一点作这两个垂直平面交线的垂线,再过垂足作二面角棱的垂线•根据三垂线定理即可证明,并找出二面角的平面角.再如图,要找:-a--所构成的二面角的平面角,可找平面-一:,且咐「二=b , =丨,过b上任何一点A作AB _ I ,垂足为B,过B作BC _ :,垂足为C ,连结AC , 可证ACB 为:-a--的平面角.六、根据特殊图形的性质找二面角的平面角1•三线合一例7 如图,空间四边形ABCD中,AB = AD=3 , BC=CD=4, BD = 2, AC =5 .试求A- BD - C二面角的余弦值.分析:如图1 , AB二AD , BC二CD,则△ ABD和A BDC为等腰三角形.过A作AE - BD ,垂足为E ,连结CE .根据三线合一,且E为BD 中点,可证CE _ BD,则• AEC为二面角A- BD - C的平面角.2.全等三角形——"■ I 一 1 ■「• r in i. ■ i ■ i例8 如图,已知空间四边形ABCD , AB二BC二6 , AD二DC二4 , BD二8 ,AC =6 .试求A-BD-C的余弦值.分析:过A作AE - BD,垂足为E,连结CE .根据已知条件,△ AED和△ CED全等,可证CE — BD ,则•AEC为二面角A-BD-C的平面角.3.二面角的棱蜕化成一点**!、**■、匸r・rir 、•匸—r例9 如图,四棱锥A- BCED中,DB和EC与面ABC垂直,△ ABC为正三角形.(1 )若BC = EC = BD时,求面ADE与面ABC的夹角;(2)若BC =EC =2BD时,求面ADE与面ABC的夹角.分析:如图,面ADE与面ABC的交线蜕化成一点,但面ADE与面ABC与面DC相交.如果三个平面两两相交,它们可能有三种情况:(1)交线为一点;(2 )一条交线;(3 )三条交线互相平行.在图1中,两条交线BC与DE互相平行,所以肯定有过A且平行于DE的一条交线.可过A作AM // DE,平面ADE与平面ABC的交线即为AM .过A作AN _ DE 于N,过A作AF _ BC 于F .可证AN _ AM , AF _ AM , 则• NAF 为面ADE与面ABC的夹角.如图,DE与BC不平行且相交.根据三个平面两两相交可能出现的三种情况,这三个面的交线为一点.延长ED、CB相交于G点,连结AG . AG即为平面ADE与平面ABC的交线,通过一些关系可证CAE为平面ADE与平面ABC的夹角.通过以上分析和举例说明,寻找二面角的平面角的方法就比较容易了.只要我们勤动脑,善观察,多总结,抓住问题的特征,找出适当的方法,关于二面角的平面角的问题就会迎刃而解.第3页共3页。

高中数学求二面角公式

高中数学求二面角公式

高中数学求二面角公式
二面角的公式在高中数学中是非常重要的一部分,下面我们介绍一些常用的二面角公式。

二面角的平面角公式:
设二面角为$angle ACB$,其中$angle A$为$angle ACB$的一个方向角,$angle B$为$angle ACB$的另一个方向角,$angle C$为$angle ACB$的第三个方向角,则二面角的平面角公式为:
$$angle ACB = angle A + angle B + angle C$$
这个公式可以帮助我们计算任意一个方向角的平面角。

二面角的垂直角公式:
设二面角为$angle ACB$,其中$angle A$为$angle ACB$的一个垂直角,$angle B$为$angle ACB$的另一个垂直角,$angle C$为$angle ACB$的第三个垂直角,则二面角的垂直角公式为:
$$angle ACB = 2angle A + angle B + angle C$$
这个公式可以帮助我们计算任意一个垂直角的平面角。

二面角的平面角和垂直角的关系公式:
设二面角为$angle ACB$,其中$angle A$为$angle ACB$的一个垂直角,$angle B$为$angle ACB$的另一个垂直角,$angle C$为$angle ACB$的第三个垂直角,则二面角的平面角和垂直角的关系公式为:
$$angle ACB = 2angle A + angle B - angle C$$
这个公式可以帮助我们在计算二面角的平面角和垂直角时,把它们的关系理清楚。

以上是一些比较常用的二面角公式,它们可以帮助我们更好地理解和计算二面角的大小。

高中数学二面角

高中数学二面角

高中数学二面角
摘要:
1.二面角的定义
2.二面角的性质
3.二面角的应用
4.结论
正文:
一、二面角的定义
二面角是由两个共享一个公共顶点的平面角所组成的角,它的度量通常使用两个平面角的补角。

二面角通常用希腊字母B-A-C 表示,其中A、B、C 是平面角A-bc、B-ac、C-ab 的补角。

二、二面角的性质
1.二面角的度量是锐角或钝角,它的度量范围是0°到180°。

2.二面角的度量等于它的两个组成平面角的补角之和。

3.二面角的度量与它的组成平面角的度量一一对应。

4.如果两个二面角共享一个公共顶点,并且它们的度量之和为180°,则这两个二面角是互补二面角。

三、二面角的应用
二面角在三维几何中有广泛的应用,特别是在解决立体几何问题时。

例如,在求解立体几何中的表面角、交角、投影角等问题时,常常需要使用二面角的概念和性质。

四、结论
二面角是三维几何中的一个重要概念,它具有丰富的性质和应用。

人教新课标高二下第九章 二面角

人教新课标高二下第九章 二面角
二面角
二面角
一、二面角的定义
1、定义
从一条直线出发的两个半平面所组成
的图形叫做二面角, 这条直线叫做二面角
l
的棱, 这两个半平面叫做二面角的面.
2、二面角的表示方法
二面角-AB-
A
C
B
二面角- l-
D
l
B

A
二面角C-AB- D
F
E
A
B
D
C
二面角C-AB- E
二面角
二、二面角的平面角
1、定义
1、如图,AB是圆的直径,PA垂 P
直圆所在的平面,C是圆上任一点, C
则二面角P-BC-A的平面角为:
A.∠ABP B.∠ACP C.都不是 A
B
2、已知P为二面角 l 内一 点,且P到两个半平面的距离都
β
B
P
等于P到棱的距离的一半,则这
个二面角的度数是多少? 60º
O
l
A
二面角
作业1:已知Rt△ABC在平面内,斜边AB在30º的二面 角-AB- 的棱上,若AC=5,BC=12,求点C 到平面 的距 离CO。
∴所求二面角的度数为120º
二面角
一、二面角的定义:
从一条直线出发的两个半 平面所组成的图形叫做二 面角。这条直线叫做二面 角的棱。这两个半平面叫
做二面角的面。
小 结
二、二面角的表示方法:
二 面 角 -AB- 二 面 角 C-AB- D
二 面 角 - l-
三、二面角的平面角: 1、二面角的平面角必须满足
又∵∠MPN=60º
∴CD=PC 2a
∴∠COD=90º
一“作” 二“证”

二面角的平面角的概念

二面角的平面角的概念

二面角的平面角的概念
以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线相交所成的角称为二面角的平面角。

二面角的大小可用平面角表示。

二面角也可以看作是从一条直线出发的一个半平面绕着这条直线旋转,它的最初位置和最终位置组成的图形。

二面角的平面角的大小,与其顶点在棱上的位置无关。

如果两个二面角能够完全重合,则说它们是相等的.如果两个二面角的平面角相等,那么这两个二面角相等。

反之,相等二面角的平面角相等。

直二面角:平面角是直角的二面角叫做直二面角。

互相垂直的平面:相交成直角的两个平面叫做互相垂直的平面。

高中数学二面角

高中数学二面角

高中数学二面角
(原创版)
目录
1.高中数学二面角的定义
2.二面角的性质与计算方法
3.二面角的应用
4.总结
正文
一、高中数学二面角的定义
二面角,又称二面角,是指两个平面之间的夹角。

在高中数学中,我们主要研究两个平面之间的夹角。

二面角的度量单位通常为度或弧度。

二、二面角的性质与计算方法
1.二面角的性质
(1) 二面角是非负角,即其度数或弧度值非负。

(2) 二面角的度数或弧度值是平面内任意一条直线与另一平面所成的角度的极限。

(3) 二面角具有可积性,即二面角可以表示为两个平面内直线所成的角度的极限。

2.二面角的计算方法
计算二面角的方法有多种,其中最常见的是使用向量法和投影法。

(1) 向量法:利用两个平面的法向量计算二面角的余弦值,然后通过反余弦函数求得二面角的度数或弧度值。

(2) 投影法:在两个平面上分别选取一条直线,将其投影到同一个平
面上,计算两条投影线段之间的夹角,再利用三角函数求得二面角的度数或弧度值。

三、二面角的应用
在实际问题中,二面角常常出现在建筑、机械、物理等领域。

例如,在建筑中,二面角常用于计算建筑物的立体形状和角度;在机械中,二面角常用于计算机械零件的相对位置和角度;在物理中,二面角常用于计算光线的传播方向和角度等。

四、总结
高中数学二面角是研究两个平面之间夹角的重要概念,其性质和计算方法对于解决实际问题具有重要意义。

高二数学 空间角——二面角

高二数学 空间角——二面角

01 知识梳理
3.二面角的求法:
(1)找到或作出二面角的平面角
A
B
A`
D
M
C
01 知识梳理
3.二面角的求法: (3)向量法
B
CA l
D
01 知识梳理
3.二面角的求法: ① 垂直于棱的两个向量的夹角; (3)向量法 ② 求两个平面法向量的夹角.
22 2
小试牛刀
分析:(折叠问题)找二面角的平面角
22 2
小试牛刀
练习2

22 2
感受高考
课堂小结
二面角的求法: (1)构造二面角的平面角; (2)阴影面积法; (3)向量法:转化为与棱垂直两向量的夹角问题; 转化为两平面法向量的夹角的问题.
ห้องสมุดไป่ตู้
P
D
D E
F
g
E
F
B
C
C
22 2
小试牛刀
分析:找二面角的平面角
A
B
D
A
D
CB
C
22 2
小试牛刀
例2 正三棱锥的一个侧面的面积与底面积之比为2:3, 求这个三棱锥的侧面与底面所成二面角的度数?
分析:阴影面积法
22 2
小试牛刀
22 2
小试牛刀
例4:如图,边长为2的正方形ABCD 所在的平面与半圆弧 CD所在平 面垂直,M 是弧CD 上异于 C、D 的点.当三棱锥 M-ABC体积最大时, 求面MAB 与面MCD 所成二面角的正弦值.
高中数学 高二年级
空间角——二面角
01 知识梳理
1.二面角:从一条直线出发的两个半平面所组成的图形叫做二 面角,这条直线叫作二面角的棱,每个半平面叫作

二面角的平面角的一种定位方法

二面角的平面角的一种定位方法

二面角的平面角的一种定位方法平面角是指在一个平面内,由两条射线形成的角度,对于特定的角度,可以使用不同的定位方法进行确定。

二面角可以理解为由两个平面的夹角组成的角度,因此需要一种特殊的定位方法来确定二面角。

在讨论二面角的定位方法之前,先对一些相关概念进行简要介绍。

二面角由两个平面内的两条射线形成。

一条射线可以用其指向来定位,即通过确定射线上的两个点来唯一确定射线。

而对于平面,可以通过确定平面内的三个非共线点来唯一定义一个平面。

根据以上的概念,我们可以考虑使用指向射线和确定平面内的三个点来确定二面角。

方法一:使用指向射线和在两个平面内确定三个点的方法。

1.首先,通过指向射线确定两条射线。

可以假设一条射线为A,另一条射线为B。

2.在第一个平面内,确定三个非共线点C1、D1和E1、可以通过交点、垂足等方法确定这三个点。

3.同样的,在第二个平面内,确定三个非共线点C2、D2和E24. 接下来,我们可以通过向量来计算平面C1D1E1和平面C2D2E2的夹角。

可以使用向量的夹角公式来计算二面角。

夹角公式为:cosθ = (a·b) / (,a,·,b,),其中a和b分别为两个向量。

方法二:使用平面法线和确定平面内的三个点的方法。

1.首先,通过平面法线确定两个平面。

可以假设第一个平面的法线为n1,第二个平面的法线为n22.在第一个平面内,确定三个非共线点C1、D1和E1,可以使用交点、垂足等方法确定。

3.同样的,在第二个平面内,确定三个非共线点C2、D2和E24. 接下来,我们可以通过向量法线公式来计算平面C1D1E1和平面C2D2E2的夹角。

向量法线公式为:cosθ = ,n1·n2, / (,n1,·,n2,),其中n1和n2分别为两个平面的法线向量。

以上是两种常见的二面角的定位方法,可以根据具体情况选择合适的方法。

需要注意的是,在实际操作中,可能需要使用3D计算软件或者数学公式来进行详细计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中立体几何中二面角的平面角的作法
一、二面角的平面角的定义
如图(1),α、β是由l出发的两个平面, O是l上任意一点OC ∈α,且OC ⊥l;CD∈β,且OD⊥l。

这就是二面角的平面角的环境背景,即∠COD是二面角α—l—β的平面角,从中不难得到下列特征:
Ⅰ、过棱上任意一点,其平面角是唯一的;
Ⅱ、其平面角所在平面与其两个半平面均垂直;
另外,如果在OC上任取上一点A,作AB⊥OD垂足为B,那么由特征Ⅱ可知AB ⊥β . 突出l、OC、OD、AB,这便是另一特征;
Ⅲ、体现出完整的三垂线定理(或逆定理)的环境背景。

二、对以上特征进行剖析
由于二面角的平面角是由一点和两条射线构成,所以二面角的平面角的定位可化归为“定点”或“定线(面)”的问题。

特征Ⅰ表明,其平面角的定位可先在棱上取一“点”,耐人寻味的是这一点可以随便取,但又总是不随便取定的,它必须与问题背景相互沟通,给计算提供方便。

例1
矩形ABCD,AB=3,BC=4,沿对角线BD把△ABD折起,使点A在平面BCD 上的射影A′落在BC上,求二面角A—BC-—D的大小。

这是一道由平面图形折叠成立体图形的问题,解决问题的关键在于搞清折叠前后“变”与“不变”。

在平面图形中过A作AE⊥BD交BD于O、交BC于E,则折叠后OA、OE与BD的垂直关系不变。

但OA与OE此时变成相交两线段并确定一平面,此平面必与棱垂直。

由特征Ⅱ可知,面AOE与面ABD、面CBD的交线OA与OE所成的角,即为所求二面角的平面角。

另外,A在面BCD上的射影必在OE所在的直线上,又题设射影落在BC上,所以E点就是A′,这样的定位给定量计算提供了优质服务。

通过对例2的定性分析、定位作图和定量计算,特征Ⅱ从另一角度告诉我们:要确定二面角的平面角,我们可以把构成二面角的两个半平面“展平”,然后,在棱上选取一适当的垂线段,即可确定其平面角。

“平面图形”与“立体图形”相映生辉,不仅便于定性、定位,更利于定量。

特征Ⅲ显示,如果二面角α—l—β的两个半平面之一,存在垂线段AB,那么过垂足B作l的垂线交l于O,连结AO,由三垂线定理可知OA⊥l;或者由A作l的垂线交l于O,连结OB,由三垂线定理逆定理可知OB⊥l,此时,∠AOB 就是二面角α—l—β的平面角,如图。

由此可见,二面角的平面角的定位可以找“垂线段”。

例2已知正三棱锥V—ABC侧棱长为a,高为b,求侧面与底面所成的角的大小。

由于正三棱锥的顶点V在底面ABC上的射影H是底面的中心,所以连结CH交AB于O,且OC⊥AB,则∠VOC为侧面与底面所成二面角的平面角如图(2)。

正因为正三棱锥的特性,解决此问题,可以取AB的中点O为其平面角的顶点,而且使背景突出在面VOC上,给进一步定量创造得天独厚的条件。

特征Ⅱ指出,如果二面角α—l—β的棱l垂直某一平面γ;那么γ与α、β的交线所成的角就是α—l—β的平面角,如图。

由此可见,二面角的平面角的定位可以考虑找“垂平面”。

例3 在正方体ABCD—A1B1C1D1中,棱长为2,E为BC的中点。

求面B1D1E 与面积BB1C1C所成的二面角的大小。

例3的环境背景表明,面B1D1E与面BB1C1C构成两个二面角,
由特征Ⅱ可知,这两个二面角的大小必定互补,下面,如果思维由特征Ⅲ监控,背景中的线段C1D1会使眼睛一亮,我们只须由C1(或D1)作B1E的垂线交B1E于O,然后连结OD1(或OC1),即得面D1BE与面CC1B1E所成二面角的平面角∠C1OD1,如图。

三、三个特征的关系
以上三个特征提供的思路在解决具体总是时各具特色,其标的是分别找“点”、“垂面”、“垂线段”。

事实上,我们只要找到其中一个,另两个就接踵而来。

掌握这
种关系对提高解题技能和培养空间想象力非常重要。

在许多问题中可借助由特征Ⅲ,找到(作出) “垂线段”便可定位。

例4 已知Rt△ABC的两直角边AC=2,BC=3,P为斜边上一点,沿CP将此直角三角形折成直二面角A—CP—B,当AB=71/2时,求二面角P—AC—B的大小。

作法∵A—CP—B为直角二面角,
∴过B作BD⊥CP交CP的延长线于D,则BD⊥DM APC。

∴过D作DE ⊥AC,垂足为E,连BE。

∴∠DEB为二面角A—CP—B的平面角。

再说,定位是为了定量,求角的大小往往要化归到一个三角形中去解,有了“垂线段”就可把它化归为解一个直角三角形。

由此可见,要作,最好考虑作“垂线段”。

综上所述,二面角的平面角的正确而合理的定位,要在正确其定义的基础上,掌握其三个基本特征,并灵活运用它们考察问题的环境背景,建立良好的主观心理空间和客观心理空间,以不变应万变。

二面角·典型例题分析
例1 如图1-125,PC⊥平面ABC,AB=BC=CA=PC,求二面角B-PA-C的平面角的正切值。

分析由PC⊥平面ABC,知平面ABC⊥平面PAC,从而B在平面PAC上的射影在AC 上,由此可用三垂线定理作出二面角的平面角。

解∵ PC⊥平面ABC
∴平面PAC⊥平面ABC,交线为AC作BD⊥AC于D点,据面面垂直性质定理,BD⊥平面PAC,作DE⊥PA于E,连BE,据三垂线定理,则BE⊥PA,从而∠BED是二面角B-PA -C的平面角。

相关文档
最新文档