空间圆柱体的外接球和内切球问题

合集下载

高考数学空间几何体的外接球与内切球常见题型

高考数学空间几何体的外接球与内切球常见题型

高考数学空间几何体的外接球与内切球常见题型本文介绍了空间几何体的外接球与内切球的经典类型,其中第一种类型为墙角模型,即三条棱两两垂直,不需要找球心的位置即可求出球半径。

具体方法是找到三条两两垂直的线段,然后使用公式2R=a+b+c或2R=a^2+b^2+c^2来求出R。

例如,在已知各顶点都在同一球面上的正四棱柱的高为4,体积为16的情况下,可以求出该球的表面积为32π。

第二种类型为对棱相等模型,补形为长方体。

在这种情况下,需要找到对棱相等的空间几何体,并补成长方体。

例如,如果三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积为36π。

除此之外,文章还给出了一些具体的例子,如正三棱锥S-ABC中,M、N分别是棱SC、BC的中点,且AM⊥MN,若侧棱SA=23,则正三棱锥S-ABC外接球的表面积为36π。

同时,文章还提到了一些需要注意的引理,如正三棱锥的对棱互相垂直等。

需要注意的是,文章中存在一些格式错误和明显有问题的段落,需要进行删除或修改。

题设:三棱锥(即四面体)中,已知三组对棱分别相等,求外接球半径(AB=CD,AD=BC,AC=BD)首先,我们可以画出一个长方体,标出三组互为异面直线的对棱,如图2-1所示。

设出长方体的长宽高分别为a,b,c,AD=BC=x,AB=CD=y,AC=BD=z,列方程组:a^2+b^2=x^2b+c=yc^2+a^2=z^2根据墙角模型,我们可以得到2R=a+b+c=2(x^2+y^2+z^2)/(x^2+y^2+z^2),化简得到R=sqrt(2)/2*(x^2+y^2+z^2)/(x^2+y^2+z^2),求出R即可。

例2(1)如下图所示三棱锥A-BCD,其中AB=CD=5,AC=BD=6,AD=BC=7,则该三棱锥外接球的表面积为。

2)在三棱锥A-BCD中,AB=CD=2,AD=BC=3,AC=BD=4,则三棱锥A-BCD外接球的表面积为。

3)正四面体的各条棱长都为2,则该正面体外接球的体积为。

空间球体的外接球和内切球问题

空间球体的外接球和内切球问题

空间球体的外接球和内切球问题在几何学中,空间球体是一个三维的球形体,有许多有趣的性质和问题。

其中,外接球和内切球问题是一种经典的几何学问题。

外接球问题给定一个空间球体,外接球问题是要找到能够刚好包围该球体的最小球体,即外接球。

这个问题可以通过寻找球心和半径来解决。

外接球必须满足以下三个条件:1. 外接球的球心与原球体的球心在同一直线上;2. 外接球的球心到原球体表面的任意一点的距离等于外接球的半径;3. 外接球的半径最小。

解决外接球问题的关键是找到外接球的球心和半径的数学表达式。

该问题的解决方案可以通过推导和几何推理来得到。

内切球问题内切球问题是要找到能够刚好被该空间球体包围的最大球体,即内切球。

与外接球问题类似,解决内切球问题也需要找到内切球的球心和半径的数学表达式。

内切球必须满足以下三个条件:1. 内切球的球心与原球体的球心在同一直线上;2. 内切球的球心到原球体表面的任意一点的距离等于内切球的半径;3. 内切球的半径最大。

解决内切球问题的方法和外接球问题类似,需要进行几何推导和推理。

应用和意义外接球和内切球问题在许多领域有着广泛的应用。

在工程学和建筑学中,解决外接球和内切球问题可以帮助设计具有最佳空间利用和结构稳定性的建筑物和零件。

在计算机图形学和计算几何学中,外接球和内切球问题是渲染和碰撞检测等算法的基础。

此外,外接球和内切球问题还与球体的包络问题和球体堆积问题等相关。

总结外接球和内切球问题是空间球体的经典几何学问题。

通过寻找最小外接球和最大内切球的球心和半径,可以解决这两个问题。

外接球和内切球问题在工程学、建筑学和计算机图形学等领域有着广泛的应用。

立体几何外接球和内切球十大题型

立体几何外接球和内切球十大题型

立体几何外接球和内切球十大题型
立体几何中的外接球和内切球是常见的题型,下面我将列举十个常见的题型并进行解答。

1. 求立方体的外接球和内切球的半径。

外接球的半径等于立方体的对角线的一半,内切球的半径等于立方体的边长的一半。

2. 求正方体的外接球和内切球的半径。

外接球的半径等于正方体的对角线的一半,内切球的半径等于正方体的边长的一半。

3. 求圆柱体的外接球和内切球的半径。

外接球的半径等于圆柱体的底面半径,内切球的半径等于圆柱体的高的一半。

4. 求圆锥的外接球和内切球的半径。

外接球的半径等于圆锥的底面半径,内切球的半径等于圆锥的高的一半。

5. 求球的外接球和内切球的半径。

外接球的半径等于球的半径的根号3倍,内切球的半径等于球的半径的一半。

6. 求棱锥的外接球和内切球的半径。

外接球的半径等于棱锥的底面边长的一半,内切球的半径等于棱锥的高的一半。

7. 求棱柱的外接球和内切球的半径。

外接球的半径等于棱柱的底面边长的一半,内切球的半径等于棱柱的高的一半。

8. 求四面体的外接球和内切球的半径。

外接球的半径等于四面体的外接圆的半径,内切球的半径等
于四面体的内切圆的半径。

9. 求正六面体的外接球和内切球的半径。

外接球的半径等于正六面体的对角线的一半,内切球的半径等于正六面体的边长的一半。

10. 求正八面体的外接球和内切球的半径。

外接球的半径等于正八面体的对角线的一半,内切球的半径等于正八面体的边长的一半。

以上是关于立体几何中外接球和内切球的十个常见题型及其解答。

希望能对你有所帮助。

第08讲 拓展一:空间几何体内接球与外接球问题 (讲)(含答案解析)

第08讲 拓展一:空间几何体内接球与外接球问题 (讲)(含答案解析)

第08讲拓展一:空间几何体内接球与外接球问题(讲)第08讲拓展一:空间几何体内接球与外接球问题(精讲)高频考点一:空间几何体的内切球问题建立模型球的内切问题(等体积法)例如:在四棱锥P ABCD -中,内切球为球O ,求球半径r .方法如下:P ABCD O ABCD O PBC O PCD O PAD O PABV V V V V V ------=++++即:1111133333P ABCD ABCD PBC PCD PAD PAB V S r S r S r S r S r -=⋅+⋅+⋅+⋅+⋅,可求出r .典型例题例题(2022·江苏·苏州外国语学校高一期末)1.在三棱锥S ABC -中,SA ⊥平面,90ABC ABC ∠= ,且3,4,5SA AB AC ===,若球O 在三棱锥S ABC -的内部且与四个面都相切(称球O 为三棱锥S ABC -的内切球),则球O 的表面积为()A .169πB .49πC .3227πD .1681π【答案】A解:因为SA ⊥平面,90ABC ABC ∠= ,AB ⊂平面ABC ,AC ⊂平面ABC ,BC ⊂平面ABC ,所以SA AB ⊥,SA AC ⊥,SA BC ⊥,又,BC AB SA AB A ⊥= ,所以BC ⊥平面SAB ,所以BC SB ⊥,所以,,SAB ABC SAC SBC ,均为直角三角形,设球O 的半径为r ,则()1+++3S ABC SAB CAB SAC SBC V S S S S r -=⋅ ,而11334632S ABC V -=⨯⨯⨯⨯=,11156,35222SAB CAB SAC SBC S S SA AB S S ==⋅===⨯⨯= ,所以115156+6++6322r ⎛⎫⋅= ⎪⎝⎭,解得23r =,所以球O 的表面积为221644239r S πππ⎛==⨯=⎫ ⎪⎝⎭,故选:A .例题(2022·全国·高一)2.某学校开展手工艺品展示活动,小明同学用塑料制作了如图所示的手工艺品,其外部为一个底面边长为6的正三棱柱,内部为一个球,球的表面与三棱柱的各面均相切,则该内切球的表面积为___________,三棱柱的顶点到球的表面的最短距离为___________.【答案】12π解:依题意如图过侧棱的中点作正三棱柱的截面,则球心为MNG 的中心,因为6MN =,所以MNG 内切圆的半径13r OH MH ====即内切球的半径R 2412S R ππ==,又正三棱柱的高12AA R ==所以23OM OH ==AO =所以A 到球面上的点的距离最小值为AO R -故答案为:12π例题(2022·全国·高一专题练习)3.如图,直三棱柱111ABC A B C -有外接圆柱1OO ,点O ,1O 分别在棱AB 和11A B 上,4AB =.(1)若AC BC =,且三棱柱111ABC A B C -有一个内切球,求三棱柱111ABC A B C -的体积;【答案】(1))161-(1)O ,1O 是圆柱的上下底面圆心,而且点O ,1O 分别在棱AB 和11A B 上,由此可知ABC 是AB 为斜边的直角三角形.4,AB AC BC =∴==11422ABC S AC BC =⋅=⨯= 设ABC 的内切圆的半径为r ,则由等面积法,可知:()1122AB BC AC r AC BC ++⋅=⋅,)21r ∴=,故三棱柱111ABC A B C -的内切球的半径也是)21,故三棱柱的高)241h r ==,进而三棱柱111ABC A B C -的体积))441161ABC V S h =⋅=⨯-=- .题型归类练(2022·全国·高一)1.已知点O 到直三棱柱111ABC A B C -各面的距离都相等,球O 是直三棱柱111ABC A B C -的内切球,若球O 的表面积为16π,ABC 的周长为4,则三棱锥1A ABC -的体积为()A .43B .163C .3D .3(2022·湖南·高一期末)2锥的底面和侧面均相切)的表面积为______.(2022·全国·高三专题练习(文))3.若正四棱锥P ABCD -内接于球O ,且底面ABCD 过球心O ,则球O 的半径与正四棱锥P ABCD -内切球的半径之比为__________.(2022·广西玉林·模拟预测(理))4.若正四棱锥P ABCD -内接于球O ,且底面ABCD 过球心O ,球的半径为4,则该四棱锥内切球的体积为_________.高频考点二:空间几何体的外接球问题模型1:长(正)方体模型——公式法建立模型正方体或长方体的外接球的球心为其体对角线的中点(1)设长方体一个顶点出发的三条边长分别为a ,b ,c ,则外接球半径2r =;(2)设正方体边长为a ,则外接球半径2r a =;典型例题例题(2022·贵州黔西·高二期末(理))1.若一个长方体的长、宽,高分别为4,2,3,则这个长方体外接球的表面积为______________.【答案】29π由题知,长方体的体对角线即为外接球的直径,所以2222(2)42329R =++=,所以2294R =所以外接球的表面积2429S R ππ==.故答案为:29π例题(2022·新疆·乌苏市第一中学高一期中)2.正方体1111ABCD A B C D -的棱长为2,则此正方体外接球的表面积是______.【答案】12π因为正方体的体对角线长度等于长方体外接球的直径,又正方体1111ABCD A B C D -的棱长为2,所以正方体外接球的直径为则该正方体外接球的表面积是2412ππ==S r .故答案为:12π.题型归类练(2022·全国·高一期末)5.正方体的外接球与内切球的表面积之比是()A .13B .3C .D (2021·河北·深州长江中学高三期中)6.已知某正方体外接球的表面积为3π,则该正方体的棱长为______.(2021·福建·莆田锦江中学高一期中)7.已知正方体的棱长为2,则其外接球的表面积为______.模型2:墙角型,对棱相等型——补形法(补长方体或正方体)建立模型①墙角模型(三条线两个垂直)题设:三条棱两两垂直(重点考察三视图)②对棱相等模型(补形为长方体)题设:三棱锥(即四面体)中,已知三组对棱分别相等,求外接球半径(AB CD =,AD BC =,AC BD =)典型例题例题(2022·全国·高一)1.若三棱锥-P ABC 的三条侧棱PA ,PB ,PC 两两互相垂直,且PA PB PC ===则其外接球的表面积为()()A .6πB .12πC .18πD .24π【答案】A侧棱PA ,PB ,PC 两两互相垂直,且PA PB PC ===PA ,PB ,PC 作为正方体的棱长,如图:设外接球的半径为R ,则正方体的对角线的长2R =所以R =,所以外接球的表面积为246S R ππ==.故选:A例题(2022·江苏·南京师大附中高一期末)2.在三棱锥-P ABC 中,5PA BC ==,PB AC ==PC AB ==锥外接球的表面积为_________;外接球体积为_________.【答案】26π由题意,该三棱锥的对棱相等,可知该三棱锥可置于一个长方体中,如图所示:记该长方体的棱长为,,a b c ,则222222101725a b a c b c ⎧+=⎪+=⎨⎪+=⎩,即22226a b c ++=,所以r =,23442633S r V r πππ====,.故答案为:26π题型归类练(2022·辽宁·本溪高中高一阶段练习)8.已知正三棱锥S ABC -,则此三棱锥的外接球的表面积为()A .πB .3πC .6πD .9π(2022·安徽·高一阶段练习)9.鳖臑是我国古代对四个面均为直角三角形的三棱锥的称呼.如图,三棱锥A BCD -是一鳖臑,其中AB BC ⊥,AB BD ⊥,BC CD ⊥,AC CD ⊥,且3BC DC ==,4AB =.则三棱锥A BCD -外接球的表面积是()A.25πB .34πC .100πD .3(2022·河北·沧县中学高一期中)10.三棱锥-P ABC 中,已知,,PA PB PC 两两垂直,且1,2PA PB PC ===,则三棱锥-PABC 的外接球的表面积为___________.(2022·贵州·清华中学高三阶段练习(理))11.四棱锥ABCD 中,2,======AB CD AD BC AC BD A ,B ,C ,D 的外接球的表面积是__________.模型3:单面定球心法(定+算)建立模型单面定球心法(定+算)步骤:①定一个面外接圆圆心:选中一个面如图:在三棱锥-P ABC 中,选中底面ABC ∆,确定其外接圆圆心1O (正三角形外心就是中心,直角三角形外心在斜边中点上,普通三角形用正弦定理定外心2sin ar A=);②过外心1O 做(找)底面ABC ∆的垂线,如图中1PO ⊥面ABC ,则球心一定在直线(注意不一定在线段1PO 上)1PO 上;③计算求半径R :在直线1PO 上任取一点O 如图:则OP OA R ==,利用公式22211OA O A OO =+可计算出球半径R .典型例题例题(2022·山西省长治市第二中学校高一期末)1.在四面体ABCD 中,,ABD BCD 都是边长为2的等边三角形,且平面ABD ⊥平面BCD ,则该四面体外接球的表面积为_________.【答案】203π依题意作图,取BD 的中点P ,连接AP ,CP ,取ABD △的中心E ,BCD △的中心G ,分别作平面ABD 和平面BCD 的垂线,得交点H ,则H 点就是四面体ABCD 外接球的球心,CH 就是球的半径r ,AP CP HG PE CG =====,222253r CH CG GH ==+=,外接球的面积为22043S r ππ==;故答案为:203π.例题(2023·山西大同·高三阶段练习)2.球内接直三棱柱1111,1,120,2ABC A B C AB AC BAC AA -===︒∠=,则球表面积为___________.【答案】8π设三角形ABC 和三角形111A B C 的外心分别为D ,E .可知其外接球的球心O 是线段DE 的中点,连结OC ,CD ,设外接球的半径为R ,三角形ABC 的外接圆的半径r ,1,120,AB AC BAC =∠=︒=可得BC =,由正弦定理得,21sin120r r ︒=∴=,而在三角形OCD 中,可知222||||||CO OD CD =+,即2212R r =+=,因此三棱柱外接球的表面积为248S R ππ==.故答案为:8π例题(2022·广西贺州·高一期末)3.已知ABC ∆的三个顶点都在球O 上,AC BC ⊥,2AC BC ==,且三棱锥3O ABC V -=,则球O 的体积为()A .π3B .32π3C .π3D .36π【答案】D△ABC 中,AC BC ⊥,2AC BC ==,则AB =取AB 中点H ,连接OH ,则点H 为△ABC 所在小圆圆心,OH ⊥平面ABC则112232O ABC V OH -=⨯⨯⨯⋅,解之得OH则球O 的半径3OA 则球O 的体积为34π3=36π3⋅故选:D例题(2022·河南开封·高二期末(理))4.已知球O 为三棱锥D ABC -的外接球,球O 的体积为256π3,正三角形ABC 的外接圆半径为D ABC -的体积的最大值为______.【答案】设ABC 外接圆的圆心为1O ,因为正三角形ABC 的外接圆半径为23,即123O B =,由正弦定理243sin 60ACR ==︒,得6AC =,所以166sin 60932ABC S =⨯⨯⨯︒= ,要使三棱锥D ABC -的体积最大,则1O D ⊥平面ABC ,且球心O 在线段1O D 上,因为球O 的体积为34π256π33R =,所以球O 的半径为4R =.在1Rt OO B 中,由勾股定理得221116122OO R O B =-=-=,所以三棱锥D ABC -体积的最大值()()111932418333ABC V S OO R =⋅+=⨯⨯+=△.故答案为:183题型归类练(2022·河北·衡水市第十三中学高一阶段练习)12.在正四棱锥P ABCD -中,4AB =,6PA =,则平面PAB 截四棱锥P ABCD -外接球的截面面积是()A .655πB .365πC .12πD .36π(2022·安徽·巢湖市第一中学模拟预测(文))13.已知三棱锥S ABC -中,平面SAC ⊥平面ABC ,且AB AC ⊥,30SCA ∠=︒,若4AB SA ==,则三棱锥S ABC -外接球的表面积为()A .64πB .128πC .40πD .80π(2022·重庆市万州第二高级中学高一期中)14.在ABC 中,角A ,B ,C 所对的边为a ,b ,c ,且3a =,π3A =.又点A ,B ,C 都在球O 的球面上,且点O 到平面ABC 5O 的体积为()A .642π3B 635π3C .643π3D 636π3(2022·河南·汝州市第一高级中学模拟预测(文))15.已知点,,,A B C D在同一个球的球面上,1AB =,BC =,2AC =,若四面体ABCD)A .14425πB .24825πC .57625πD .67625π(2022·全国·高三专题练习)16.已知球O 是正三棱锥A BCD -的外接球,3BC =,AB =E 在线段BD 上,且6BD BE =,过点E 作球O 的截面,则所得截面圆面积的取值范围是___________.模型4:双面定球心法(两次单面定球心)建立模型如图:在三棱锥-P ABC 中:①选定底面ABC ∆,定ABC ∆外接圆圆心1O ②选定面PAB ∆,定PAB ∆外接圆圆心2O ③分别过1O 做面ABC 的垂线,和2O 做面PAB 的垂线,两垂线交点即为外接球球心O .典型例题例题(2022·全国·高三专题练习)1.已知点A 、B 、C 、D 都在球O 的球面上,AB AC =,BCD ∆是边长为1的等边三角形,AD 与平面BCD 所成角的正弦值为3,若2AD =,且点D 在平面BCD 上的投影与D 在BC 异侧,则球O 的表面积为()A .πB .4πC .8πD .16π【答案】B由题设,若E 是BC 的中点,则O '是△BCD 的中心,连接DE ,如图示:由题设知:DE BC ⊥,AE BC ⊥,又AE DE E = ,则BC ⊥面AED ,而BC ⊂面BCD ,即面BCD ⊥面AED ,过A 作AF ⊥面BCD ,则F 必在直线DE 上,易知:ADF ∠为AD 与平面BCD 所成角的平面角,又AD 与平面BCD ,2AD =,可得DF =.过O '作OO DE '⊥交AD 于O ,易知:OD OB OC ==,而O D '=12O D DF '=,又//AF OO ',故O 为AD 的中点,OD OA =,∴OD OB OC OA ===,即O 是球心,故球O 的半径为1,∴球O 的表面积为4π.故选:B例题(2022·全国·高三专题练习(理))2.已知平面四边形ABCD 中,4AB AD BD =====,现沿BD 进行翻折,使得A 到达A '的位置,连接A C ',此时二面角A BD C '--为150°,则四面体A BCD '外接球的半径为()A .3B .3C D .3【答案】C解:取BD 的中点E ,连接A E ',CE ,因为4AB AD BD =====即BC CD ==所以CE BD ⊥,A E BD '⊥,A EC '∠即为二面角A BD C '--的平面角,且90BCD ∠=︒,所以BCD △外接圆的圆心为E ,设A BD ' 外接圆的圆心为1O ,则1O E =过点1O ,E 分别作平面A BD ',平面BDC 的垂线,交于点O ,则O 即为四面体A BCD '外接球的球心.因为二面角A BD C '--的平面角为150︒,即150A EC '∠=︒,则160∠=︒OEO .在1Rt OO E △中,3cos603OE ==︒,连接OB ,则OB 即为外接球的半径R ,则2222283R OB OE BE ==+=,即3R =,故选:C .题型归类练(2022·湖南·邵阳市第二中学高一期末)17.一边长为4的正方形ABCD ,M 为AB 的中点,将AMD ,BMC △分别沿MD ,MC 折起,使MA ,MB 重合,得到一个四面体,则该四面体外接球的表面积为().A .763πB .48πC .81πD .9(2022·广东梅州·高一阶段练习)18.如图,在三棱锥-P ABC ,PAC △是以AC 为斜边的等腰直角三角形,且CB =AB AC ==,二面角P AC B --的大小为120︒,则三棱锥-P ABC 的外接球表面积为()AB .10πC .9πD .(4π+参考答案:1.B【分析】设三棱柱111ABC A B C -的高为h ,内切球O 的半径为r ,通过内切球的半径可求出h ,再求得ABC S ,由体积公式即可求解三棱锥1A ABC -的体积.【详解】解:设直三棱柱111ABC A B C -的高为h ,AB =c ,BC =a ,AC =b ,内切球O 的半径为r ,则h =2r ,由题意可知球O 的表面积为2164r ππ=,解得r =2,∴h =4,又△ABC 的周长为4,即a +b +c =4,∴连接OA ,OB ,OC ,111,,OA OB OC 可将直三棱柱111ABC A B C -分成5个棱锥,即三个以原来三棱柱侧面为底面,内切球球心为顶点的四棱锥,两个以原来三棱柱底面为底面,内切球球心为顶点的的三棱锥,∴由体积相等可得直三棱柱111ABC A B C -的体积为ABC S h =13ahr +13bhr +13chr +2×13ABC S r ,即4ABC S =13(a +b +c )hr +43ABC S ,∴ABC S =4,∴三棱锥1A ABC -的体积为13ABC S h =13×4×4=163.故选:B .2.4π【分析】根据已知先求母线长,再结合轴截面可得半径,然后可得.【详解】有题意可知,PA π⋅=,所以PA =所以,圆锥的轴截面是边长为23的正三角形,圆锥的内切球的半径等于该正三角形的内切圆的半径,所以tan 3tan 301R OD AD OAD ==⋅∠=⨯︒=,所以该圆锥的内切球的表面积为4π.故答案为:4π331+##13+【分析】根据外接球的性质,结合正四棱锥的性质、内切球的性质进行求解即可.【详解】设外接球半径为R ,由题意可知,OA =OB =OC =OD =OP =R ,设四棱锥P -ABCD 的内切球半径为r ,设正方形ABCD 的边长为a ,因为底面ABCD 过球心O 2222a a R a R +=⇒=,2222116()2242R a R R R +=+⋅=,设该正四棱锥的表面积为S ,由等体积法可知:2211161(224)(2),(31)33223V Sr R R r R R R r ==+⋅⨯==+,314.6435)3π【分析】利用等体积法可求出四棱锥内切球的半径,从而可求出其体积【详解】因为正四棱锥P ABCD -内接于球O ,且底面ABCD 过球心O ,球的半径为4,所以4OA OB OC OD OP =====,所以42AB BC CD DA PA PB PC PD ========,所以正四棱锥P ABCD -的表面积为((22432S =+=,正四棱锥P ABCD -的体积为(21128433V =⨯⨯=设正四棱锥P ABCD -内切球的半径为r,则1112832)333V Sr r ==+=,解得1)r =,所以该四棱锥内切球的体积为334464(35)1)333r ππ⎡⎤=⨯=⎣⎦,故答案为:645)3π5.B【分析】设正方体的棱长为a ,求出其外接球的半径和内切球的半径,再根据表面积公式可得结果.【详解】设正方体的棱长为a,则其外接球的半径为2a ,内切球的半径为12a ,所以正方体的外接球与内切球的表面积之比是224142a ππ⎫⋅⎪⎝⎭⎛⎫⋅ ⎪⎝⎭3=.故选:B 6.1【分析】根据球的表面积公式,求得球的半径,结合正方体的对角线长等于外接球的直径,列出方程,即可求解.【详解】设正方体的棱长为a ,外接球的半径为R ,2R =,由243R ππ=,可得R22=⨯,解得1a =.故答案为:1.7.12π【分析】由于正方体的外接球直径等于正方体的体对角线,所以求出正方体的体对角线的长,可求出球的半径,从而可求出外接球的表面积【详解】解:设正方体外接球的半径为R ,则由题意可得()2222222212R =++=,即2412R =,所以外接球的表面积为2412R ππ=,故答案为:12π8.C【分析】根据题意,把三棱锥S ABC -外接球的半径,进而求得外接球的表面积,即可求解.【详解】由题意,正三棱锥S ABC -此三棱锥S ABC -的正方体,三棱锥S ABC -设正方体的外接球的半径为R ,可得2R =,即R =,所以此三棱锥的外接球的表面积为224π4π6πS R ==⨯=⎝⎭.故选:C.9.B【分析】结合长方体外接球的性质可知三棱锥A BCD -外接球的直径为AD ,进而可得结果.【详解】易得三棱锥A BCD -外接球的直径为AD ,则AD ,故三棱锥A BCD -外接球的半径R =所以24342S ππ⎛⎫=⨯= ⎪⎪ ⎭⎝,故选:B.10.9π【分析】将三棱锥-P ABC 放在长方体中,则长方体的外接球与三棱锥的外接球相同,即可求解.【详解】以线段,,PA PB PC 为相邻的三条棱为长方体,连接AB ,BC ,AC ,即为三棱锥-P ABC ,∵如图所示,长方体的外接球与三棱锥的外接球相同,∴则其外接球直径为长方体对角线的长,设外接球的半径为R ,则2222222(2)1229R PA PB PC =++=++=,解得32R =,则294π4π9π4S R ==⨯=.故答案为:9π.11.13π【分析】由题意将此四棱锥补成一个长方体,则经过A ,B ,C ,D 的外接球即为长方体的外接球,然后求出长方体的对角线的长即可得外接球的直径,从而可求出其表面积【详解】解:因为四棱锥ABCD 的对棱相等,所以将四棱锥ABCD 补成如图所示的长方体,则经过A ,B ,C ,D 的外接球即为长方体的外接球,所以球的直径为长方体的对角线的长,设长方体的长、宽、高分别为,,a b c ,因为2,======AB CD AD BC AC BD ,所以22222241012a b a c b c ⎧+=⎪+=⎨⎪+=⎩,解得13a b c =⎧⎪=⎨⎪=⎩所以球的半径r =所以球的表面积为2244132r πππ=⨯=⎝⎭,故答案为:13π12.B【分析】先作出辅助线,求出外接球半径,求出球心到截面的距离,从而得到截面圆的半径,求出截面的面积.【详解】如图,作PO '⊥平面ABCD ,垂足为O ',则O '是正方形ABCD 外接圆的圆心,从而正四棱锥P ABCD -外接球的球心O 在PO '上,取棱AB 的中点E ,连接,,,O D O E OD PE '',作OH PE ⊥,垂足为H .由题中数据可得2,4O D O E PE O P '''====,设四棱锥P ABCD -外接球的半径为R ,则()22222R O D O O OP O P O O =+='-'='',即()22284R O O O O =+='-',解得3R =.由题意易证OPH EPO ' ∽,则PH OPO P PE=',故PH =故所求截面圆的面积是236ππ5PH ⋅=.故选:B 13.D【分析】三棱锥补成三棱柱,问题转化为三棱柱的外接圆,利用球心到底面圆的距离为12AB ,截面圆的半径为12sin 30SA ⋅︒,由222R d r =+求球半径即可.【详解】由题意得,BA ⊥平面SAC ,将三棱锥补成三棱柱11SAC S BC -,如图,则三棱柱11SAC S BC -的外接球即为所求.设外接球的球心为O ,则SAC 的外心为1O ,则1122OO AB ==,又1142sin SAO A SCA=⨯=∠,则外接球的半径R =表面积2480S R ππ==,故选:D 14.A【分析】依据截面圆半径和球心距即可求得球半径,进而求得球O 的体积.【详解】ABC的外接圆半径2sin 2ar A===则球O 的半径2R=则球O 的体积为(3344πR π33V ===3故选:A 15.D【分析】由已知得到ABC 为直角三角形,得到ABC 所以直角ABC 所在截面小圆的半径1r =,设点D 到平面ABC 的距离为h ,结合题意求得5h =,设四面体ABCD 的外接球半径为R ,球心O 到截面的距离为d ,当D 到底面ABC 距离最远时,即h R d =+时,求得135R =,进而求得球的表面积.【详解】由1,2AB BC AC ===,可得222AB BC AC +=,所以ABC 为直角三角形,其面积为112S ==,所以直角ABC 所在截面小圆的半径112r AC ==,设点D 到平面ABC 的距离为h ,因为四面体ABCD 体积取得最大值为6,所以113263D ABC ABC S h h V -=⨯==⨯ ,解得5h =,设四面体ABCD 的外接球半径为R ,球心O 到截面的距离为d ,当D 到底面ABC 距离最远时,即h R d =+时,四面体ABCD 的体积取得最大值,因为d ==5R +=,解得135R =,所以球的表面积为2136764525S ππ⎛⎫== ⎪⎝⎭.故选:D.16.5,44ππ⎡⎤⎢⎥⎣⎦【分析】设BDC 的中心为1O ,球O 的半径为R ,连接1O D ,OD ,1O E ,OE ,可得223(3)R R =+-,解得2R =,过点E 作圆O 的截面,当截面与OE 垂直时,截面的面积最小,当截面过球心时,截面面积最大,即可求解.【详解】解:如图,设BDC 的中心为1O ,球O 的半径为R ,连接1O D ,OD ,1O E ,OE ,则123sin 603O D =︒⨯=13AO =,在Rt 1OO D 中,223(3)R R =+-,解得2R =,6BD BE = , 2.5DE ∴=,在1DEO 中,12O E ==,OE ∴===过点E 作圆O 的截面,当截面与OE 垂直时,截面的面积最小,,最小面积为54π,当截面过球心时,截面面积最大,最大面积为4π.∴所得截面圆面积的取值范围是5,44ππ⎡⎤⎢⎥⎣⎦,故答案为:5,44ππ⎡⎤⎢⎥⎣⎦.17.A【分析】先判断出MA ⊥平面ACD ,△ACD 为等边三角形.利用球内截面的性质,过△ACD 的中心O1作平面ACD 的垂线l1,过线段MC 的中点O2作平面MAC 的垂线l2,记12l l O =∩,则O 即为三棱锥M 一ACD 外接球的球心.利用勾股定理求出半径R ,即可求出外接球的表面积.【详解】如图所示,由图可知在四面体A -CDM 中,由正方形,ABCD M 为AB 的中点,可得MA ⊥AD ,MA ⊥AC ,AC ∩AD =A ,故MA ⊥平面ACD .将图形旋转得到如图所示的三棱锥M -ACD ,其中△ACD 为等边三角形,过△ACD 的中心O1作平面ACD 的垂线l1,过线段MC 的中点O2作平面MAC 的垂线l2,由球内截面的性质可得直线l1与l2相交,记12l l O =∩,则O 即为三棱锥M 一ACD 外接球的球心.设外接球的半径为R ,连接OC ,O1C ,可得111O C ==.在Rt △OO1C 中,222211193OC OO O C R =+==,故该外接球的表面积219764433S R πππ==⨯=.故选:A.18.B【分析】由题作出图形,易得PAC △外接圆圆心在AC 中点,结合正弦定理可求ABC 外接圆半径,结合图形知,()()222222R AO AO OO ==+,再结合二面角大小求出2OO ,进而得解.【详解】根据题意,作出图形,如图所示,因为PAC △是以AC 为斜边的等腰直角三角形,所以PAC △的外心在AC 中点,设为2O ,设ABC 的外心为1O ,BC 中点为E ,11AO r =,因为AB AC ==,所以1O 必在AE 连线上,则123sin AB ABr AEC AC===,即132r =,因为两平面交线为AC ,1O 为平面ABC 所在圆面中心,所以12O O AC ⊥,()221212O O r AO =-又因为二面角P AC B --的大小为120︒,2PO AC ⊥,所以2121120,30PO O OO O ∠=︒∠=︒,所以2121OO O O =⨯,锥体-P ABC 外接球半径()()2222222512R AO AO OO ==+=+=⎝⎭,则三棱锥-P ABC 的外接球表面积为2410S R ππ==,故选:B。

外接球与内切球模型总结

外接球与内切球模型总结

外接球与内切球(理)1.掌握球体的表面积与体积的计算公式,会利用相应公式求解球体的表面积与体积的计算;2.掌握圆柱体与圆锥的外接球,并学会在圆柱和圆锥体的外接球延伸到柱体以及锥体的外接球,理解与掌握多面体外接球的计算原理;3.掌握多面体的内切球的计算原理,学会利用相应公式求解多面体内切球的相关问题.1.外接球(1)侧棱垂直于底面的几何体的外接球.①圆柱的外接球:如下图所示,在圆柱1OO 中,设圆柱的底面半径为r ,圆柱的高为h ,AB 为圆柱底面圆的一条直径,AC 是一条母线,则外接球的球心就是线段AB 的中点,设球的半径为R ,则()()22222r h R +=;②直棱柱的外接球:可以将棱柱的外接圆柱1OO 作出来,则直棱柱的外接球可转化为外接圆柱的外接球,设r 为底面外接圆的半径,直棱柱的高为h ,外接球的半径为R ,则()222r h +()22R =,若直棱柱为直三棱柱,其底面外接圆的直径可以通过正弦定理进行求解;③直棱锥的外接球:如下图所示,可将直棱锥的外接直棱柱作出来,再可将其外接圆柱作出来,设r 为底面外接圆的半径,直棱柱的高为h ,外接球的半径为R ,则()()22222r h R +=;④有一个侧面垂直于底面的棱锥的外接球:如下图所示,三棱锥P ABC-中,侧面PAC⊥底面ABC,可在平面PAC内作AS垂直于AC交PAC∆的外接圆于点S,则三棱锥P ABC-的外接球与三棱锥S ABC-的外接球为同一个球,设PAC∆的外接球的半径为r',则SA=,设ABC∆的外接圆半径为r,外接球的半径为R,则()()()22222r SA R+=;⑤长方体的外接球:设长方体的长、宽、高分别为x、y、z,则长方体的体对角线为长方体外接球的一条直径,设外接球的半径为()22222R x y z=++;⑥对棱相等的三棱锥:如下图所示,在三棱锥A BCD-中,AB CD=,AC BD=,AD= BC,可作三棱锥A BCD-的外接长方体,设长方体的长宽高分别为x、y、z,外接球的半径为R,则222=+AB x z,222AC x y=+,222AD y z=+,则()22222R x y z=++SCBAPzyxDCBAzyx2222AB AC AD ++=,也就是说,对棱相等的三棱锥的外接球的直径的平方等于该三棱锥任意一个点出发的三条棱的平方和的一半;⑦特殊三棱锥的外接球:三棱锥A BCD -中,90BAC BDC ∠=∠=,则棱BC 即为其外接球的直径,棱BC 的中点为外接球的球心.(2)侧棱相等的锥体的外接球①圆锥的外接球:半圆O 中,AD 为半圆O 的直径,B 为半圆O 上异于点A 、D 的一点,将半圆O 绕着直径AD 旋转一周,得到两个圆锥拼接的几何体内接于球O ,设球O 的半径为R ,在直角ABD ∆中,由射影定理可得2AB AD AE=,在圆锥AE 中,对应的有:2R2=母线高,若圆锥的高未知,圆锥底面圆的半径为r,则圆锥的高=求得; ②侧棱相等的棱锥的外接球:对于侧棱相等的棱锥,可作其外接圆锥,则此棱锥的外接球和其外接圆锥的外接球是同一个球,设外接球的半径为R ,棱锥的侧棱长为l ,高为h ,底面的外接圆的半径为r ,则h =,222l R h ==. ODCBA(3)一般多面体的外接球:对于一般多面体的外接球,可以建立空间直角坐标系,设球心坐标为(),,x y z ,利用球心到各顶点的距离相等建立方程组,解出球心坐标,从而得到球的半径长.2.多面体的内切球:对于多面体的外接球,设其内切球的球心为O ,连接多面体各顶点与球心的连线,将多面体分割为若干个棱锥,多面体各个面的面积分别为1S 、2S 、3S 、、n S ,内切球的半径为r ,球心O 到各个面的距离均为r ,设多面体的体积为V ,多面体的表面积为S ,则()123123111111333333n n V rS rS rS rS r S S S S rS =++++=++++=,于是可得3Vr S=,对于柱体(圆柱或直棱柱)的内切球,还应该分析出柱体的高等于内切球的直径.附注:设球的半径为R ,其表面积为24S R π=,体积为343V R π=.O。

2023届高三数学一轮复习专题 空间几何体的外接球与内切球问题 讲义 (解析版)

2023届高三数学一轮复习专题  空间几何体的外接球与内切球问题  讲义 (解析版)

空间几何体的外接球与内切球问题高考分析: 球与几何体的切接问题是近几年高考的高频考点,常以选择题和填空题的形式出现,以中档题和偏难题为主. 一、几种常见几何体的外接与内切球 1.长方体的外接球 (1)球心:体对角线的交点;(2)半径:R =a 2+b 2+c 22(a ,b ,c 为长方体的长、宽、高).2.正方体的外接球、内切球及与各条棱相切的球 (1)外接球:球心是正方体的中心;半径R =32a(a 为正方体的棱长); (2)内切球:球心是正方体的中心;半径r =2a(a 为正方体的棱长);(3)与各条棱都相切的球:球心是正方体的中心;半径=2r a (a 为正方体的棱长). 3.正四面体的外接球与内切球(1)外接球:球心是正四面体的中心;半径R (a 为正四面体的棱长);(2)内切球:球心是正四面体的中心;半径r (a 为正四面体的棱长).求外接球问题常用方法:1.补体法。

将几何体补形成长方体正方体等常见模型去求解2.外接球的球心都在过底面外接圆圆心的垂线上(注意球体可以滚动所以可以选择较为方便计算的那一面作为底面)3.利用外接球球心到几何体各顶点距离都等于半径4.球心与截面圆圆心的连线垂直于截面圆求外接球的关键是确定球心位置,进而计算出外接球半径。

题型一:柱体的外接球1.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为_________.2.已知三棱柱111ABC A B C -的底面是边长为6的正三角形,侧棱垂直于底面,且该三棱柱的外接球的表面积为12 ,则该三棱柱的体积为_________.3.已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是( )A .16πB .20πC .24πD .32π4.已知圆柱的底面半径为12,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A.πB.3π4 C.π2 D.π4题型二:锥体的外接球5.求棱长为1的正四面体外接球的体积为_________.6.已知正四棱锥P -ABCD 内接于一个半径为R 的球,则正四棱锥P -ABCD 体积的最大值是( )A.16R 381B.32R 381C.64R 381 D .R 3 7.如图,在四棱锥P -ABCD 中,底面ABCD 为菱形,PB ⊥底面ABCD ,O 为对角线AC 与BD 的交点,若PB =1,∠APB =∠BAD =π3,则三棱锥P -AOB 的外接球的体积是_________.8.已知△ABC 是面积为的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( ) A.B.C. 1D.9.已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A. 64πB. 48πC. 36πD. 32π10.《九章算术》中对一些特殊的几何体有特定的称谓,例如:将底面为直角三角形的直三棱柱称为堑堵.将一堑堵沿其一顶点与相对的棱切开,得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑(四个面均是直角三角形的四面体).在如图所示的堑堵ABC -A 1B 1C 1中,AA 1=AC =5,AB =3,BC =4,则阳马C 1-ABB 1A 1的外接球的表面积是( )A .25πB .50πC .100πD .200π11.已知三棱锥P −ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为 A .68πB .64πC .62πD .6π12.已知正三棱锥的所有顶点都在球O 的球面上,其底面边长为3,E,F ,G 分别为为侧棱AB,AC,AD 的中点.若O 在三棱锥A -BCD 内,且三棱锥A -BCD 的体积是三棱锥O -BCD 体积的3倍,则平面EFG 截球O 所得截面的面积为微专题 球与几何体的切接问题——内切球1.半径为R 的球的外切圆柱(球与圆柱的侧面、两底面都相切)的表面积为_________,体积为_________.2.若正四面体的棱长为a ,则其内切球的半径为_________.3.已知正三棱锥的高为6,内切球(与四个面都相切)的表面积为16π,则其底面边长为( ) A .18 B .12 C .6 3 D .434.将半径为3,圆心角为2π3的扇形围成一个圆锥(接缝处忽略不计),则该圆锥的内切球的体积为( )A.2π3 B.3π3 C.4π3D .2π 5.如图,已知球O 是棱长为1的正方体ABCD -A 1B 1C 1D 1的内切球,则平面ACD 1截球O 的截面面积为( )A.66π B.π3 C.π6 D.33π题型三 最值问题6.已知底面是正六边形的六棱锥P -ABCDEF 的七个顶点均在球O 的表面上,底面正六边形的边长为1,若该六棱锥体积的最大值为3,则球O 的表面积为_________.7.四棱锥S -ABCD 的所有顶点都在同一球面上,底面ABCD 是正方形且和球心O 在同一平面内,当此四棱锥的体积取得最大值时,其表面积等于8+83,则球O 的体积等于( )A.32π3B.322π3 C .16π D.162π38.已知SAB 是边上为2的等边三角形,045ACB ∠=,则三棱锥体积最大时,CA = ;其外接球的表面积为。

空间几何体的外接球内切球问题

空间几何体的外接球内切球问题

空间几何体的外接球内切球问题空间几何体的外接球、内切球问题自己总结供参考红岩外接球问题一.棱锥的外接球三棱锥都有外接球;底面有外接圆的任意棱锥都有外接球。

1.确定棱锥外接球球心的通法先找到棱锥底面的外接圆的圆心D ,过D 作底面的垂线DP交一侧棱的中垂面于O ,点O 即为外接球的球心。

练习:1.三棱锥S-ABC 的各顶点都在同一球面上,若SB ⊥平面ABC ,SB=6,AB=AC=2120BAC ∠=?,则此球的表面积等于。

2. 点A 、B 、C 、D 均在同一球面上,其中△ ABC 是正三角形,AD ⊥平面ABC ,AD=2AB=6则该球的体积为。

3.四面体ABCD 的四个顶点在同一球面上,AB=BC=CD=DA=3,32=AC ,6=BD ,则该球的表面积为()A .π14 B.π15 C.π16 D.π182.补成长方体或正方体,再利用体对角线是外接球直径这一结论求解。

练习:1.三棱锥O ABC -中,,,OA OB OC 两两垂直,且22OA OB OC a ===,则三棱锥O ABC -外接球的表面积为()A .26a π B .29a π C .212a π D .224a π2.已知,,,S A B C 是球O 表面上的点,SA ABC ⊥平面,AB BC ⊥,1SA AB ==,BC =O 表面积等于(A )4π (B )3π (C )2π (D )π3.,四个顶点在同一个球面上,则此球的表面积为( )A.3πB.4πD.6π4.3.公共边所对的两个角为直角确定球心法练习1.在矩形ABCD 中,4,3AB BC ==,沿AC 将矩形ABCD 折成一个直二面角B ACD --,则四面体ABCD 的外接球的体积为A.12512π B.1259π C.1256π D.1253π2.空间四边形ABCD中,1,AB BC AD DC ====ABCD 的外接球的表面积为4.利用轴截面截球为大圆确定球半径正四、六、八棱锥的外接球的一个轴截面为大圆,该圆的半径等于外接球的半径. 练习:1.正四棱锥S ABCD -S A B C D 、、、、都在同一球面上,则此球的体积为 .2.正六棱锥EF S ABCD -的底面边长为1S A B C D 、、、、、E 、F 都在同一球面上,则此球的表面积为 .3.表面积为的正八面体的各个顶点都在同一个球面上,则此球的体积为_ C_ A_ O_ D _ BA B.13π C.23π D二.棱柱的外接球底面有外接圆的直棱柱才有外接球。

圆柱体的外接球与内切球问题

圆柱体的外接球与内切球问题

圆柱体的外接球与内切球问题概述:在三维空间中,我们可以构造各种各样的几何体,其中许多几何体都可以与球体相互联系。

本文将讨论圆柱体,特别是将重点放在圆柱体的外接球和内切球上。

这两个球对于圆柱体的研究有很大的启示作用,同时也引发了一些有趣的数学问题和实际应用。

正文:圆柱体是一种常见的几何体,其形状简单,易于描述和理解。

一个圆柱体可以由一个圆在平面上绕着一条与圆在同一平面内的直线运动而成。

我们很容易能够想象出一个圆柱体,并且知道它有一个底面和一个顶面,以及侧面连接这两个面。

但是,圆柱体围绕着一个特殊的轴运动时,就会出现外接球和内切球。

这些球形几何体有很多有趣的性质和应用,因此吸引了众多数学爱好者的关注。

首先,我们要明确外接球和内切球的概念。

一个几何体的外接球是指一个球体,其球面恰好可以切到几何体的每个顶点上。

类似地,内切球是指一个球体,其球面正好与几何体相切,并且几何体的每个面都是球面的切面。

对于一个圆柱体而言,其外接球和内切球具有以下性质:1. 圆柱体外接球的半径等于圆柱体的直径。

这个性质很容易证明,因为当圆柱体沿着其轴翻滚时,其每个顶点都位于相同的圆周上,因此外接球的球心也会位于这个圆周上。

2. 圆柱体内切球的半径等于圆柱体侧面的高。

对于圆柱体而言,内切球的球心位于圆柱体的轴线上,因此球心到底面和顶面的距离就等于圆柱体的侧面高度。

除了这些基本性质外,圆柱体的外接球和内切球还有很多有趣的实际应用。

例如,在工程设计中,需要确定一个物体的最小包围球来判断其尺寸是否符合要求;在计算机图形学中,可以使用外接球和内切球来判断一个物体是否在另一个物体之内或之外。

此外,外接球和内切球也是许多数学问题的研究对象,如最小球覆盖问题、球装配问题等等。

总结:圆柱体的外接球和内切球问题虽然看起来很简单,但是背后有许多有趣的数学性质和实际应用。

了解这些性质可以帮助我们更好地理解圆柱体和球形几何体之间的关系,并且有助于我们解决实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间圆柱体的外接球和内切球问题
简介
在三维几何中,圆柱体(cylinder)是一个具有圆底和圆顶的
几何体。

本文讨论了圆柱体的外接球和内切球问题。

外接球
圆柱体的外接球是一个能够完全包围圆柱体的球体。

具体来说,外接球的球心与圆柱体的底面圆心以及顶面圆心都在同一直线上,
并且外接球的半径等于这个直线与圆柱体底面、顶面中任意一个圆
的半径之和。

对于一个给定的圆柱体,外接球的半径可以通过以下公式计算:$$R = \sqrt{h^2 + r^2}$$
其中,$R$ 是外接球的半径,$h$ 是圆柱体的高度,$r$ 是圆柱体底面圆的半径。

内切球
圆柱体的内切球是一个与圆柱体的底面和顶面相切的球体。


体来说,内切球的球心与圆柱体的底面圆心以及顶面圆心都在同一
直线上,并且内切球的半径等于这个直线与圆柱体底面、顶面中任
意一个圆的半径之差。

对于一个给定的圆柱体,内切球的半径可以通过以下公式计算:$$r_{\text{in}} = \sqrt{h^2 + (R - r)^2}$$
其中,$r_{\text{in}}$ 是内切球的半径,$h$ 是圆柱体的高度,$R$ 是外接球的半径,$r$ 是圆柱体底面圆的半径。

结论
本文讨论了圆柱体的外接球和内切球问题。

外接球是一个能够
完全包围圆柱体的球体,其半径可以通过一个简单的公式计算得到。

内切球是一个与圆柱体的底面和顶面相切的球体,其半径也可以通
过一个公式计算得到。

这些问题在几何学和工程学中具有重要的应
用价值。

> 注意:以上内容为解答圆柱体的外接球和内切球问题的基本原理和公式,具体计算应考虑实际情况和应用环境。

相关文档
最新文档