正弦交流电的相量图表示法.
第六讲 正弦交流电的基本概念及

I= √2
Im
U= √2
Um
E=
返回
Em
√2
下一节 上一页 下一页
Байду номын сангаас
2.1.(1) 分析计算正弦交流电时是否也与直流电一样 是从研究它们的大小和方向着手? 【答】不是,应从研究它们的频率、大小和相位着手。
返回
上一页
下一页
例2-2 已知某电网供电频率f为50Hz,试求角频率及周期T。 解:角频率为 =2f=2×50=100 =314rad/s
【答】(a)式中 ( a ) i
10 30
10 sin( t 30 ) A 是瞬时表达式,
是相量表达式,二者不等;(b)式中I为有效值, 5 45 A U 20 60 V 是相量,二者不等;(c)式中 是相量表达式, 是瞬时值表达式,二者不等。 )V 20 2 sin( t 60
2.2 正弦量的相量表示法
一、相量法
正弦交流电动势 e E m sin( t ) 的相量式为:
E E (cos j sin ) E
说明: (1)相量是表示正弦量的一种方式,相量不是时间 函数。
(2)相量是正弦量的复数表示形式,但不是正弦量。
(3)相量的加减只能是同频率正弦量的相加或相减
相位差: 同频率的正弦电量的初相位之差。
i = 100 sin(314 t +30O)A u = 311sin(314 t-60O)V
= u - i = -60O -30O = -90O
返回 下一节 上一页 下一页
交流电相位差分析
e1 = Em1sin( ωt + 1 ) e2= Em2sin( ωt + 2)
电路分析基础第4章 相量法(2h)

Im
U 2
U
U 1
41.9
60 30
Re
U
Im
U 2
首
U 1
60 尾
41.9
相 接
30
Re
/38 章目录 上一页 下一页 返回 退出
第4章 正弦稳态电路分析
4.3 基尔霍夫定律的相量形式和基本
元件伏安关系的相量形式
一. 电阻 i(t)
+
uR(t) R -
•
I
+
•
UR
R
-
相量模型
已知 i(t) 2I cos(wt y i )
设 i(t)=Imcos(w t+ )
I
1 T
T 0
I
2 m
cos2
(
wt
Ψ
) dt
def
I
1 T i 2 (t )dt
T0
cos2 ( wt Ψ ) 1 cos2(wt Ψ )
2
I 0.707Im Im 2I
i(t) Im cos(wt Ψ ) 2I cos(wt Ψ )
10/38 章目录 上一页 下一页 返回 退出
u2 (t) 4 2cos(314t 60o ) V
U1 630o V U 2 460o V
U U1 U 2 630 460 5.19 j3 2 j3.46
7.19 j6.46 9.6441.9o V
u(t) u1(t) u2 (t) 9.64 2cos(314 t 41.9o ) V
dt
C 相量形式:
•
U Uy u
•
IC
wCUy u
π 2
1 相量关系:
正弦交流电路的相量表示法

220
23
3
220 [cos( ) j sin( )] (110 j 190 .5)V
3
3
I
100 / 6
/3
220
U
u 正弦量
对应
相量图 U
t
例4
已知: u1(t) 100sin(314t 48)V ,
u2 (t) 50sin(314t 45)V
相量图: 把相量表示在复平面的图形
可不画坐标轴
2、相量式的书写方式:
模用最大值表示 ,则用符号:Um 、Im、E. m 模用有效值表示,则用符号: U 、I、E.
3注.3 意正弦:量在的实相量际表应示用法 中,模更多采用有效值表示
U I
注 意:
1) 相量只是表示正弦量,而不等于正弦量。
为了与一般的复数相区别,我们把表示正弦量的
复数称为相量,并在大写字母上打“.”表示。
设正弦量 u Umsin(ωt ψ)
相量表示:
U Uejψ Uψ 相量的模=正弦量的有效值
相量辐角=正弦量的初相角
或
Um Umejψ Umψ
相量的模=正弦量的最大值 相量辐角=正弦量的初相角
U• 220 45?
4 2 sin (ω t 30 ) ?
2
有效值
j45
瞬时值
4.已知:
U m 220 ? e45
U 100 15V
2.已知:I 1060A
i 10 sin ( ω t 60)?A
最大值
U 100V ?负号 ? U 100 ej15 V
+j
b
A
正弦交流电的相量表示法(2)

正弦量的表示法:
解析式: i(t ) I m sin(t ) A
i
Im
最大值相量: I m I m
有效值相量: I I
最大值: I m
I
Im
I
有效值: I
平均值:
I
I
电工基础
例:写出下列正弦量的相量形式:
i1 (t ) 5 2 sin(t 53.1) A
2
虚数
用 j 代替
虚部 实部
i
B a jb
j
复数 A a jb 代数式
0
D
b
A
C a jb
D a jb
复数的模
r
0
1
r a 2 b2
复数矢量与实轴正方向的夹角
a
C
0
取值在正180度到负180度之间
a r cos
0
电工基础
三、正弦量的相量表示法: re j r cos jr sin
Im
t
正弦交流电
I me j (t ) I m cos(t ) jI m sin(t )
用 I me
I me
j (t )
代
jt
替
I m sin(t ) I mt
加减用代 数式运算
A B a1 jb1 a2 jb2 (a1 a2 ) j (b1 b2 ) A B a1 jb1 (a2 jb2 ) (a1 a2 ) j (b1 b2 )
A B
A
A B
A
B B
1
1
15、正弦交流电的相量表示法cos

i1 i3
i2
i1(t) = 4 cos(t+00 ) A i2(t) = 3 cos(t +90 o )A
i3 = i1 + i2
利用三角函数公式 利用波形图
相量法
§5.2 - 5.3 正弦交流电的相量表示
内容: 1、正弦量的相量表示 2、两类约束的相量形式 时数: 2 学时 要求:会用相量图和复数表示正弦交流电, 并能运用相量进行两个正弦量的四则 运算及乘方开方运算。复述基尔霍夫 定律相量形式及欧姆定律相量形式的 内容。
4 0 .8 j 4 0 .6 3 .2 j 2 .4
o U 2 3 53
B
u2
–
3 cos( 53 ) j 3 sin( 53 )
o o
3 cos 53 j 3 sin 53
o
o
u3 5 2 cos t V
3 0 .6 j 3 0 .8
5 0 0 I3
i3(t) = 5
2 cos t A
例2
i1
i3
相 量 图 法
i2
i3 = i1 + i 2
i1(t) = 4 i2(t) = 3
0
)A 2 cos(t + 37°
2 cos(t – 53°)A
+j
I 1 4 37
I1
I 2 3 53
0 I 3 5 0
0
I 1 4 37
I 2 3 53
4 cos 37 0 j 4 sin 37 0 3.2 j 2.4 I1
0 0 I 2 3 cos( 53 ) j 3 sin( 53 ) 1.8 j 5
2.2正弦量的相量表示法

正弦量的相量表示法一、正弦量的表示方法1、波形图表示法下图给出了不同初相角的正弦交流电的波形图。
2、瞬时值表达式 i (t ) = I m sin(ω t + ϕi 0)u (t ) = U m sin(ω t + ϕu 0)e (t ) = E m sin(ω t + ϕe 0)3、相量表示实质:用复数表示正弦量①正弦量用旋转有向线段表示相量法就是用相量来表示正弦量。
相量的数学基础是复数。
采用这种表示方法使得描述正弦交流电路由原来的微(积)分方程转化为代数形式的方程,大大地简化了正弦交流电路的分析与计算。
我们知道一个带有方向的线段可以表示一个矢量,下面先来看一个例子,讨论旋转有向线段与正弦量的关系。
图 正弦交流电的波形图举例 ψU U ∠=设正弦量U= U m sin(ωt +ψ)若: 有向线段长度 = Um有向线段与横轴夹角 = 初相位ψ有向线段以速度ω按逆时针方向旋转则:该旋转有向线段每一瞬时在纵轴上的投影即表示相应时刻正弦量的瞬时值。
例如:在t =t 0时,U 0=U m sin(ωt 0+ψ)在t=t l 时,U 1=U m sin ;(ωt 1+ψ)正弦量可用有向线段表示,而有向线段又可用复数表示,所以正弦量可用复数来表示。
② 复数的几种表示形式在一个直角坐标系中,设:横轴为实轴,单位用+1表示;纵轴为虚轴,单位用+j 表示,则构成复数平面(又称复平面)。
图所示的有向线段A ,其复数表示式为:a .代数式 A=α+ jba=rcosψ ,b=rsinψb . 三角式根据欧拉公式:c .指数式 A= re j ψd . 极坐标式一个复数可用代数式、三角式、指数式和极坐标式四种表示形式,四者可以互相 ψr A =ψψψsin j cos e j +=可得:ab ψarctan =22b a r +=复数的模 复数的辐角 )sin j (cos sin j cos ψψr ψr ψr A +=+=,e e 2cos j j ψψψ-+=2j sin j j ψψψ--=e e转换。
电工技术:正弦交流电的相量表示法(1)

I 560 A
I
60
U
30
只有同频率的正弦量才能画在同一相量图上,可不画坐标轴。
二、相量图
例题1: 将 u1、u2 用相量表示,并画出相 量图。
解:
(1) 相量式
220 20V U 1
110 45 V U 2
u1 220 2 sin(ω t 20 ) V
一、正弦量的相量表示法:正误判断
1.已知:
u 220 sin(ω t 45)V
3.已知:
4 e j30 A I
• 220 U 45 V 2 有效值
?
4 2 sin (ω t 30 )A
瞬时值形式
?
复数形式
j45
220 e45 V U m
2.已知:
正弦交流电的相量表示法
正弦交流电有哪些表达形式?
(1)正弦函数(瞬时值表达式)如
i I m sin (ω t ψ )
Im
(2)正弦曲线波形,如i源自 -ImO
2
T
t
t
这两种表达形式直观,但运算繁琐,绘制困难。
正弦交流电为什么要用相量表示?
两个正弦量
i1 2 I1m sin(t 1 )
u2 110 2sin(ω t 450 ) V
(2) 相量图
+j
U 2
U2
超前 U1
U 1
+1
45 20
正弦交流电的相量表示法(1):知识点小结
(1)正弦交流电用相量(复数)表示方法
u U m sin ( ω t ψ )
(2)相量图
U U ψ
U
第4讲正弦交流电的基本概念相量表示法复习进程

可得 ejψcoψsjsiψ n
⒊ 指数式:A r ejψ
⒋ 极坐标式:Arψ
四种表示方式之间可相互转换
Aajb rcoψ sjrsiψ nr ejψrψ
上述两种表示方式适用于复数的乘除运算。
在分析线性电路时,正弦激励和响应均为同频 率的正弦量,频率已知,可不必考虑。因此,一个 正弦量由幅值(或有效值)和初相位就可确定。
作业
P49 练习题2.2.1、 P87 练习题3.1.1。
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
ej9 0co 9s0 jsi9n0 j
B
任意一个相量乘上+j后, 即逆时针旋转了90°; 乘上-j后,即顺时针旋转了 90°。
A
C
2. 3 单一参数的交流电路
2.3.1 电阻元件的交流电路
⒈ 电压与电流的关系
uiR
设 iImsinωt为参考正弦量,则
i
+
u
R
-
u R R im sIω in U tm sω int
iR +u
IR
-+ U
-
周期电流的有效值(均方根值) 若 iImsi nt
I
1 T
T i2dt
0
1 T
T 0
Im 2 sin2
ωdtt
Im 2
同理:U U m
2
E Em 2
一般交流电流表和电压表测量的数据均为有效值。
一般交流设备铭牌标注的电压和电流均为有效值。
2.1.3 初相位
iImsi(ω ntψ) 相位角:ωtψ
第4讲正弦交流电的基本概念相 量表示法
正弦量的特征表现在:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小组分工
题目 1 2 3 4
展示
1组
2组
3组
4组
点评
4组
3组
2组
1组
合作探究,交流碰撞
• 1.试分别画出下列两组正弦量的相量图,并 求其相位差,指出它们之间的相位关系: • • 2. 试分别画出下列两组正弦量的相量图, 并求其相位差,指出它们之间的相位关系: • • 3.已知两正弦交流电压分别为:求:1)在 同一坐标上画出其相量图;2)计算u1+u2; u1-u2。
§3-2正弦交流电 的相量图表示法
学习目标
• 知识点:应用向量图时解题时应注意的问 题。 过程与方法:自主学习,积极讨论,踊跃 展示。 情感和价值观:激情投入课堂每一分钟, 体验学习的快乐。
•
•
知识点梳理
• • • • • 1. 解释下列名词: 相量: 有效值相量: 2.知识回想:矢量相加、减时应用的平行四边形法则? 3.表示正弦交流电的瞬时相量是用 表示。 而有效值相量的符号相应为 。 • 4.作相量图时,通常取 (顺、逆)时针转动的角度 为正,同一相量图中,各正弦量的 应相同。 • 5.应用相量图时应注意哪些问题?
成果展示
• 要求:
• 1)书写认真、规范; • 2)诠释时大方得体,抓住重点,语言简练。
点评疑
• 要求:
• 1)抓住重点,语言简练; • 2)对题不对人。
光荣榜
• 优秀小组:
• 展示之星: • 质疑达人: • 最佳个人:
•
本节课到此结束,谢 谢大家!