正弦交流电路的相量表示法..

合集下载

简述正弦交流电的三种表示方法

简述正弦交流电的三种表示方法

简述正弦交流电的三种表示方法1.引言1.1 概述概述部分的内容可以按照以下方式编写:引言部分是文章的开篇,目的是为读者提供对后续内容的整体了解。

在这篇文章中,我们将讨论正弦交流电的三种表示方法。

正弦交流电是工程技术领域中常见的电信号类型之一,广泛应用于电力系统、电子电路和通信系统等领域。

正弦交流电具有周期性的特点,可以表示为周期性变化的信号。

对于正弦交流电的表示方法,研究者们提出了多种不同的方式。

本文将详细介绍其中的三种主要表示方法,分别是:1. 直角坐标系表示法:通过在直角坐标系中绘制电压或电流随时间的变化曲线,来表示正弦交流电的变化规律。

这种方法直观且易于理解,可以清晰展示电压或电流的振幅、频率和相位等重要参数。

2. 极坐标系表示法:将正弦交流电视为一个旋转的向量,通过描述其振幅和相位差来表示。

极坐标系表示法适用于描述相位关系的问题,对于分析电路中的相位差和频率变化等现象非常有用。

3. 复数表示法:利用复数的实部和虚部,将正弦交流电转化为复数形式进行表示。

这种表示方法在电路分析和计算中非常高效,可以通过简单的复数运算得到电流和电压的各种参数,极大地简化了电路分析的过程。

本文将分别对上述三种表示方法进行详细阐述,分析其优缺点以及适用场景,旨在让读者全面了解正弦交流电的不同表示方法,并为进一步深入研究和应用提供参考。

接下来,我们将介绍文章的结构以及各个章节的具体内容。

1.2文章结构文章结构部分的内容可以包括以下内容:文章结构是指整篇文章内容的组织和安排方式,它包括了引言、正文和结论三个主要部分。

通过清晰的文章结构,读者可以更好地理解文章的内容,把握文章的逻辑关系和主旨。

引言部分为文章提供了一个引人注目的开篇,引发读者的兴趣,并对正文的内容进行简单概述。

在这个部分,我们将对正弦交流电的三种表示方法进行简要的介绍。

正文部分是文章的重点,用来详细阐述正弦交流电的三种表示方法。

在正文中,我们将分别介绍第一种、第二种和第三种表示方法,详细讲解它们的原理、特点和应用场景。

10.正弦交流电路的相量表示法

10.正弦交流电路的相量表示法

I 2= 1590 0 j15(V )
=100 20 100 2 (V ) U
指数表示法:
复数形式:
I cos jI sin I i i
I (cos j sin ) I i i
j
欧拉公式:
e
cos j sin
j i I Ie
课前提问
1、什么是旋转矢量?为什么提出旋转矢量? 2、什么是相量和相量图? 3、复数的四种表示方法是什么?
正弦量的相量表示法
教学任务: • 会画相量图
• 能够用复数的三种形式表示正弦量
回顾正弦交流电路的描述方法:
1. 瞬时值(三角函数法): i I m sin t i
Im

2. 波形图法:

6

旋转矢量的加法
化简:一个电路中只有一种频 率。 要素。 三要素退化为两个 固定位置
B A
C
i
i
正弦量
t
对应
相量图
I m
i
初始相量
相量:电工学中用来表示正弦量大小和相位的矢量。记作 I
相量图表示法:
314t 48)V , 例: 已知: u1 (t ) 100sin(
求:
有理数
复数:
a bj I
极坐标表示法:
最大值: 有效值:

I I m m i
o
i
I m
i(t ) 2 I sin( t i ) I I i
有效值相量的模表示正弦量的有效值 相量的幅角表示正弦量的初相位
优点:方便乘除运算。
【例题讲解】
u(t ) 2U sin(t θ )

第四章-正弦交流电路的相量法

第四章-正弦交流电路的相量法

.
原理:
+.
I
.
U
IC
.
.
I1
IC
R
jL
j 1 C
12
.
U
.
I
.
IC
-
a)
.
b) I 1
图4-11 功率因数的提高
根据图4-11分析如下:
a)电路图 ; b)相量图
并联电容前,总电流
I
I1
,电压超前电流的相位差为
; 1
并联电容后,总电流
I
I1
IC
,电压超前电流的相位差为 2
因 2 1 故 cos 2 cos 1 首页
U
Z1
+
Z2

U2
-
1053.13 -
图4-2 例4-1图
首页
U 2 Z2I (1 j7)1036.87V 7.07 81.87 1036.87 V 70.7 45 V
U1 Z1I (5 j15)1036.87V 15.8171.57 1036.87 V 158.1108.44 V
Y Y
对比可得
Y 1 Z


当电压、电流关联参考方向时,相量关系式U Z I
也可表示为 U I 或 I YU
Y
首页
二、用复导纳分析并联电路
图4-6所示是多支路并联电路,根据相量形式的基尔霍
夫电流定律,总电流
.
.
.
.
I I1 I2 In
.
.
.
Y1 U1 Y2 U2 Yn Un
因并联电容前后电路消耗的有功功率是相等的,故
并联电容前
P UI1 cos 1

第六章正弦交流电第二节正弦量的相量表示法及其运算

第六章正弦交流电第二节正弦量的相量表示法及其运算

相量法复数的表达式一个复数Z 有以下四种表达式。

1.直角坐标式(代数式)Z = a + j b式中,a 叫做复数Z 的实部,b 叫做复数Z 的虚部。

在直角坐标系中,以横坐标为实数轴,纵坐标为虚数轴,这样构成的平面叫做复平面。

任意一个复数都可以在复平面上表示出来。

例如复数A = 3 + j2在复平面上的表示如图9-1所示。

2.三角函数式在图9-1中,复数Z 与x 轴的夹角为 θ,因此可以写成Z = a + j b = |Z |(cos θ + jsin θ)式中|Z |叫做复数Z 的模,又称为Z 的绝对值,也可用r 表示,即22|Z | b a r +==θ 叫作复数Z 的辐角,从图9-1中可以看出⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧<<+π-><-π>=)0 0( arctan )0 0( arctan )0( arctan b a a b b a a b a a b ,,θ 复数Z 的实部a 、虚部b 与模|Z |构成一个直角三角形。

3.指数式利用欧拉公式,可以把三角函数式的复数改写成指数式,即Z =|Z |(cos θ + jsin θ) =|Z |e j θ4.极坐标式(相量式)复数的指数式还可以改写成极坐标式,即Z =|Z |/θ以上这四种表达式是可以相互转换的,即可以从任一个式子导出其它三种式子。

复数的四则运算设Z 1= a + j b =|Z 1|/α ,Z 2 = c + j d = |Z 2|/β ,复数的运算规则为1.加减法 Z 1 ± Z 2 = (a ± c ) + j(b ± d )2.乘法 Z 1 · Z 2 = |Z 1| · |Z 2|/α + β3.除法21Z Z =4.乘方 nn Z Z 11=/n α正弦量的复数表示法正弦量可以用复数表示,即可用振幅相量或有效值相量表示,但通常用有效值相量表示。

电工技术:正弦交流电的相量表示法

电工技术:正弦交流电的相量表示法

同频率正弦量的相量运算:知识点小结
两个同频率的正弦交流电相加(减): 方法一:都化成相量,变为复数的相加(减) 方法二:相量图法(平行四边形或首尾相接法)
正弦交流电的相量表示法
正弦交流电有哪些表达形式?
(1)正弦函数(瞬时值表达式)如
i I m sin (ω t ψ )
Im
(2)正弦曲线波形,如
i
-Im
O

2
T
t
t
这两种表达形式直观,但运算繁琐,绘制困难。
正弦交流电为什么要用相量表示?
两个正弦量
i1 2 I1m sin ( t 1 )
实际应用更多的是有效值形式的相量表示!
一、正弦量的相量表示法
2.注意事项 (1)表示正弦量的复数称相量
(2)相量只是表示正弦量,而不等于正弦量。
u U m sin ( ω t ψ) =
(3)一个正弦量与一个复数是一一对应的关系。 (4)只有正弦周期量才能用相量表示,相量不能表示非正弦周期量。
u2 110 2sin(ω t 450 ) V
(2) 相量图
+j
U 2
U2
超前 U1
U 1
+1
45 20
正弦交流电的相量表示法(1):知识点小结
(1)正弦交流电用相量(复数)表示方法
u U m sin ( ω t ψ )
(2)相量图
U U ψ
U
ψ

正弦交流电的相量运算
同频率正弦量的相量运算
• 同频率正弦量相加减
同频率的两个正弦量相位差为一些 特殊角时,用相量图中的几何关系 很方便求相量和、相量差。 例:题3: 已知 解:

正弦交流电的相量表示法(2)

正弦交流电的相量表示法(2)
电工基础
正弦量的表示法:
解析式: i(t ) I m sin(t ) A
i
Im
最大值相量: I m I m
有效值相量: I I
最大值: I m
I
Im
I
有效值: I
平均值:
I
I
电工基础
例:写出下列正弦量的相量形式:
i1 (t ) 5 2 sin(t 53.1) A
2
虚数
用 j 代替
虚部 实部
i
B a jb
j
复数 A a jb 代数式
0
D
b
A
C a jb
D a jb
复数的模
r

0
1
r a 2 b2

复数矢量与实轴正方向的夹角
a
C
0
取值在正180度到负180度之间
a r cos
0
电工基础
三、正弦量的相量表示法: re j r cos jr sin
Im
t
正弦交流电
I me j (t ) I m cos(t ) jI m sin(t )
用 I me
I me
j (t )

jt

I m sin(t ) I mt
加减用代 数式运算
A B a1 jb1 a2 jb2 (a1 a2 ) j (b1 b2 ) A B a1 jb1 (a2 jb2 ) (a1 a2 ) j (b1 b2 )
A B
A
A B
A
B B
1
1

15、正弦交流电的相量表示法cos

思考:
i1 i3
i2
i1(t) = 4 cos(t+00 ) A i2(t) = 3 cos(t +90 o )A
i3 = i1 + i2
利用三角函数公式 利用波形图
相量法
§5.2 - 5.3 正弦交流电的相量表示
内容: 1、正弦量的相量表示 2、两类约束的相量形式 时数: 2 学时 要求:会用相量图和复数表示正弦交流电, 并能运用相量进行两个正弦量的四则 运算及乘方开方运算。复述基尔霍夫 定律相量形式及欧姆定律相量形式的 内容。
4 0 .8 j 4 0 .6 3 .2 j 2 .4
o U 2 3 53
B
u2

3 cos( 53 ) j 3 sin( 53 )
o o
3 cos 53 j 3 sin 53
o
o
u3 5 2 cos t V
3 0 .6 j 3 0 .8
5 0 0 I3
i3(t) = 5
2 cos t A
例2
i1
i3
相 量 图 法
i2
i3 = i1 + i 2
i1(t) = 4 i2(t) = 3
0
)A 2 cos(t + 37°
2 cos(t – 53°)A
+j
I 1 4 37
I1
I 2 3 53
0 I 3 5 0
0
I 1 4 37
I 2 3 53
4 cos 37 0 j 4 sin 37 0 3.2 j 2.4 I1
0 0 I 2 3 cos( 53 ) j 3 sin( 53 ) 1.8 j 5

电工技术:正弦交流电的相量表示法(1)


I 560 A
I
60
U
30
只有同频率的正弦量才能画在同一相量图上,可不画坐标轴。
二、相量图
例题1: 将 u1、u2 用相量表示,并画出相 量图。
解:
(1) 相量式
220 20V U 1
110 45 V U 2
u1 220 2 sin(ω t 20 ) V
一、正弦量的相量表示法:正误判断
1.已知:
u 220 sin(ω t 45)V
3.已知:
4 e j30 A I
• 220 U 45 V 2 有效值

4 2 sin (ω t 30 )A
瞬时值形式

复数形式
j45
220 e45 V U m
2.已知:
正弦交流电的相量表示法
正弦交流电有哪些表达形式?
(1)正弦函数(瞬时值表达式)如
i I m sin (ω t ψ )
Im
(2)正弦曲线波形,如i源自 -ImO
2
T
t
t
这两种表达形式直观,但运算繁琐,绘制困难。
正弦交流电为什么要用相量表示?
两个正弦量
i1 2 I1m sin(t 1 )
u2 110 2sin(ω t 450 ) V
(2) 相量图
+j
U 2
U2
超前 U1
U 1
+1
45 20
正弦交流电的相量表示法(1):知识点小结
(1)正弦交流电用相量(复数)表示方法
u U m sin ( ω t ψ )
(2)相量图
U U ψ
U

正弦量的基本特征及相量表示法KCLCVL及元件伏安关系的-精选文档

跳转到第一页
3.1.2 相位、初相和相位差
相位:正弦量表达式中的角度
初相:t=0时的相位 相位差:两个同频率正弦量的相位之差,其 值等于它们的初相之差。如
u U sin( t ) m u
相位差为:
elecfans 电子发烧友 bbs.elecfans 电子技术论坛
i I sin( t ) m i
代数型
elecfans 电子发烧友 bbs.elecfans 电子技术论坛
三角函数型
指数型
极坐标型
跳转到第一页
复数的四则运算: a ja a 设两复数为: A 1 2 1
B b jb b 1 2 2
(1)相等。若a1=b1,a2=b2,则A=B 。 (2)加减运算: A B ( a b ) j ( a b ) 1 1 2 2
根据有效值的定义有: I
2 T2 RT 0i Rdt
周期电流的有效值为: I
elecfans 电子发烧友 bbs.elecfans 电子技术论坛
1 T 2 0 i dt T
跳转到第一页
对于正弦电流,因
i ( t ) I sin t ( ) m i
所以正弦电流的有效值为:
I

3.1 正弦量的基本概念及其相量表
示法
Biblioteka 3.2 KCL、KVL及元件伏安关系 的相量形式 3.3 正弦交流电路的一般分析方法 3.4 正弦电路的功率 3.5 电路中的谐振
跳转到第一页
elecfans 电子发烧友 bbs.elecfans 电子技术论坛
3.1 正弦量的基本概 念及其相量表示法
第3章 正弦交流电路 学习要点

实验六 正弦稳态交流电路相量的研究

实验六正弦稳态交流电路相量的研究一、实验目的1. 了解交流电路中的相量概念。

2. 掌握相量合成、加减、旋转的方法。

3. 学会使用矢量图解法求解交流电路问题。

二、实验原理交流电路所涉及的量大都是随时间而变化的量,如电压、电流等。

在正弦稳态下,这些随时间而变化的量可以用相量来代替,从而方便地进行计算和分析。

对于一般的随时间而变化的量 a(t),其相量可以表示为:$A=\frac{2}{T}∫^{T/2}_{-T/2} a(t)cosω_0tdt+j \frac{2}{T}∫^{T/2}_{-T/2}a(t)sinω_0tdt$其中 $T=\frac{2π}{ω_0}$ 为一个周期,$ω_0=\frac{2π}{T}$ 为角频率。

这里所求的相量 A 是一个复数,它的实部表示信号在电路中的电压或电流的有效值,虚部表示信号在电路中的相位。

在交流电路中,有时需要将不同的相量合成为一个新的相量,或将一个相量分解为两个相互垂直的相量,或改变一个相量的大小和方向。

下面介绍相量合成、加减、旋转的方法:(1)相量的合成:设有两个相量 $A_1$ 和 $A_2$,其大小和方向分别为 $|A_1|$、$\varphi_1$ 和$|A_2|$、$\varphi_2$,则它们的和为:$A=A_1+A_2=|A_1|cos\varphi_1+j|A_1|sin\varphi_1+|A_2|cos\varphi_2+j|A_2|sin\va rphi_2=|A|cos\varphi+j|A|sin\varphi$其中,$|A|=\sqrt{|A_1|^2+|A_2|^2-2|A_1||A_2|cos(\varphi_1-\varphi_2)}$当需要改变一个相量的大小和方向时,可以进行相量的旋转操作。

设有一个相量 A,大小为 |A|,方向为 $\varphi_A$,现将其旋转一个角度θ,则旋转后的相量 A' 大小为 |A|,方向为 $\varphi_A+\theta$,可利用欧拉公式进行计算:即,$A'=Ae^{j\theta}$其中,e 为自然对数的底数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


* 该旋转有向线段每一瞬时在纵轴上的投影为: u(t ) U m sin t u 是正弦量u在t时刻的值 y
u
A
O
ω
u1
x
O
Um
ω t1
ψ
ωt
旋转向量包含了正弦量的三个要素,故可以用它来表示正弦量
在正弦稳态交流电路中,各正弦量的频率与电源 频率相同。通常,该频率是已知的,故只需确定 正弦量的振幅和初相就能将它表达。(用三个要 素中的二个要素来描述即可) 故正弦量可用旋转有向量A的初始有向线段来表示
设相量
+j
则:
I ψ I
1 90 I ψ I ψ 90 o jI
+1
I ψ 180 90 I ψ 90 -j I 1 180 I ψ I ψ 180 -I
3.用旋转有向线段表示正弦量
● 在平面坐标上做长度为Um 、角度为 的有向线段 A ● 使有向线段以速度 按逆时针方向旋转. * 旋转有向线段 A,在 t 时刻 的角度为: (t )

相量式
相量的模=正弦量的最大值
相量辐角=正弦量的初相角
【练习与思考】
用有效值相量表示下列正弦量
i1( t ) 10 2 sin( t 60 )

A A
i2 ( t ) 15 2 cos( 314t 57 ) u( t ) 200 sin t
解:
V
= I 10 - 60 ( A) 1
2.1.5
知识链接 正弦电量的相量表示方法
i I m sin t
i
讨论:正弦交流电的表示方法有哪几种?
瞬时值表示
Im
T
波形图表示
t
当遇到正弦电量的加、减等运算时,用这两种表示方法来进 行分析、计算,则麻烦、费时,为此引入了相量表示法,从 而使正弦交流电路的分析和计算大为简化。
解.

(2) 91.3 78

(3) 58269
5060 50(cos60 j sin 60 ) 25 j 43.3
91.3 78 91.3 cos(78 ) j sin(78 ) 19 j89.3
虚部与虚部加减,作为结果的虚部
用有向线段加减时,符合平行四边形法则
例:A1=2+j3
A2=4+j4

A1+A2=(2+j3)+(4+j4)=6+j7 A1-A2=(2+j3)-(4+j4)=-2-j
正弦量的相量表示法
2) 复数的乘除
模与模乘除,作为结果的模
辐角与辐角加减,作为结果的辐角 如: 则:
1.复数的实部、虚部和模
叫虚单位,数学上用 i 来代表它,因为在电工 中i代表电流,所以改用 j 代表虚单位,即 j = 1
1
令一直角坐标系的横轴表示复数的实
+j b r φ
+1
部,称为实轴,以+1为单位;纵轴表 示虚部,称为虚轴,以+j为单位。
A
复平面中有一有向线段A,其实部 为a,其虚部为b,有向线段A可用下
A1=a1+jb1 =
r11
·
A2=a2+jb2 = = r1 · r2
r22
A1· A2=
r11
r22
(1 2 )
A1 r11 r1 (1 2 ) A2 r22 r2
正弦量的相量表示法
3) 旋转90度的算子j
j 0 j1 1 90 - j 0 - j1 1 - 90 - 1 j j 1 90 90 1 180


解: I 10030o A
U 220 60o V

试用相量表示i, u .
Um U 70.7V 2
例2. 已知 I 5015 A, f 50Hz .试写出电流的瞬时值表达式。 解:

i 50 2sin(314t 15 ) A
例3
把下列复数化为代数式。
(1) 5060
I 2= 15147 (V )
=100 20 ( V ) U
3.3 正弦量的相量表示法
【例题讲解】
u(t ) 2U sin(t θ )
例1. 已知 i 141.4 sin(314t 30o )A
u 311.1sin(314t 60 )V
o
对应
U U θ
50 45 50 cos 45 j50sin 45 35.4 j35.4 60 - 45 60 cos(45) j 60sin(45) 42.4 j 42.4 30 180 30 cos180 30
3. 复数的运算
1)复数的加减
实部与实部加减,作为结果的实部
四、 正弦量的相量表示法 2. 正弦量的相量表示法
为了与一般的复数相区别,我们把表示正弦量的
复数称为相量,并在大写字母上打“.”表示。
设正弦量
u Umsin( ω t ψ )

相量表示:
Ue U


相量的模=正弦量的有效值 相量辐角=正弦量的初相角
U e U ψ U m m m
a
o
面的复数表示为: A=a+jb r 表示复数的大小,称为复数的模。
有向线段的复数表示
正弦量的相量表示法
r
a 2 b2
2. 复数的表示方法
设A为一复数: 在右图的复平面上有如下关系:
+j
注意:正弦量 并不等于复 数
b
A
r
1) 代数式 A =a + jb 2) 三角式
0

a
+1
A r cos ψ j r sin ψ r (cos ψ j sin ψ )
3) 指数式
4) 极坐标式
正弦量的相量表示法
Are

用的最多的是代数式和极坐标式
A rψ
知识链接
讨论:如何把代数形式变换成极坐标形式?极 坐标形式又如何化为代数形式?
6 j8 10 53.1 6 j8 10 126.9 6 j8 10 - 126.9 6 j8 10 - 53.1
相量表示法也具有幅值、 频率及初相这 3 个主要特征
正弦交流电的3大类表示方法
解析式 波形图ຫໍສະໝຸດ i I m sin t
i

Im
T
t
U
相 量 法
1、相量图
.

I a jb I (cos j sin ) I
2、相量式 (复数 符号法)
具体见下页内容:
相关文档
最新文档