正弦量的相量表示法

合集下载

正弦量的相量表示法

正弦量的相量表示法

正弦量的相量表示法
正弦量是一种重要的物理量,它被广泛用于电路和电子学中,是可以度量和测量电压或电流的一种简单的、可靠的方法。

它也被称为波格拉它。

正弦量以极坐标形式表示,它以每个周期的正弦值表示一个周期的数字。

它的特点是,它的值可以被定义为在指定的时间段内,电压或电流信号所处的极点。

正弦量的相量表示法是一种表示正弦量的计算方式,它可以将正弦量以角度为单位表示出来,而不是以极坐标表示法表示。

正弦量的相量表示法主要具有三种优点:
首先,正弦量的相量表示法比极坐标表示法更有效率、易于理解。

例如,在极坐标表示法中,每个极坐标代表一个振荡周期,这就要求用户记住每个周期的角度、大小和方向,而正弦量的相量表示法可以把每个周期的值表示为一个数字,从而使用户更加容易理解每一个振荡周期。

其次,正弦量的相量表示法比极坐标表示法更容易计算。

例如,在极坐标表示法中,需要计算每个振荡周期的极点,而正弦量的相量表示法可以直接计算每一个振荡周期的值,因此减少了计算的复杂程度。

最后,正弦量的相量表示法也可以作为数据处理或电子设备的一种实现方式,这种方式比极坐标表示法更为清晰。

此外,正弦量的相量表示法可以使用更多的计算机技术进行实现,以提高计算机对正弦量处理能力。

正弦量的相量表示法是一种高效方便的表示方式,它不仅使得表示更加清晰,而且可以明显降低计算机程序的复杂度,是电子行业用来表示正弦量的首选方式。

因此,正弦量的相量表示法应运而生,并迅速得到广泛使用。

它在电子领域的应用越来越广泛,赋予了正弦量表示技术更强的功能性和效率性,实现了正弦量表示技术的完美。

4.2 正弦量的相量表示法

4.2 正弦量的相量表示法

(1)2+(2)2
Im
I1m cos 1 I2m cos 2 I1m sin 1 I2m sin 2
2
2
(1)÷(2)
I1m sin 1 I2 m sin 2 arctan I cos I cos 1m 1 2m 2
将本题中 的I1m=100A, I2m=60A, Ψ1=45°, Ψ2=-30°
代入可得:
Im
70.7 52
2
70.7 30 129A
2
70.7 30 ' arctan 18 20 70.7 52
故得
i=129sin(ωt+18°20′)A

4.2 正弦量的相量表示法
i Im
0

T/2
2
T
t
t
-I m
三角函数
u=U m sin (ω t + Ψ) 相量图 复数式(相量式)
正弦量
正弦波形
相量(复数)
4.2.1 旋转有向线段表示正弦量
a. 在 u=U m sin (ω t + Ψ) 中
y A
Um 表示正弦电压的最大值 (A的长度) ω 表示正弦电压的角频率 Ψ 表示正弦电压的初相位
c.复数的三种表示方法: A=a+j b 实部
a2 b2 b arcty a r
b
虚轴 +1 A r

虚部
0 a
实轴 +1
a=r cos ψ
b=r sin ψ
复数的模 复数的辐角
A=a+j b= r cos ψ+j r sin ψ = r (cos ψ + j sin ψ)

第二节正弦量的相量表示法第三节电阻元件伏安关系的向

第二节正弦量的相量表示法第三节电阻元件伏安关系的向

i(t) 11.18 2 cos(t 10.3) 21
例2 图示电路,已知:
+ u1(t) -
u1(t) 6 2 cos(t 30)
-
u2 (t) 4 2 cos(t 60)
u3(t)Biblioteka u2(t)+
求 u3(t)
解: 正弦量以相量表示,有

U1 630

U2 460

••
U3 U1 U2 (5.19 j3) (2 j3.45)
u(t) 2U cos(t u )
p(t) 2U cos(t u ) 2I cos(t i )
UI cos(2t 90)
2)平均功率: P 1
T
p(t)dt
T0
0
p(t)
UI
3)无功功率: Q UI
X
LI
2
U X
2 L
(Var)
0
意义:反映电感元件与电源进行能量交换的最大速率.
t
12
i(t) 2I cos(t i )
u(t) 2U cos(t u )
p(t) 2U cos(t u ) 2I cos(t i )
UI cos(2t 90)
2)平均功率: P 1
T
p(t)dt
T0
0
3)无功功率: Q UI
XCI 2
U2 XC
(Var)
p(t)
UI
0
意义:反映电容元件与电源进行能量交换的最大速率.
3 j4
8 j6
例2:写出下列正弦量的时域形式:

U1 3 j4

U 2 8 j6
u1(t) 5 2 cos(t 126.9)

正弦量的相量表示法

正弦量的相量表示法

第九讲 正弦量的相量表示法一、相量法的引入1、相量法的概念:的用一个称为相量的向量或复数来表示正弦电压和电流。

2、正弦量的复数表示法:假设正弦电压为 )sin()(m ψω+=t U t u 复数的形式:ψψ∠==∠+=+=m 22Y e Y ab arctg b a bi a Y j m 复数的模:表示电压的振幅;复数的幅角:表示电压的初相。

正弦波电压的相量表示法:ψψ∠==m j m m e U U U 二、相量1、概念:在复数平面上表示正弦电压和电流的复数的方有向线段。

3-2-1 正弦电压和电流的相量2、正弦电压相量与正弦电压的关系(1)正弦电压量的实质:电压的旋转相量在坐标轴(实轴或虚轴)上的投影。

(2)电压的旋转相量:当电压相量以角速度ω沿反时针方向旋转,即为旋转相量。

实轴上的投影:)cos(m ψω+t U 属于时间函数虚轴上的投影:)sin(m ψω+t U 属于时间函数图3-2-1 旋转相量及其在实轴和虚轴上的投影(3)正弦量与相量表示法的相互关系三、实例分析【例3-2-1】正弦电流A )60314sin(5)(1︒+=t t i , A )120314cos(10)(2︒--=t t i ,求电流相量,画出相量图,并求出i (t )=i 1(t)+i 2(t)。

解:表示正弦电流A )60314sin(5)(1︒+=t t i 的相量为A 605A e 560j m1 ∠==I用相量法分析电路时,各正弦量的瞬时表达式用正弦函数(余弦函数)表示。

将电流相量A 6051m ∠=I 和A 15010m 2 ∠=I 画在一个复数平面上,就得到相量图3-2-2。

从相量图上容易看出各正弦电压电流的相位关系。

i m m i m u m m u m ) cos()() cos()(ψψωψψωωω∠=−→←+=∠=−→←+=I I t I t i U U t U t u A 15010A )150314sin(10 A)180********sin(10A )120314cos(10)(m 22 ∠=−→−+=+︒+-=--=I t t t t i图3-2-2 例3-2-1相量图电压电流相量:可为最大值相量,也可为有效值相量(U 及I )。

电工电子技术基础知识点详解2-3正弦量的相量表示

电工电子技术基础知识点详解2-3正弦量的相量表示

正弦量的相量表示正弦量除了采用三角函数式表示,或者用正弦波形图来表示外,还可以用相量来表示。

相量表示法的基础是复数,即用复数表示正弦量。

要将两个正弦量相加或相减时,这种方法将使计算简便而又形象。

1. 复数复数的表示形式及相互关系设复平面有一复数A ,其模为r ,幅角为ψ ,如图1所示。

它可以用以下几种形式表示;(1) 复数的代数式: b a A j +=22b a r += 复数的模ab arctan =ψ 复数的辐角(2) 复数的三角式:)sin j (cos sin j cos ψψψψ+=+=A A A A(3) 复数的指数式: ψj re A =(4) 复数的极坐标式: ψ∠=r A上述复数的四种表达形式,可以互相转换。

ψψψψ∠==+=+=r re r b a A j )sin j (cos j复数的加减运算可用代数式,复数的乘除运算可用指数式或极坐标式。

说明:数学中虚数用i 表示。

电工中在相量表示时,为了不与电流i 相混淆,改用j 表示虚数。

2.正弦量的相量表示由上可知:复数由模和幅角两个特征来确定,而正弦量由幅值、角频率、初相角三个特征来确定。

在分析线性电路时,正弦激励和响应均为同频率的正弦量,频率是已知的,可以不考虑。

因此,一个正弦量由幅值(或有效值)何初相位就可确定。

比照复数,正弦量可用复数表示。

复数的模即为正弦量的幅值(或有效值)复数的辐角即为正弦量的初相角为了与一般复数相区别,把表示正弦量的复数称相量。

用大写字母加“·”表示。

若已知正弦电压为)sin(m ψω+=t U u ,相量式可写为ψψψψ∠==+=mj m m m )sin j (cos U e U U U 最大值相量 相量的模=正弦量的最大值相量辐角=正弦量的初相角或:ψψψψ∠==+=U e U U Uj )sin j (cos 有效值相量相量的模=正弦量的有效值相量辐角=正弦量的初相角综上所述,正弦量的相量表示,其实质是将同频率的正弦量变换成它的复数形式,这样就把正弦稳态交流电路中繁琐的三角函数运算变换成复数运算,从而简化了运算过程。

2.2正弦量的相量表示法

2.2正弦量的相量表示法

正弦量的相量表示法一、正弦量的表示方法1、波形图表示法下图给出了不同初相角的正弦交流电的波形图。

2、瞬时值表达式 i (t ) = I m sin(ω t + ϕi 0)u (t ) = U m sin(ω t + ϕu 0)e (t ) = E m sin(ω t + ϕe 0)3、相量表示实质:用复数表示正弦量①正弦量用旋转有向线段表示相量法就是用相量来表示正弦量。

相量的数学基础是复数。

采用这种表示方法使得描述正弦交流电路由原来的微(积)分方程转化为代数形式的方程,大大地简化了正弦交流电路的分析与计算。

我们知道一个带有方向的线段可以表示一个矢量,下面先来看一个例子,讨论旋转有向线段与正弦量的关系。

图 正弦交流电的波形图举例 ψU U ∠=设正弦量U= U m sin(ωt +ψ)若: 有向线段长度 = Um有向线段与横轴夹角 = 初相位ψ有向线段以速度ω按逆时针方向旋转则:该旋转有向线段每一瞬时在纵轴上的投影即表示相应时刻正弦量的瞬时值。

例如:在t =t 0时,U 0=U m sin(ωt 0+ψ)在t=t l 时,U 1=U m sin ;(ωt 1+ψ)正弦量可用有向线段表示,而有向线段又可用复数表示,所以正弦量可用复数来表示。

② 复数的几种表示形式在一个直角坐标系中,设:横轴为实轴,单位用+1表示;纵轴为虚轴,单位用+j 表示,则构成复数平面(又称复平面)。

图所示的有向线段A ,其复数表示式为:a .代数式 A=α+ jba=rcosψ ,b=rsinψb . 三角式根据欧拉公式:c .指数式 A= re j ψd . 极坐标式一个复数可用代数式、三角式、指数式和极坐标式四种表示形式,四者可以互相 ψr A =ψψψsin j cos e j +=可得:ab ψarctan =22b a r +=复数的模 复数的辐角 )sin j (cos sin j cos ψψr ψr ψr A +=+=,e e 2cos j j ψψψ-+=2j sin j j ψψψ--=e e转换。

4.2 正弦量的相

4.2  正弦量的相

60° 5 60°
& I 2m
& − I2m
5
由相量图上的几何关系可得
& & I1m − I2m =5

i1 − i2 = 5sin ω t +150
(
& − I =5∠ o I1m &2m 150
o
)
3.相量形式的 KCL 和 KVL (补充内容)
(1)相量形式的 KCL 所有流入(或流出)节点的电流相量的代数和等于零,称 为相量形式的 KCL 。
acm
辐角
1.93 ψ = arctg = 22.5o 4.66 注意: & = 5.04∠22.5o Uacm Uacm ≠ Uabm +Ubcm o uac = 5.04sin( ω t + 22.5 )
4. j 的物理含义
因为
e
e
j 90o
=cos90o + j sin90o = j
= cos 90o − j sin 90o = − j
− j 45o
所表示
& Um = 10e
Um = 10
o
j 45o
, 初相
ωt + 45 o u = 10sin( ωt + 45 )
− j 45o
ψ = 45
o
& I = 10e
I =10
, 幅值
o
ψ ωt − 45 所以 i = 2 ×10sin( ωt − 45o )
= −45, 相位
Im = 2 ⋅ I = 2 ×10

& & & I1 + I2 + I3 = 0

正弦量的相量表示法

正弦量的相量表示法

i 16.8 2 sin( 314 t 10.9 ) A
例3: 图示电路是三相四线制电源, 已知三个电源的电压分别为:
uB 220 2 sin (314 t 120 )V uC 220 2 sin (314 t 120 )V
试求uAB ,并画出相量图。
解:(1) 用相量法计算:
相量图: 把相量表示在复平面上的图形

可不画坐标轴

U

I
⑤相量的书写方式 I 模用最大值表示 ,则用符号: Um 、m
I 实际应用中,模多采用有效值,符号: U 、
如:已知 u 220sin(ω t 45)V 220 j45 Um 220 j45 V U e e V 则 或 2
AB
220 ( 1 0.5 j 0.866 )V
220 1.73 30V
UCBiblioteka -U B U AB UA
380 30 V
所以uAB 380 2 sin ( ω t 30 )V
(2) 相量图
30
UB
正误判断
u 220 sin(ω t 45)V
220 U 45 V? 2
有效值 j45 •
1.已知:
3.已知:
I 4e
j30
A
复数
4 2 sin (ω t 30 )A ?
瞬时值
220 e45 V? Um
2.已知: I 10 60A
i 10 sin ( ω t 60 )A ?
求:i i1 i2 。
i2 11 2 sin(314t 60 )A
12.7( cos 30 j sin 30 )A 11( cos 60 j sin 60 )A (16.5 - j3.18)A 16.8 10.9 A
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学习相量表示法时应注意的几个问题:
(1)相量是表示正弦量的复数,在正弦量的大写 字母上打“”表示。 (2)只有同频率的正弦量才能画在同一相量图上 (3)表示正弦量的相量有两种形式:相量图和相量 式(复数式)。 (4) 相量与正弦量只存在对应关系,而不是相等关系。
[例1] 已知电压、电流、电动势为u=220 2 sin(ωt-π/6)V,i=10 2 sin(ωt+π/6)A,e=110 2 sin(ωt+π/3)V,试写出他们的相量,并作 出有效值相量图。
复数式有三种表示方法: 直角坐标式、极坐标式和指数式 i=Imsin(ωt+ψ)的相量式为
I m = I m (cos ψ + j sin ψ ) = I m ∠ψ = I m e jψ
I = I(cos ψ + j sin ψ ) = I∠ψ = Ie jψ
I m 是电流的幅值相量, I 是电流的有效值相量。
用极坐标式表示
U = 220∠
π
6
V
I = 10∠
π
6
A
E = 110∠ V 3
π
用指数式表示
E = 110e 3 V
j
π
U = 220e
j
π
6
V
I = 10e 6 V
j
π
相量图表示
小结:
1、表示正弦量的相量有相量图和相量 式两种形式。 2、同频率正弦量才可以画在同一相量 图上。
作业:见参考教材(一) 第65页3-7、3-8、3-9、3-10
解:用直角坐标式表示
I = 10C O S (
π
6
) + j1 0 s in (
π
π0COS ( ) + j110 sin( ) = (55 j 55 3)V 3 3
U = 220COS (
π
π
6
) + j 220 sin(
π
6
) = (110 3 j110)V
正弦量的相量表示法
制作:浙江广厦建设职业技术学院 信息与控制工程学院
正弦量的表示方法: 正弦量的表示方法:
i ① 波形图
ωt
i = sin (1000 t + 30 ° )

瞬时值表达式

相量(难点) 相量(难点) U
须小 写
I
大写并加 “”
相量法:
一般情况下,用有向线段的初始位置(t=0的位置) 来表示正弦量,即把有向线段的长度表示为正弦量的 大小,把有向线段与横轴正向的夹角表示为正弦量的 初相,这种表示正弦量的方法,叫做相量法。
相关文档
最新文档