正交变换的几何意义及其应用
施密特正交化的几何意义

施密特正交化的几何意义【摘要】施密特正交化是线性代数中的一个重要概念,通过一系列步骤将原始向量组转化为正交的规范正交基。
这种方法在几何学中具有重要意义,可帮助解决向量空间中的问题并简化计算。
施密特正交化的几何意义在于通过构建正交基来描述向量空间的结构,从而更清晰地理解向量之间的关系。
这种正交化方法也被广泛应用于几何问题的解决和数据分析中,能够提高计算效率和结果的准确性。
施密特正交化也存在一定的局限性,可能会引入舍入误差或导致正交性不完全。
未来,随着数据科学和机器学习的快速发展,施密特正交化方法需要不断改进和适应新的领域需求,以更好地发挥其作用。
施密特正交化的实际意义在于提供一种有效的数学工具,但需要在实践中谨慎使用并充分考虑其局限性和适用性。
【关键词】1. 引言1.1 施密特正交化的重要性施密特正交化是线性代数中的一种重要概念,具有广泛的应用价值和理论意义。
在实际问题中,我们常常需要处理高维度的数据,并且这些数据可能存在多重相关性。
而施密特正交化的作用就在于将原始的线性无关的数据转化为正交的基向量,方便进行数据分析和处理。
通过施密特正交化,我们可以更好地理解数据之间的关系,提取出数据中的主要信息,减少数据冗余,从而提高数据处理的效率和准确性。
施密特正交化还可以用来解决各种几何问题,如求解投影、距离等,为几何学和计算几何学提供了重要的数学工具。
施密特正交化在数学理论和实际应用中都有着重要的地位,对于数据分析、几何问题和其他领域的研究具有重要的意义和作用。
1.2 施密特正交化的定义施密特正交化是一种特殊的向量正交化方法,用于将一组线性无关的向量组转化为一组正交化的向量组。
在施密特正交化中,首先选取一个向量作为新的基向量,然后将其他向量投影到这个基向量上,得到一个新的正交向量。
接着选取第二个向量作为新的基向量,重复上述步骤,直到所有向量都被处理过。
最终得到的向量组就是一组正交化的基向量。
施密特正交化的核心思想是通过投影的方式将原始向量组转化为正交向量组,使得向量之间彼此垂直。
paper41:正交变换

paper41:正交变换正交变换是保持图形形状和⼤⼩不变的,包含旋转,及上述变换的复合。
⼏何意义正交变换是保持图形形状和⼤⼩不变的⼏何变换,包含旋转,轴对称及上述变换的复合。
代数定义欧⼏⾥得空间V的线性变换σ称为正交变换,如果它保持向量内积不变,即对任意的α,β∈V,都有(σ(α),σ(β))=(α,β)设σ是n维欧式空间V的⼀个线性变换,于是下⾯4个命题等价1.σ是正交变换2.σ保持向量长度不变,即对于任意α∈V,⼁σ(α)⼁=⼁α⼁3.如果ε_1,ε_2,...,ε_n是标准正交基,那么σ(ε_1),σ(ε_2),...,σ(ε_n)也是标准正交基4.σ在任意⼀组标准正交基下的矩阵是正交矩阵正交矩阵定义:n级实矩阵A称为正交矩阵,如果A'A=E。
(A'表⽰A的转置,E是单位矩阵)分类设A是n维欧式空间V的⼀个正交变换σ在⼀组标准正交基下的矩阵若⼁A⼁=1,则称σ为第⼀类正交变换,若⼁A⼁=-1,则称σ为第⼆类正交变换。
Matlab傅⽴叶变换、余弦变换和⼩波变换1. 离散傅⽴叶变换的 Matlab实现Matlab 函数 fft、fft2 和 fftn 分别可以实现⼀维、⼆维和 N 维 DFT 算法;⽽函数 ifft、ifft2 和 ifftn 则⽤来计算反 DFT 。
这些函数的调⽤格式如下:A=fft(X,N,DIM)其中,X 表⽰输⼊图像;N 表⽰采样间隔点,如果 X ⼩于该数值,那么 Matlab 将会对 X 进⾏零填充,否则将进⾏截取,使之长度为 N ;DIM 表⽰要进⾏离散傅⽴叶变换。
A=fft2(X,MROWS,NCOLS)其中,MROWS 和 NCOLS 指定对 X 进⾏零填充后的 X ⼤⼩。
别可以实现⼀维、⼆维和 N 维 DFTA=fftn(X,SIZE)其中,SIZE 是⼀个向量,它们每⼀个元素都将指定 X 相应维进⾏零填充后的长度。
函数 ifft、ifft2 和 ifftn的调⽤格式于对应的离散傅⽴叶变换函数⼀致。
正交变换的应用及数学方法论意义

指导教师:赵峰2012年4 月25 日原创性声明本人郑重声明: 所提交的学位论文是本人在导师指导下, 独立进行研究取得的成果. 除文中已经注明引用的内容外, 论文中不含其他人已经发表或撰写过的研究成果, 也不包含为获得聊城大学或其他教育机构的学位证明书而使用过的材料. 对本文的研究做出重要贡献的个人和集体, 均已在文中以明确方式标明. 本人承担本声明的相应责任.学位论文作者签名: 日期指导教师签名: 日期目录引言 (1)1 正交变换的定义 (1)2 正交变换的性质 (2)3正交变换法化二次标准型 (2)3.1正交变换化二次标准型的步骤 (3)3.2正交变换在二次标准型中的应用 (3)4 正交变换在积分中的应用 (7)4.1在多元积分学中的应用 (7)4.2重积分在正交变换下形式不变性 (9)4.3 正交变换在区面积分中的应用 (10)5 正交变换的数学方法论的意义 (12)5.1一般化 (12)5.2代数化 (12)5.3 模型化 (12)结语 (13)参考文献 (14)致谢 (15)摘要正交变换是欧氏空间中一类重要的变换,是保持度量不变的变换,正因为它有这一特征,使正交变换在高等代数中起着重要的作用.不仅如此,它在其它领域也有着广泛的应用,如在积分应用中,在多重积分及其曲面积分等方面.本文简单的介绍了正交变换的定义及其性质,讨论了正交变换化二次标准型的步骤及其广泛应用,运用正交变换进行变量替换是将数学分析与代数方法结合的例证,证明了第一类曲面积分和重积分在正交变换下的不变性。
因而可将其应用于简化多元函数积分计算.正交变换的此类应用充分体现了一般化、代数化、模型化的数学方法论。
关键词:正交变换;二次型;变量替换;重积分;曲面积分;数学方法论AbstractThe orthogonal transformation, a transformation that maintains the measure invariable, is one of the most important transformations in the field of euclidean space.Benifiting from this feature, it plays an important role in the advanced algebra. Furthermore,it applies widely in many other fields,such as the applications of integration, like the multiple integrations , the surface integrations and so on.This paper introduces the definition and properties of the orthogonal transformation briefly,it also discusses the procedures and wide applications of the secondary standard of the orthogonal transformation,using the orthogonal transformation to make a variable substitution is a good instance to prove the perfect combination of the mathematical analysis and algebraic approach,it demonstrates the invariance of the the first class of the surface integrations and double integrations under the orthogonal transformation. Thus,the orthogonal transformation can be applied in( the numerical integration of simplifying the function of many cariables.This kind of application of the orthogonal transformation fully embodies such mathematical methodologies as the generalization,the algebraization, and the modeling.Keyword:Orthogonal transformation; Quadratic ;Variable Substitution;Multiple integral;Surface integrals;Mathematical methodology引 言随着近代数学的发展,数学的各学科间的相互渗透显得越来越重要,特别是代数的方法运用更为突出,在现行的数学分析教材中,某些内容也注意到代数的方法的运用,但还需进一步加强, 将数学分析与代数方法结合, 是解决问题的途径之一, 更是培养学生数学能力的重要内容,有利于培养学生综合运用基础知识的能力。
施密特正交化的几何意义

施密特正交化的几何意义1. 引言1.1 施密特正交化的背景意义施密特正交化是一种重要的线性代数方法,用于将一个线性空间中的任意一组基变换为一组正交基。
这个方法的背景意义在于,正交基可以更好地描述向量空间的性质,使得计算更加简单且容易理解。
在实际应用中,施密特正交化可以帮助求解线性方程组,求解特征值和特征向量等问题。
正交基的一个重要特点是它们相互独立,这意味着它们可以更好地表示向量空间中的信息,同时也更容易进行计算。
在数学建模和科学计算中,正交基的使用大大简化了问题的求解过程,提高了计算的效率。
施密特正交化的背景意义还在于它与内积空间的关系。
内积空间是一个具有内积运算的向量空间,而正交基是内积空间中的一组特殊基。
通过施密特正交化,我们可以将任意一组基转化为内积空间中的正交基,从而更好地利用内积运算的性质。
1.2 施密特正交化的定义施密特正交化是线性代数中的一种重要概念,用于将任意向量空间中的基向量集合转换为正交基向量集合。
正交基向量集合具有许多优点,例如在计算过程中可以简化运算,减小误差传播等。
施密特正交化的定义如下:对于任意给定的线性无关向量集合\{v_1, v_2, ..., v_n\} ,我们可以通过一定的变换过程得到一个正交基向量集合\{u_1, u_2, ..., u_n\} ,使得这个新的向量集合满足以下两个条件:1. 正交:即\langle u_i,u_j \rangle = 0, i \neq j ,其中\langle \cdot, \cdot \rangle 表示内积运算。
2. 单位长度:即|u_i| = 1 。
通过施密特正交化的过程,我们可以将原始的线性无关向量集合转变为正交基向量集合,从而更好地理解向量空间的结构和性质。
在后续的计算和分析中,正交基向量集合可以大大简化运算步骤,并提高计算的精度和效率。
施密特正交化在线性代数中被广泛应用,并在许多领域发挥着重要作用。
2. 正文2.1 施密特正交化的过程施密特正交化的过程是一种重要的线性代数操作,用于将任意向量空间中的一组线性无关的向量转化为一组正交的向量。
正交变换在几何学中的应用

A=
æ cosθ
ç
è sinθ
- sinθ ö
÷ꎬ
cosθ ø
æ æ x1 ö æ x2 ö ö
æ x2 ö
( σ ( β 1 ) ꎬσ ( β 2 ) ) = ç A ç ÷ ꎬA ç ÷ ÷ = ( x 1 y 1 ) A′A ç ÷ = x 1 x 2 + y 1 y 2 = ( β 1 ꎬβ 2 ) ꎬ
è y1 ø
è y2 ø
σ ( β 1 ) + σ ( β 2 ) = β 1 + β 2 + 2α0 ≠ σ ( β 1 + β 2 ) ꎬ
故平移变换不是线性变换ꎬ所以它不是正交变换.
证毕
平移变换虽然保持向量的长度不变ꎬ保持向量的夹角不变ꎬ但它不是线性变换ꎬ因而平移变换不是
正交变换.
例 3 设 η 是 n 维 欧 式 空 间 V 的 一 个 单 位 向 量ꎬ 对 任 意 α ∈ Vꎬ 定 义 线 性 变 换 σ ( α ) = α -
(1) A 为可逆矩阵ꎬ且 A - 1 = A′ ꎻ
(2) A′ 也为正交矩阵( 从而 A - 1 也为正交矩阵) ꎻ
(3) 对任意 n 维列向量 X ꎬ AX 保持向量 X 的长度ꎬ即 AX = X ꎻ AX 和 AY 保持向量 X 和 Y 的内
积ꎬ即 ( AXꎬAY ) = ( XꎬY ) ꎻ
(4) A 的 n 列( 行) 向量构成 R n 的一个标准正交基.
在直角坐标系下向量的坐标关系式为 ç ÷ = ç
÷ ç ÷ ꎬ证明旋转变换 σ 是正交变换.
cosθ ø è y ø
è y′ ø è sinθ
证明
σ:R 2 → R 2 ꎬ即 ∀α =
æ x1 ö
æ x2 ö
曲面变换之正交变换

曲面变换应用正交变换之详讲摘要:曲面变换之正交变换,保持变换前后的向量内积不变,从而保持向量的长度与夹角不变。
这一刚性性质决定着正交变换有着广泛的应用。
多元函数积分中,运用正交变换进行变量替换是将数学分析与代数方法结合的例证。
本文着重论述正交变换在积分中的应用。
关键词:正交变换变量替换曲线积分曲面积分Surface transform applicationDetails of orthogonal transformation told Abstract:The orthogonal transform, curved transformation of vector before andafter keeping transformation, so as to keep the product remains within the length and Angle vector invariant.This determines a rigid properties of orthogonal transform a wide range of applications.Multivariate function points, the use of orthogonal transform variable replacement is mathematical analysis and algebra to the method and combining with examples.This paper focuses on the application of orthogonal transform in integral.Keywords:Orthogonal transformation Variable replacement Curvilinear integral Surface integral引言:曲线积分和曲面积分中,通过正交变换进行变量替换使得非平面曲线和非平面曲面上的积分化为二维空间上的曲线和曲面积分。
§4正交变换

( A , A ) ( , ) .
再来证明1)与3)等价. ( 1 ) (3 )
,2 , , 设 是一组标准正交基,则 1 n 1 ,i j , ( AA , ) (, ) (, i j 1 ,2 , ,n ) . i j i j 0 ,i j A , A , , A 由此可知, 也是标准正交基. 1 2 n (3 ) ( 1 ) ,2 , , , A , , 设 是一组标准正交基,则 A 1 n 1 2 A n 也是一组标准正交基,于是对于 , V ,设
( A ,) A 2 ( A , A ) ( A , A )
( A A , A A ) ( A ( ) ,( A ) ) ( , ) . ( , ) 2 ( ,) ( ,) ,
再利用 ( 即得 A , A ) ( ,) , ( A , A ) (, )
,2 ,3 建立的直角坐标系是右手 式等于 1,则以 1
三维几何空间中的右手系和左手系的概念可以
只是没有了右手法则和左 广到一般n维欧氏空间中,
手法则这样直观的表示. 于是我们就直接按过渡矩 阵的行列式列的符号(即等于+1还是-1)对n 维欧 氏空间中的的标准正交基进行分类. 欧氏空间(也 可用于线性空间)中所有的基分为两类: 先选取一 组基,凡是与它的过渡矩阵大于零的基属于一类, 反之,与它的过渡矩阵小于零的基属于另一类.
n
n
n
j 1 n
于是
xi yj (A i , A j )
n
i 1
正交变换在积分中的应用

目录1.正交变换 (1)1.1正交变换的定义 (1)1.2正交变换的性质 (1)2.正交变换在重积分中的应用 (1)2.1正交变换在二重积分中的应用 (2)2.2正交变换在三重积分中的应用 (3)3.正交变换在曲面积分中的应用 (6)3.1正交变换在第一型曲面积分中的应用 (6)3.2正交变换在第二型曲面积分中的应用 (13)4.正交变换在曲线积分中的应用 (15)4.1正交变换在第一型曲线积分中的应用 (15)4.2正交变换在第二型曲线积分中的应用 (16)5. 结束语 (18)参考文献 (19)1.正交变换1.1正交变换的定义在解析几何里,允许使用的变换都是保持向量的长度不变的.在欧式空间里,保持长度不变的线性变换——正交变换无疑是重要的.高等代数中给出了一般欧式空间中关于正交变换的定义.欧氏空间V 的一个线性变换σ叫作一个正交变换,如果对于任意的V ∈ξ,都有()ξξσ=.正交变换的另一种定义:欧氏空间V 的一个线性变换σ叫作一个正交变换,如果对于任意的V ∈ηξ,,都有()()〉〈=〉〈ηξησξσ,,.1.2正交变换的性质实际上正交变换是欧氏空间V 到自身的一个同构映射,因而正交变换的乘积与正交变换的逆变换还是正交变换,在标准正交基下,正交变换与正交矩阵对应,因此正交矩阵的乘积与正交矩阵的逆矩阵也是正交矩阵.如果A 是正交矩阵,则由I AA T =可知12=A 即1±=A ,因此正交变换的行列式等于1或1-.行列式等于1的正交变换称为旋转或称为第一类的;行列式等于1-的正交变换称为第二类的.如果A 是正交矩阵,伴随矩阵*A 也是正交矩阵.若A 是()2>n n 阶正交矩阵时,当1=A 时,*A A T =,即ij ij A a =;当1-=A 时,*A A T -=,即ij ij A a -=.2.正交变换在重积分中的应用在多元函数积分中,变量替换法的选用与否,不只关系着积分计算的快与慢,有时甚至影响着积分的算得出与算不出.如计算⎰⎰≤++-22222)(R y x y xdxdy e .若要在直角坐标系下化为累次积分计算,则会遇到计算⎰⎰---2222x R dy e dx ey Rx 的问题,但我们无法将⎰-dy e y 2表示成初等函数,计算便无法进行下去.此题若用极坐标变换计算,则易于得出结果.由此可见,变量替换在多元函数积分中的重要作用.多元函数积分中的变量替换法是计算积分的重要方法,变量替换的目的使得被积函数简单或者是积分区域简化,但是实际应用时选择要用的替换有很大的随意性,并且存在一定的难度.因此引入新的积分变量的同时必须要考虑被积函数的性质和积分区域的形状,而对于某些多元函数积分问题应用“正交变换”的有关理论解决是一种较为简便且颇有成效的方法.2.1正交变换在二重积分中的应用引理2.1[1] 设变换T :()v u x x ,=,()v u y y ,=将uv 平面上由按段光滑封闭曲线所围的闭区域∆,一对一地映成xy 平面上的闭区域D ,函数()v u x ,,()v u y ,在∆内分别具有一阶连续偏导数且它们的函数行列式()()()∆∈≠∂∂=v u v u y x v u J ,,0),(,,, 则区域D 的面积())(⎰⎰∆=dudv v u J D ,μ.定理2.1[1] 设()y x f ,在有界闭区域D 上可积,变换T :()v u x x ,=,()v u y y ,=将uv 平面由按段光滑封闭曲线所围成的闭区域∆一对一地映成xy 平面上的闭区域D ,函数()v u x ,,()v u y ,在∆内分别具有一阶连续偏导数且它们的函数行列式()()()∆∈≠∂∂=v u v u y x v u J ,,0),(,,, 则 ()()()()()⎰⎰⎰⎰∆=dudv v u J v u y v u x f dxdy y x f D,,,,,.例1 进行适当的变量替换,化二重积分()⎰⎰≤+++122y x dxdy c by ax f ,()022≠+b a为一重的.解 设()b a ,为二维空间的一个向量,它的单位向量为⎪⎭⎫⎝⎛k b k a ,(其中22b a k +=),再将其扩充为二维空间的一个标准正交基,设为⎪⎭⎫⎝⎛k b k a ,,()11,b a 作正交变换⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛y x A v u ,这里⎪⎪⎭⎫ ⎝⎛=11b a k b k a A (1) 为正交矩阵,则 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-v u A v u A y x T 1 两边转置得 ()()A v u y x ,,=∴()()1,,2222≤+=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=+v u v u AA v u y x y x y x T又因为1-=A A T 仍是正交矩阵且1±=T A ,于是变换的雅可比行列式为()()()1,,,±==∂∂=T A v u y x v u J 由(1)知ku by ax =+,于是由二重积分的变量替换公式得:()⎰⎰≤+++122y x dxdy c by ax f ()()⎰⎰≤++=122,v u dudv v u J c ku f()⎰⎰----+=221111u u dv du c ku f()⎰-+-=11212du c ku f u 即()=++⎰⎰≤+122y x dxdy c by ax f ()⎰-++-1122212du c u b afu此题选用正交变换兼顾了被积函数、积分区域的特点,较用其它的变换来解要简便.2.2正交变换在三重积分中的应用定理2.2[1] 设变换T :()w v u x x ,,=,()w v u y y ,,=,()w v u z z ,,=,将uvw 空间中的区域'V 一对一地映成xyz 空间中的区域V ,并设函数()w v u x ,,,()w v u y ,,,()w v u z ,,及它们的一阶偏导数在'V 内连续且函数行列式()0,,≠∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂=wz v z uz w yv y u yw x v x u x w v u J ,()',,V w v u ∈. 则 ()()()()()()⎰⎰⎰⎰⎰⎰=VV dudvdw w v u J w v u z w v u y w v u x f dxdydz z y x f ',,,,,,,,,,,,, 其中()z y x f ,,为V 上可积.例2 对于连续函数()z y x f ,,证明:()()()⎰⎰⎰⎰-≤++-=++11211222du ku f u dxdydz cz by ax f z y x π其中222c b a k ++=.证明 设()c b a ,,为三维空间的一个向量,它的单位向量为⎪⎭⎫⎝⎛k c k b k a ,,(其中222c b a k ++=),再将其扩充为三维空间的一个标准正交基,设为⎪⎭⎫⎝⎛k c k b k a ,,,()111,,c b a ,()222,,c b a 作正交变换⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛z y x A w v u ,这里⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=222111c b a c b a k c k b k a A (2) 为正交矩阵,则⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-w v u A w v u A z y x T1 两边转置得 ()()A w v u z y x ,,,,=∴()()1,,,,222222≤++=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=++w v u w v u AA w v u z y x z y x z y x T又因为1-=A A T 仍是正交矩阵且1±=T A ,于是变换的雅可比行列式为()()()1,,,,,,±==∂∂=T A w v u z y x w v u J 由(2)知ku cz by ax =++,于是由三重积分的变量替换公式得:()()()()⎰⎰⎰⎰⎰⎰⎰⎰⎰≤++≤++≤++==++111222222222,,w v u w v u z y x dudvdw ku f dudvdw w v u J ku f dxdydz cz by ax f()()()⎰⎰⎰⎰--≤+--==1121111222du ku f u dvdw duku f u w v π其中222c b a k ++=证毕.化重积分为累次积分的变量替换,是计算重积分最常用的方法.但是,我们遇到的积分不一定能用它们算出来,所以有时不得不使用其它数学工具和方法.例3 设()33⨯=ija A 是正定矩阵,证明由椭球V :1a 31,ij ≤∑=j i j i x x 所围成的体积等于()21-detA 34π.证明 (即证()21321det 34-=⎰⎰⎰A dx dx dx Vπ)由于A 是对称正定矩阵,故∑=31,ij a j i j i x x 是正定二次型.由高等代数知,存在一个正交矩阵T ,使 ()321321',,diag 000000λλλλλλ=⎪⎪⎪⎭⎫ ⎝⎛=AT T 这里1λ,2λ,3λ是矩阵A 的三个正特征根.作正交变换⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛321321y y y T x x x ,及变换⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛3213213213211010001u u u U u u u y y y λλλ 则'U U =且I ATU T U =''是三阶单位矩阵,⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛321321u u u TU x x x 则变换的雅可比行列式为()()()=∂∂=321321321,,,,,,u u u x x x u u u J ()()⋅∂∂321321,,,,y y y x x x ()()321321,,,,u u u y y y ∂∂ ()()()2121321det det det det --==⋅==A U T TU λλλ,又()()()⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=∑=321321321''32132132131,ij ,,,,,,a u u u I u u u u u u ATU T U u u u x x x A x x x x x j i j i 232221u u u ++=于是由三重积分的变量替换公式得:()()⎰⎰⎰⎰⎰⎰⎰⎰⎰≤++-≤++==1321211321321321232221232221det ,,u u u u u u Vdu du du A du du du u uu J dxdx dx ()21det 34-=A π 3.正交变换在曲面积分中的应用3.1正交变换在第一型曲面积分中的应用定理3.1[1] 设有光滑曲面S :()y x z z ,=,()D y x ∈,,()z y x f ,,为S 上的连续函数,则()()()⎰⎰⎰⎰++=SDy x dxdy z z y x z y x f dS z y x f 221,,,,,.定理3.2[1] 设有光滑曲面S :()()()⎪⎩⎪⎨⎧===,,,,,,v u z z v u y y v u x x ()D v u ∈,,则在S 上的第一型曲面积分的计算公式为()()()()()⎰⎰⎰⎰-=SDdudv F EG v u z v u y v u x f dS z y x f 2,,,,,,,,其中 222u u u z y x E ++=,v u v u v u z z y y x x F ++=,222v v v z y x G ++=. 这里还要求雅可比行列式()()v u y x ,,∂∂,()()v u z y ,,∂∂,()()v u x z ,,∂∂中至少有一个不等于零. 定理3.3[3] 设有光滑曲面S :()()()⎪⎩⎪⎨⎧===,,,,,,v u z z v u y y v u x x ()D v u ∈,,在正交变换⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛==⎪⎪⎪⎭⎫ ⎝⎛=z y x a a a a a a a a a AX z y x X 3332312322211312111111之下变成曲面'S :()()()⎪⎩⎪⎨⎧===,,,,,,111111v u z z v u y y v u x x则对于S 上的连续函数()z y x f ,,有()()⎰⎰⎰⎰=SSdSX A f dS X f ''1'(3)证明 因为A 是正交矩阵,所以'212121222E z y x z y x E u u u u u u =++=++=, '111111F z z y y x x z z y y x x F v u v u v u v u v u v u =++=++=,'212121222G z y x z y x G v v v v v v =++=++=,因此()⎰⎰SdS X f ()()()()()⎰⎰⎰⎰-==SDdudv F EG v u z v u y v u x f dS z y x f 2,,,,,,,=()()()()⎰⎰-D dudv F G E v u z v u y v u x f 2'''111,,,,,()⎰⎰=''111,,S dS z y x f ()⎰⎰=''1'S dS X A f例1 证明普阿松公式()()⎰⎰⎰-++=++Sdu c b a u f dS cz by ax f 112222π,其中S 为单位球面1222=++z y x .证明 设()c b a ,,为三维空间的一个向量,它的单位向量为⎪⎭⎫⎝⎛k c k b k a ,,(其中222c b a k ++=),再将其扩充为三维空间的一个标准正交基,设为⎪⎭⎫⎝⎛k c k b k a ,,,()111,,c b a ,()222,,c b a 作正交变换⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛z y x A w v u ,这里⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=222111c b a c b a k c k b k a A 为正交矩阵,则⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-w v u A w v u A z y x T1 两边转置得 ()()A w v u z y x ,,,,=∴()()1,,,,222222=++=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=++w v u w v u AA w v u z y x z y x z y x T由公式(3)得()()⎰⎰⎰⎰=++=++=++11222222z y x w v u dS ku f dS cz by ax f于是 ()D v u v u w ∈--=,,1222;w u u w -=∂∂,wvv w -=∂∂ 2222221111vu w v w u v w u w --=⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+()()()⎰⎰⎰⎰⎰⎰--==++=++=++Dz y x w v u dudv vu ku f dS ku f dS cz by ax f 221111222222令u u =,θsin 12u v -=,其中11≤≤-u ,πθ20≤≤. 于是 ()()()⎰⎰⎰⎰⎰--=--=--ππθθθ20112211222cos 1cos 111du ku f d u u du ku f dudv vu ku f D即 ()()⎰⎰⎰-++=++Sdu c b a u f dS cz by ax f 112222π.得证.例2 设()ds x m x m x m f n n n +++-⎰⎰⎰22111是展布在n 维空间中单位球面上的一曲面积分,则()()()()⎰∑⎰⎰⎰---=-=-⎪⎭⎫ ⎝⎛-Γ=⎪⎭⎫ ⎝⎛∑==113221111121212du uku f n ds x m f I n n n i i i n x n i i π(当3≥n 时)此处,令∑==ni imk 12,设函数()u f 当k u ≤时连续,其中()x Γ为Gamma 函数.证明 这里只要证: ()()()()⎰∑∑⎰⎰⎰----=-=-≤-⎪⎭⎫ ⎝⎛-Γ=-⋅⋅⋅⎪⎭⎫ ⎝⎛∑-=1123221112121111121212112du uku f n x dx dx dx x m f n n n i i n n i i i n x n i i π即可.设正交变换:⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n nn n n n n n u u u a a a a a a a a a x x x 2121222121211121 其中2n 个系数受制于()2121+=+n n C C n n 个条件:⎩⎨⎧=∑=,0,11nji a a τττ nj n i j i j i ,2,1,,2,1,==≠= 于是 11212==∑∑==n i i n i i x u ,∑-=-±=1121n i i n u u今取121,,,-n u u u 作为新的变量,系数选择的任意性很大,因此我们令()n i km a ii ,2,11==,同时我们可进一步要求由变换系数组成的行列式的值等于1,在这种假设下,对应于行列式任一元素的代数余子式等于元素的本身.所以雅可比行列式:()()121121,,,,,,--∂∂n n u u u x x xn n nn n n n nn n nnn n n n n n nn nn n n n n n n n n u ua a u ua a u ua a u ua a u ua a u ua a u u a a u u a a u u a a 111121121111121222221212111121211111---------------------=nn nn n n n n n n n nu x a u u a u ua u u a =++++=--112211 ()()()()nn n n n n x du du du u u u x x x ku f x dx dx dx ku f 12112112111211,,,,,,----∂∂=⋅⋅⋅∴ ()()∑-=---=⋅=1121211121111n i in n n n n u du du du ku f du du du x u x ku f , 从而()()∑⎰⎰⎰⎰∑⎰⎰⎰-=---≤--=--≤--∑=-∑=-=-=12221132211111112121111121212212112n i in n u u n i in n u u u du du du du ku f u du du du ku f I n i in i i对里面2-n 重积分实行变量替换:设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--22121212113210010001n n tt t u u u u u u, 则()()()()2212211321,,,,,,----=∂∂n n n u t t t u u u⇒ ()()∑⎰⎰⎰∑⎰⎰⎰-=---≤-=---≤--∑=--∑-=-=212221232121122211212111121212212n i in n n t n i in n u u t dt dt dt u u u du du du n i i n i i,再设⎪⎪⎪⎩⎪⎪⎪⎨⎧=====------3421234213321321211sin sin sin sin cos sin sin sin cos sin sin cos sin cos n n n n n n r t r t r t r t r t ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ其中10≤≤r ,πϕϕϕ≤≤-421,,0n ,πϕ203≤≤-n .()()42514331221sin sin sin ,,,,,,------=∂∂n n n n n n r r t t t ϕϕϕϕϕ∑⎰⎰⎰-=--≤-∑-=212221211212n i in n t t dt dt dt n i i⎰⎰⎰⎰⎰-=------12320304402251141sin sinsindr rr d d d d n n n n n n ππππϕϕϕϕϕϕϕ⎰⎰⎰⎰-⋅=------12320442225211441sin sinsin22dr rr d d d n n n n n n πππϕϕϕϕϕϕπ⎰-⎪⎭⎫ ⎝⎛B ⎪⎭⎫ ⎝⎛-B ⎪⎭⎫ ⎝⎛-B ⋅⋅=---102344121,2221,2421,232122dr rrn n n n n π()⎰-⎪⎭⎫ ⎝⎛Γ⎪⎭⎫⎝⎛ΓΓ⎪⎭⎫ ⎝⎛-Γ⎪⎭⎫ ⎝⎛Γ⎪⎭⎫ ⎝⎛-Γ⎪⎭⎫ ⎝⎛-Γ⎪⎭⎫ ⎝⎛Γ⎪⎭⎫ ⎝⎛-Γ⎪⎭⎫ ⎝⎛-Γ⎪⎭⎫ ⎝⎛Γ⎪⎭⎫ ⎝⎛-Γ=-10231232112421252321242221232dr r r n n n n n n n π ⎰-⎪⎭⎫ ⎝⎛-Γ⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛Γ=--1234122212dr r r n n n π(设v r =2)()()⎪⎭⎫ ⎝⎛-B ⎪⎭⎫ ⎝⎛-Γ⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛Γ=-⎪⎭⎫ ⎝⎛-Γ⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛Γ=----⎰22,2122211222141024214n n dv v v n n n n ππ()()⎪⎭⎫ ⎝⎛-Γ=⎪⎭⎫⎝⎛-Γ=⎪⎭⎫ ⎝⎛-Γ⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛Γ=⎪⎭⎫ ⎝⎛-Γ⎪⎭⎫ ⎝⎛-Γ⎪⎭⎫ ⎝⎛Γ⎪⎭⎫ ⎝⎛-Γ⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛Γ=----21212121212221222112334n n n n n n n n n n πππππ()()()()⎰----⎪⎭⎫ ⎝⎛-Γ=∴11232211212du uku f n I n n π若令λcos =u ()πλ≤≤0,则有()()()⎰--⎪⎭⎫⎝⎛-Γ=πλλλπ0221sin cos 212d k f n I n n 当3=n 时,且令c m b m a m ===321,,,z x y x x x ===321,,,得到著名的普阿松公式:()()⎰⎰⎰-++=++Sdu c b a u f dS cz by ax f 112222π,其中S 为单位球面1222=++z y x .运用正交变换仿上述命题推理过程可简快明了地处理以下n 重积分()2≥n 问题: 一、对连续函数()n x x x f ,,,21 ,证明:()()()()⎰∑⎰⎰⎰---=≤-⎪⎭⎫ ⎝⎛+Γ=⎪⎭⎫⎝⎛∑=1121221211112112du u ku f n dx dx dx x m f n n n n i i i n x n i i π,其中012≥=∑=ni i m k ,()u f 在k u ≤上连续,1≥n . 特别当3=n 时,设c m b m a m ===321,,,z x y x x x ===321,,有()()()⎰⎰⎰⎰-≤++-=++11211222du ku f u dxdydz cz by ax f z y x π其中222c b a k ++=.二、对连续函数()n x x x f ,,,21 ,证明:()()()()⎰∑⎰⎰⎰---=≤-+⎪⎭⎫ ⎝⎛+Γ=⎪⎭⎫ ⎝⎛+∑=111221211112112du u ku f n dx dx dx x m f n n n n i i i n x n i i ωπω其中012≥=∑=ni i m k ,()u f 在k ku ≤+ω上连续.当2=n 时,设,,,21c b m a m ===ωy x x x ==21,,有()=++⎰⎰≤+122y x dxdy c by ax f ()⎰-++-1122212du c u b afu3.2正交变换在第二型曲面积分中的应用定理3.4[4] 设S 为三维欧式空间内的光滑曲面,()z y x P ,,,()z y x Q ,,,()z y x R ,,均为S 上的连续函数,而⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛w v u a a a a a a a a a z y x 333231232221131211 ()A为欧式空间中的正交变换;'S 为S 在上述变换()A 下的象,()w v u P ,,,()w v u Q ,,,()w v u R ,,分别为P ,Q ,R 与变换()A 的复合函数,则()()⎰⎰⎰⎰⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛'''''333231232221131211cos cos cos cos cos cos S S dS a a a a a a a a a R Q P A dS R Q P γβαγβα (4)其中1±=A 是正交变换()A 的行列式,()γβαcos ,cos ,cos 和()'''cos ,cos ,cos γβα分别为S 和'S 的单位法向量.证明 设S 的参数方程为()()()⎪⎩⎪⎨⎧===,,,,,,θθθr z z r y y r x x ()D r ∈θ,, 则'S 的参数方程为()()()⎪⎩⎪⎨⎧===,,,,,,θθθr w w r v v r u u 记()3,2,1321=++=i R a Q a P a F i i i i ,则θθθθθθθθθw v u w v u F F F A a a a a a a a a a w v u w v u F F F z y x z y x R Q P r r rr r r r r r 321332313322212312111321⋅=⋅= 于是()⎰⎰⎰⎰⎰⎰±=±=⎪⎪⎪⎭⎫⎝⎛Dr r rD r r rSdrd w v u w v u F F F A drd z y x z y x R Q P dS R QPθθγβαθθθθθθ321cos cos cos()⎰⎰⎪⎪⎪⎭⎫ ⎝⎛='''''321cos cos cos S dS F F F A γβα ()⎰⎰⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫⎝⎛='''''333231232221131211cos cos cos S dS a a a a a a a a a R Q P A γβα例3 计算第二型曲面积分()⎰⎰++SdS z y x γβαcos cos cos其中S 为球面4222=++z y x 介于1≥++cz by ax 的外表面.解 设()c b a ,,为三维空间的一个向量,它的单位向量为⎪⎭⎫⎝⎛k c k b k a ,,(其中222c b a k ++=),再将其扩充为三维空间的一个标准正交基,设为⎪⎭⎫⎝⎛k c k b k a ,,,()111,,c b a ,()222,,c b a 作正交变换⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛z y x A w v u ,这里⎪⎪⎪⎪⎪⎭⎫⎝⎛=k c kb ka cb ac b a A 222111(5), 为正交矩阵,则由(5)知()cz by ax c b a w ++++=2221.变换将S 变为'S ,它为球面4222=++w v u 介于2221cb a w ++≥的外表面.由于正交变换保持向量的内积不变,故'''cos cos cos cos cos cos γβαγβαw v u z y x ++=++记222214cb a R ++-=,由(4)式得 ()()⎰⎰⎰⎰++=++'''''cos cos cos cos cos cos S SdS w v u dS z y x γβαγβα ⎰⎰≤+⎪⎭⎫ ⎝⎛--+∂∂-∂∂-=222224R v u dudv v u v w v u w u ⎰⎰≤+⎪⎪⎭⎫⎝⎛--+--+=22222222244R v u dudv v u v u v u ⎪⎪⎭⎫⎝⎛++-=--=⎰⎰≤+2222212844222c b a v u dudvR v u π 4.正交变换在曲线积分中的应用4.1正交变换在第一型曲线积分中的应用定理4.1[1] 设有光滑曲线()()()⎪⎩⎪⎨⎧===,,,:t z t y t x L χψϕ []βα,∈t , 函数()z y x f ,,为定义在L 上的连续函数,则()()()()()()()()⎰⎰++=βαχψϕχψϕdt t t t t t t f ds z y x f L2'2'2',,,,.定理4.2[4] 设L 为三维欧式空间内的光滑曲线,()z y x P ,,为L 上的连续函数,而⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛w v u a a a a a a a a a z y x 333231232221131211 ()A为欧式空间中的正交变换;'L 为L 在上述变换()A 下的象,()w v u P ,,为P 与变换()A 的复合函数,则()()⎰⎰='',,,,LLds w v u P ds z y x P (6).例1 计算第一型曲线积分()⎰-Lds y x ,其中L 为曲线()()3222223y x zx yz xy z y x -=+++++,02=++z y x ,上从点()0,0,0到点⎪⎪⎭⎫⎝⎛-+-+32,3221,3221的一段弧.解 L 是一条平面曲线,但是不易写出其参数方程.为此,作正交变换⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛z y x w v u 62616131313102121, 此变换将平面02=++z y x 变成坐标面0=w .由于()zx yz xy z y x +++++23222()()()()222222222242323144243222231w v z y x z y x zx yz xy z y x zx yz xy z y x +=+++-+=++++++--+++=()3342u y x =-,且当()()0,0,0,,=z y x 时,()()0,0,0,,=w v u ;当()⎪⎪⎭⎫ ⎝⎛-+-+=32,3221,3221,,z y x 时,()()0,2,1,,=w v u ,故变换将曲线L 变为'L :324u v =,0=w 从()0,0,0到()0,2,1的弧.于是由(6)式得()⎪⎪⎭⎫ ⎝⎛+=+=⎪⎭⎫ ⎝⎛+==-⎰⎰⎰⎰15131025812491212210102''du u u du du dv u uds ds y x L L4.2正交变换在第二型曲线积分中的应用定理4.3[4] 设L 为三维欧式空间内的光滑曲线,()z y x P ,,,()z y x Q ,,,()z y x R ,,均为L 上的连续函数,而⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛w v u a a a a a a a a a z y x 333231232221131211()A为欧式空间中的正交变换;'L 为L 在上述变换()A 下的象,()w v u P ,,,()w v u Q ,,,()w v u R ,,分别为P ,Q ,R 与变换()A 的复合函数,则()()⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎰⎰dw dv du a a a a a a a a a R QP dz dy dx R QPLL333231232221131211' (7).例2 计算第二型曲线积分⎰Lxdy ,其中L 为圆周()34222=-++++zx yz xy z y x ,3=+-z y x ,从x 轴正向看去,圆周是沿逆时针方向进行的.解 作正交变换⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛z y x w v u 31313161626121021 则w v u x 316121++=,w v y 3162-=且()()()zxyz xy z y x z y x zx yz xy z y x 222234222222222+--++-++=-++++()()()()2222222222236323wv u ww vuz y x z y x -+=-++=+--++=这样,由(7)式得⎰⎰⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫⎝⎛++='3162316121L L w v d w v u xdy 其中'L 为圆周3422==+w v u ,,从w 轴正向看去,圆周是沿逆时针方向进行的.因此⎰⎰⎪⎪⎭⎫⎝⎛++='6216121L L dv v u xdy πθθθθθθππ34cos 34cos 2621sin 261cos 22120220==⋅⎪⎪⎭⎫ ⎝⎛+⋅+⋅=⎰⎰d d5. 结束语上述诸例足以说明利用正交变换的方法去处理重积分和曲面积分的某些问题是卓有成效的(对于曲线积分亦是如此),并且不受空间维数的限制.而正交变换在物理学上、几何上、概率论上等学科有着广泛的应用前景,同时数学问题的代数化的方法是值得重视的.参考文献[1]华东师范大学数学系编.《数学分析》[M],高等教育出版社,2001[2]张禾瑞,郝鈵新编.《高等代数》[M],高等教育出版社,2007.6[3]邹晓范. 正交变换在多元函数积分中的应用[J],佳木斯大学学报(自然科学版), 2003,21(4):494-496[4]林元重. 正交变换在曲线、曲面积分计算中的应用[J],数学通报, 1996,(12):27-29。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
l
l = ( T Y, T r )=  ̄ / ( Y, y ) =l l , l
正 交变 换保 持 了 向量 的 内积和 长度 不 变 , 也 就 保
标 系下做 正 交变换 X =T Y ( 1 l:1 )的充要 条 件 是对 坐 标 系 O x y z绕 原 点 进 行 一 定 角 度 的 旋
通过 矩 阵 这 个 工 具 , 与 形 象 的 几 何 图形 联 系起
来.
[ 兰 兰 篓 篓 ] , : ) 由 实 对 称 矩 阵 的 性 质 ,
存 在正 交矩阵T , 使 得T A T:} 0 A 0 I , 这
1 正 交 变换 与 二次 型
在 三维 欧式 空间 中 , 向量 的内积 为 ( X, y )= y, 其中 X =( , y , z ) , Y =( 。 , Y 。 , z 。 ) , 相 应
标系。 下 可 以令 ・:
[ ] J = [ 曩 ] , - =
【 摘 要】阐述正交变换与二次型的关系, 以形 象的分析给 出正交变换的几何 意义 , 并说明此几何意义在判断二次齐次方程型曲面类型 中的应用 , 并将此类应 用
推 广 到一般 的二 次 曲面表 达式.
【 关键词 】二次型; 正交变换 ; 二次曲面
0 引 言
在线 性代 数 中 , 由二 次 型 知 道 , 对 于 任 何 一
地, 向量的长度为 I I = ̄ / , ( , X ) , 设有正交变 换 = T Y, 则 由正交 变换 定义有
( T Y 。 , y 2 )= ( y 。 , y 2 ) ,
2 正 交 变换 的几 何 意 义
定理 1 设 有 空 间直角 坐标 系 O x y z , 则 此坐
第3 O卷 第 3期
哈尔滨师范大学 自然科学学报
NA TUR AL S CI ENC E S J OURN AL OF HARB I N NORMA L U NI VE RS I T Y
正 交 变 换 的 几 何 意 义 及 其 应 用
杜 美华 , 孙建英
( 青 岛理工大学 )
转.
持了向量的夹角不变 , 而 向量与点是 等价的, 所 以正交 变换 保持 了点 的位 置关 系不 变 , 从 而也 就 保持了图形 的不变性. 设 有 三元二 次 型
厂( , ) , , )=a l l +a 2 2 y +a 3 3 Z +2 口 l 2 y+
l =
( 2 )在平 面上 , 直角 坐标 系 逆 时针 旋 转角 度 0 后, 这种 变换 也是 正交 变换 , 新 旧坐标 的关 系为
Y
( 一 ) 由 于 平 面 坐 标 系 旋
转后 , 轴与 轴 、 Y 轴与 Y 轴的夹角相同, 从而
在 正 交 矩阵T : f c 0 一 n 1 的 主 对 角 线 上 都 \ s i n O c o s O /
阵T = J
, f , 并 且I T I = 1 , 在 空间 坐
到底是 A , A : , A , 的取值 特 性 就可 以判 断 曲面 的类 型 , 并 且利用 几何 意 义就 可 以知 道 图
形 的 由来 . 结 合 二 次 型 与 正 交 变换 的 几何 意义 ,
( 1 )
第 3期
正交变换的几何意义及其应用
3 7
定 的角度 , 旋 转 之后新 旧坐标 系相 应 坐标 轴 的夹
角分 别为 a r c c o s 1 , a r c c o s 2 , a r c c o s .
,
[ ] - = [ ] , 七 - [ ]
( 3 ) 需要注意的是 , 旋转变换要求 I l =1 , 而正交 变换 X = 中, 也 可能 I 7 1 I=一1 , 但是
这 种正交 变换 不 是 旋 转 变 换 , 是反射变换 , 通过 这 种正 交变 换 , 虽 然 图形 形 状 没 有 发 生 任 何 变
化, 但是将坐标系变为左手系, 不是右手系. 如果
得 到 的正 交矩 阵 l l =一1 , 则 只需 在 矩 阵 的
任何一列 ( 行) 乘 以 一1 或者任意互换两列 ( 行)
交 且 为 单 位向 量, 令 = l
: , l , 则 为
即可.
3 应 用
正交 变换 的这 种几何 特 性 , 对 于解 决复 杂 的 二 次 曲面 ( 线 )的形状 问题 , 具 有 很 大 的优越 性 . 对 于像 ( 1 )式 的二次 曲面 , 直 接看 不 出 它 的图形
个二次齐次多项式 , 通过配方法 、 合 同变换法或 正交变换法, 将二次齐次多项式化为只含有平方 项 的标 准型 , 其 中 最 常 用 的 正 交 变换 法 , 具 有 很
好 的几何 意义 , 在解 决二 次 曲线及 二 次 曲面 的 图 形中, 起 到 了非 常 重要 的作用 , 将 枯燥 的代数 式 ,
2 a 1 3 船 +2 0 2 3
收稿 日期 : 2 0 1 4— 0 3— 0 5
证明 充分性. 设有空间直角坐标系 O x y z ,
与 轴 、 y 轴、 z 轴同方向的单位向量分别为f 、 , 、 k , 现将坐标系 O x y z 绕着原点 0旋转 到另一个位
置, 在此位置建立新 的坐标 系 , 记作 0 Y l z , , 与
而 ( i 。×J t ) ・k : l
是c o s O , 无 论是 在平 面 还是 空 间 中 , 正 交 变换 的 这种 几何 特点 是一 致 的 , 并且 可 以推 广 到抽 象 的
n维 空 间中.
l
从而 有』 : : f =1 , 并且i 。 √ 『 - 、 k 。 两两正