高中数学 第一章 数列的概念教案 北师大版必修5
高中数学 第一章 数列的概念教案 北师大版必修5

数列的概念教学目标1.通过教学使学生理解数列的概念,了解数列的表示法,能够根据通项公式写出数列的项.2.通过数列定义的归纳概括,初步培养学生的观察、抽象概括能力;渗透函数思想.3.通过有关数列实际应用的介绍,激发学生学习研究数列的积极性.教学重难点教学重点是数列的定义的归纳与认识;教学难点是数列与函数的联系与区别.教学过程一.揭示课题先举一个生活中的例子:场地上堆放了一些圆钢,最底下的一层有100根,在其上一层(称作第二层)码放了99根,第三层码放了98根,依此类推,问:最多可放多少层?第57层有多少根?从第1层到第57层一共有多少根?我们不能满足于一层层的去数,而是要求如何去研究,找出一般规律.实际上我们要研究的是这样的一列数(板书)象这样排好队的数就是我们的研究对象——数列. (板书)第一章 数列(一)数列的概念二.讲解新课要研究数列先要知道何为数列,即先要给数列下定义,为帮助同学概括出数列的定义,再给出几列数:①各排钢管的数量:3,4,5,6,7,8,9②我国1998~2002年GDP 值(亿元):78345 82067 89442 95933 102389 ③五次人口普查的数量(百万):60193 72307 103188 116002 129533④正弦函数x y sin =的图像在y 轴左边所有最低点从右向左,它们的横坐标依次排成一列数:2π- 25π- 29π- 213π- 217π- ……⑤正整数 的倒数排成一列数:41,31,21,1…… ⑥某人2006年1~~12月工资,按月顺序排列为:1100 1100 1100 …… 1100 ⑦函数21x y =当 依次取n ,...,3,2,1(*∈N n )时得到一列数:21,...,91,41,1n 请学生观察7列数,说明每列数就是一个数列,数列中的每个数都有自己的特定的位置,这样数列就是按一定顺序排成的一列数.(板书)1.数列的定义:按一定次序排成的一列数叫做数列.为表述方便给出几个名称:项,项数,首项(以幻灯片的形式给出).以上述七个数列为例,让学生练习指出某一个数列的首项是多少,第二项是多少,指出某一个数列的一些项的项数.由此可以看出,给定一个数列,应能够指明第一项是多少,第二项是多少,……,每一项都是确定的,即指明项数,对应的项就确定.所以数列中的每一项与其项数有着对应关系,这与我们学过的函数有密切关系.对概念的理解数集中的元素具有确定性,互异性,无序性,那么数列中的项是否具有这些属性? 教师提出问题:1:1,2,3,4与4,3,2,1是否为同一数列?2: -1,1,-1,1是否为一个数列?遇到数学概念不但要下定义,还要给其数学表示,以便研究与交流,下面探讨数列的表示法.(板书)2.数列的表示法数列可看作特殊的函数,其表示也应与函数的表示法有联系,首先请学生回忆函数的表示法:列表法,图象法,解析式法.相对于列表法表示一个函数,数列有这样的表示法:用表示第一项,用 表示第一项,……,用 表示第 项,依次写出成为(板书)(1)列举法. 简记为 .一个函数的直观形式是其图象,我们也可用图形表示一个数列,把它称作图示法. (板书)(2)图示法启发学生仿照函数图象的画法画数列的图形.具体方法是以项数 为横坐标,相应的项 为纵坐标,即以 为坐标在平面直角坐标系中做出点(以前面提到的数列 41,31,21,1…为例,做出一个数列的图象),所得的数列的图形是一群孤立的点,因为横坐标为正整数,所以这些点都在 轴的右侧,而点的个数取决于数列的项数.从图象中可以直观地看到数列的项随项数由小到大变化而变化的趋势.有些函数可以用解析式来表示,解析式反映了一个函数的函数值与自变量之间的数量关系,类似地有一些数列的项能用其项数的函数式表示出来,即,这个函数式叫做数列的通项公式.(板书)(3)通项公式法 认识数列的通项公式数列可看作特殊的函数,其表示也应与函数的表示法有联系,首先请学生回忆函数的表示法:列表法,图象法,解析式法。
北师大版高中数学必修5《一章 数列 1 数列 1.1数列的概念》赛课导学案_26

《数列的概念》教学设计一.教学内容解析本节课为北师大版必修五第一章第一节内容,主要讲授数列的概念及数列的通项公式,这部分内容是后续学习等差数列、等比数列及数列应用的基础。
教材中通过大量的实例引入了数列的概念,将生活实际与数学有机地联系在一起。
这能让学生能够体会到数学就在身边,是符合学生的认知规律。
作为数列概念的第一节课,要着重于培养学生的研究意识、创新意识、合作意识和应用意识,营造一个良好的教学开端。
教学过程中从日常生活中的实例入切入,直观感受并掌握其中的一些基本关系,感受数列在日常生活中的广泛应用。
基于以上教材分析,我将本节课教学重点确定为:理解数列的概念,认识到数列是反映自然规律的基本数学模型,探索并掌握数列的简单表示法。
二.学生学情分析数列对于学生来说虽然是一个全新的概念,但由于数列与函数有关内容有着密切的联系。
小初阶段有过找寻数字规律的训练,前期学习的函数相关知识也为他们学习数列奠定了基础。
但是在稍复杂的数列通项公式找寻过程中学生还是会遇到困难。
基于以上学情分析,我将本节课教学难点确定为:认识数列是一种特殊的函数,发现规律并找出数列可能的通项公式。
三.教学目标设置1.理解数列的基本知识,会用数列的通项公式表示数列。
2.通过类比函数学习数列,能够参悟转化与化归的数学基本思想。
在整个教学过程中渗透抽象概括、数学建模、数学运算的核心素养。
3.学习过程中通过大量生活中的实例导入、观察与思考,体验数学魅力,感受数学在解决实际问题中的作用。
四.教学策略分析数列是高中数学的重要内容,作为数列部分的起始内容,在整个教学过程中我将展示实际问题,借鉴生活规律,展现数学之美,从而营造不一样的课堂。
营造“生态课堂”、引导学生进行“动态学习”,让学生参与到整个课堂教学中来。
所以本节课对于教师角色的定位为引导教学者,成为学生学习条件的提供者、学习环境的营造者、学习动力的激励者。
五.教法与学法为了突出重点、突破难点实现教学目标,本节课我将采用直观教学法、讨论教学法、启发式教学、多媒体辅助教学法。
北师大版高中数学必修5同步学案:第1章 等差数列的概念及其通项公式

§2 等差数列2.1 等差数列第1课时等差数列的概念及其通项公式学习目标核心素养1.理解等差数列的概念.(难点)2.掌握等差数列的判定方法.(重点) 3.会求等差数列的通项公式及利用通项公式求特定的项.(重点、难点) 1.通过等差数列概念的学习培养学生的数学抽象素养.2.借助于等差数列的通项公式提升学生的数学运算素养.1.等差数列的概念阅读教材P10~P11例1以上部分,完成下列问题.文字语言从第2项起,每一项与它前一项的差等于同一个常数,这样的数列就叫作等差数列.这个常数称为等差数列的公差,通常用字母d 表示符号语言若a n-a n-1=d(n≥2),则数列{a n}为等差数列思考:(1)数列{a n}的各项为:n,2n,3n,4n,…,数列{a n}是等差数列吗?[提示] 不是,该数每一项与其前一项的差都是n,不是常数,所以不是等差数列.(2)若一个数列从第二项起每一项与它前一项的差都是常数,这个数列一定是等差数列吗?[提示] 不一定,当一个数列从第二项起每一项与它前一项的差都是同一个常数时,这个数列才是等差数列.如数列:1,2,3,5,7,9,就不是等差数列.2.等差数列的通项公式如果等差数列{a n}的首项为a1,公差为d,那么它的通项公式为a n=a1+(n-1)d.思考:(1)若已知等差数列{a n}的首项a1和第二项a2,可以求其通项公式吗?[提示] 可以,可利用a2-a1=d求出d,即可求出通项公式.(2)等差数列的通项公式一定是n的一次函数吗?[提示] 不一定,当公差为0时,等差数列的通项公式不是n的一次函数,而是常数函数.3.等差数列通项公式的推导如果等差数列{a n}的首项是a1,公差是d,根据等差数列的定义得到a2-a1=d,a3-a2=d,a4-a3=d,…所以a2=a1+d,a 3=a 2+d =a 1+d +d =a 1+2d, a 4=a 3+d =a 1+2d +d =a 1+3d, ……由此归纳出等差数列的通项公式为a n =a 1+(n -1)d .1.等差数列{a n }中a 1=2,公差d =3,则a n =( ) A .2n +1 B .3n +1 C .2n -1D .3n -1D [a n =a 1+(n -1)d =2+3(n -1)=3n -1.] 2.在等差数列{a n }中,a 1=0,a 3=4,则公差d =( ) A .4 B .2 C .-4D .-2B [a 3-a 1=4-0=2d,故d =2.]3.等差数列32,-12,-52,…的第10项为( )A .-372B .-332C .372D .332B [由a 1=32,d =-12-32=-2,得a n =32+(n -1)(-2)=-2n +72.所以a 10=-2×10+72=-332.]4.已知等差数列{a n }中,d =-13,a 7=8,则a 1=________.10 [由a 7=a 1+6d =8且d =-13代入解得a 1=8-6d =8+2=10.]等差数列的判定【例1(1)a n =3-2n ;(2)a n =n 2-n.[解] (1)因为a n +1-a n =[3-2(n +1)]-(3-2n)=-2,是常数,所以数列{a n }是等差数列.(2)因为a n +1-a n =[(n +1)2-(n +1)]-(n 2-n)=2n,不是常数,所以数列{a n }不是等差数列.等差数列的判断方法——定义法等差数列的定义是判断一个数列是否为等差数列的重要依据,要证明一个数列是等差数列,可用a n +1-a n =d(常数)或a n -a n -1=d(d 为常数且n≥2).但若要说明一个数列不是等差数列,则只需举出一个反例即可.[提醒] 当d >0时,等差数列{a n }是递增数列; 当d <0时,等差数列{a n }是递减数列; 当d =0时,等差数列{a n }是常数列.1.若数列{a n }满足a n +1=a n2a n +1,a 1=1,求证:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列.[证明] 由a n +1=a n 2a n +1得1a n +1=2a n +1a n =2+1a n ,即1a n +1-1a n =2,所以数列⎩⎨⎧⎭⎬⎫1a n 是首项为1,公差为2的等差数列.等差数列的通项公式及应用【例2】 (1)求等差数列8,5,2,…的第20项;(2)在等差数列{a n }中,已知a 6=12,a 18=36,求通项公式a n . [解] (1)由a 1=8,a 2=5,得d =a 2-a 1=5-8=-3, 故a n =8-3(n -1)=11-3n, 则a 20=11-3×20=-49.(2)由题意可得⎩⎪⎨⎪⎧a 1+5d =12,a 1+17d =36,解得d =2,a 1=2,故a n =2n.等差数列通项公式的四个应用(1)已知a n ,a 1,n,d 中的任意三个量,可以求出第四个量.(2)由等差数列的通项公式可以求出该数列中的任意项,也可以判断某一个数是不是该数列中的项. (3)根据等差数列的两个已知条件建立关于“基本量”a 1和d 的方程组,求出a 1和d,从而确定通项公式,求出待求项.(4)若数列{a n }的通项公式是关于n 的一次函数或常数函数,则可判断数列{a n }是等差数列.2.(1)等差数列{a n }中,a 2=4,公差d =3,a n =22,求n ;(2)判断-401是不是等差数列-5,-9,-13,…的项,如果是,是第几项?[解] (1)由条件知⎩⎪⎨⎪⎧a 1+3=4,a 1+3(n -1)=22,解得a 1=1,n =8;(2)由a 1=-5,d =-9-(-5)=-4,得这个数列的通项公式为a n =-5+(n -1)×(-4)=-4n -1. 由题意,令-401=-4n -1,得n =100, 即-401是这个数列的第100项.等差数列的实际应用[1.一种游戏软件的租金,第一天5元,以后每一天比前一天多1元,那么第n(n≥2)天的租金怎样表示?每天的租金数有什么特点?[提示] 每天的租金构成以5为首项,以1为公差的等差数列,a n =5+(n -1)×1=n +4(n≥2). 2.直角三角形三边长成等差数列,你能求出三边的比吗?[提示] 设直角三角形的三边长分别为a,a +d,a +2d(a >0,d >0),则(a +2d)2=a 2+(a +d)2,即a 2-2ad -3d 2=0,解得a =3d,则三边长分别为3d,4d,5d, 故三边长的比为3∶4∶5.【例3】 某市出租车的计价标准为1.2 元/km,起步价为10元,即最初的4 km(不含4 km)计费10元,如果某人乘坐该市的出租车去往14 km 处的目的地,且一路畅通,等候时间为0,那么需要支付多少车费?思路探究:某人需支付的车费构成等差数列,运用等差数列的知识去解决.[解] 根据题意,当该市出租车的行程大于或等于4 km 时,每增加1 km,乘客需要支付1.2元.所以,可以建立一个等差数列{a n }来计算车费. 令a 1=11.2,表示4 km 处的车费,公差d =1.2, 那么当出租车行至14 km 处时,n =11,此时需要支付车费a 11=11.2+(11-1)×1.2=23.2(元).即需要支付车费23.2元.1.(变条件)在例3中,若某人乘坐该市的出租车去往18.5 km(不足1 km,按1 km 计费),且一路畅通,等候时间为0,那么,需支付多少车费?[解] 由题意知,当出租车行至18.5 km 处时,n =16,此时需支付车费a 16=11.2+(16-1)×1.2=29.2(元).2.(变结论)在例3中,若某人乘坐该市的出租车去往n km(n ∈ N +)处的目的地,求其需支付的车费a n .[解] 当n ∈{1,2,3}时,a n =10,当n ∈N +,且n≥4时,a n =11.2+(n -4)×1.2=1.2n +6.4.所以a n =⎩⎪⎨⎪⎧10,n ∈{1,2,3},1.2n +6.4,n≥4且n ∈N +.应用等差数列解决实际问题的步骤(1)审题,读懂题意,把握已知条件与求解问题. (2)将实际问题抽象为等差数列模型. (3)利用等差数列解决问题.(4)验证答案是否符合实际问题的意义.1.等差数列的通项公式为a n =a 1+(n -1)d,已知a 1,n,d,a n 这四个量中的三个,可以求得另一个量. 2.等差数列的判定关键是看a n +1-a n (或a n -a n -1(n≥2))是否为一个与n 无关的常数. 3.对于通项公式的理解.a n =a 1+(n -1)d ⇒a n =nd +(a 1-d),所以,当d≠0时,a n 是关于n 的一次函数,一次项系数就是等差数列的公差,当d =0时,等差数列{a n }为常数列:a 1,a 1,a 1,…,a 1,…1.判断正误(正确的打“√”,错误的打“×”) (1)常数列是等差数列.( )(2)-1,-2,-3,-4,-5不是等差数列.( ) (3)若数列{a n }是等差数列,则其公差d =a 7-a 8.( ) [答案] (1)√ (2)× (3)×[提示] (1)正确,(2)不正确,数列-1,-2,-3,-4,-5是公差为-1的等差数列;(3)不正确,公差d =a 8-a 7.2.下列数列是等差数列的是( ) A .13,15,17,19 B .1,3,5,7 C .1,-1,1,-1D .0,0,0,0D [由等差数列的定义知:0,0,0,0是等差数列,选D .] 3.在等差数列{a n }中,a 2=4,a 8=a 6+3,则a 1=________.52 [由已知得⎩⎪⎨⎪⎧a 1+d =4,a 1+7d =a 1+5d +3,解得a 1=52.]4.在等差数列{a n }中,a 5=10,a 12=31,求a 20,a n . [解] 由a 5=10,a 12=31, 得7d =a 12-a 5=21,所以d =3,a 1=a 5-4d =10-4×3=-2. 所以a 20=a 1+19d =-2+19×3=55,a n =a 1+(n -1)d =-2+3(n -1)=3n -5(n ∈N +).。
高中数学 第一章 数列教案 北师大版必修5

§1数列1.1 数列的概念(教师用书独具)●三维目标1.知识与技能理解数列及其有关概念,了解数列和函数之间的关系.2.过程与方法按照观察、猜想、发现、归纳和总结的学习过程,进行启发式教学,体会归纳思想.3.情感、态度与价值观通过本节课学习,体会数学源于生活,提高数学学习兴趣.●重点难点重点:了解数列的概念,了解数列是一种特殊函数.根据数列的前n项写出它的一个通项公式.难点:将数列作为一种特殊函数去认识,了解数列与函数之间的关系.(教师用书独具)●教学建议问题/情境设计意图师生活动同学们都知道大自然是美丽的,但如果我说,大自然还是懂数学的,你相信吗?下面,请看图片.师:多媒体课件展示生动丰富的大自然场景:花菜、向日葵、菠萝等,这些事物似乎都与这列数有关:1,1,2,3,5,8,13,21……生:观察图片,投入到教学活动中来.如果细心观察,就会发现自然界的一些看似千差万别的事物,似乎都能在这一列数中找到联系,这是巧合,还是别的什么原因?同学们若感兴趣,想研究它,就需要先来学习我们今天的内容:数列的概念.●教学流程创设问题情境,提出3个问题⇒引导学生解答问题,引出数列的有关概念⇒通过例1及变式训练,使学生进一步认识数列的有关概念⇒通过例2及变式训练,使学生掌握数列的通项公式的求法⇒通过例3及互动探究,让学生掌握利用通项公式确定数列的项的问题⇒归纳整理,进行课堂小结,整体认识所学知识⇒完成当堂双基达标,巩固所学知识,并进行反馈、矫正(对应学生用书第1页)课标解读1.了解数列、通项公式的概念.2.了解数列是自变量为正整数的一类函数(难点).3.能根据通项公式确定数列的某一项(重点).4.能根据数列的前几项写出数列的一个通项公式(重点、难点).数列的有关概念及表示【问题导思】小山想利用电子邮箱发送一个E-mail,但是由于长时间未登录邮箱,从而他忘记了邮箱的密码,只记得密码由3~8这6个数字构成,如:(1)3 4 5 6 7 8;(2)4 6 8 7 3 5;(3)7 6 5 3 8 4.1.这三组数字有什么异同之处?【提示】都是由3~8这6个数字构成,但是排列顺序不同.2.小山把上面3组数当成密码来试验时,都没有打开邮箱,他说:“仅仅知道数字及个数还不能确定密码”.那么,找到密码还需要确定什么?【提示】 数字的排列顺序. 1.数列的有关概念数列 按一定次序排列的一列数叫作数列 项 数列中的每一个数叫作这个数列的项首项 数列的第1项常称为首项 通项数列中的第n 项a n ,叫数列的通项2.数列的表示①一般形式:a 1,a 2,a 3,…,a n ,…; ②字母表示:上面数列也记为{a n }.数列的分类【问题导思】当n 分别取1,2,3,4,…时,sin n π2的值排成一个数列:1,0,-1,0…;当n分别取1,2,3,4,5时,sinn π2的值排成一个数列:1,0,-1,0,1.这两个数列是同一数列吗?若不是同一数列,这两个数列有何区别与联系?【提示】 不是同一数列.第一个数列有无穷多项,第二个数列共有5项,这5项恰好是第一个数列的前5项.按数列的项数,数列分为有穷数列与无穷数列. (1)项数有限的数列叫作有穷数列; (2)项数无限的数列叫作无穷数列.数列的通项公式【问题导思】传说古希腊毕达哥拉斯学派的数学家经常在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数.如图:图1-1-1上图表示的数可构成数列1,4,9,16,…,这个数列的第n 项a n 与n 之间能否用一个函数式表示?怎样表示?【提示】 可以.函数式可表示为a n =n 2.1.如果数列{a n }的第n 项a n 与n 之间的函数关系可以用一个式子表示成a n =f (n ),那么这个式子就叫作这个数列的通项公式,数列的通项公式就是相应函数的解析式.2.数列可以看作定义域为正整数集N +(或它的有限子集)的函数,当自变量从小到大依次取值时,该函数对应的一列函数值就是这个数列.(对应学生用书第2页)数列的有关概念下列说法哪些是正确的?哪些是错误的?并说明理由.(1){0,1,2,3,4}是有穷数列; (2)所有自然数能构成数列; (3)同一个数在数列中可能重复出现; (4)数列1,2,3,4,…,2n 是无穷数列.【思路探究】 紧扣数列的有关概念,验证每一个说法是否符合条件. 【自主解答】 (1)错误.{0,1,2,3,4}是集合,不是数列. (2)正确.如将所有自然数按从小到大的顺序排列. (3)正确.数列中的数可以重复出现.(4)错误.数列1,2,3,4,…,2n ,共有2n 项,是有穷数列.1.数列{a n }表示数列a 1,a 2,a 3,…,a n ,…,不是表示一个集合,与集合表示有本质的区别.2.从数列的定义可以看出,如果组成数列的数相同而排列次序不同,那么它们就是不同的数列;在定义中,并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.下列说法正确的是( )A .数列3,5,7与数列7,5,3是相同数列B .数列2,3,4,4可以记为{2,3,4}C .数列1,12,13,…,1n ,…可以记为⎩⎨⎧⎭⎬⎫1nD .数列{2n +1}的第5项是10【解析】 数列是有序的,选项A 错;数列与数集是两个不同的概念,选项B 错;对于D ,当n =5时,a 5=2×5+1=11,选项D 错,故选C.【答案】 C由数列的前n 项写出数列的一个通项公式写出下列数列的一个通项公式. (1)1,-3,5,-7,9,…; (2)3,3,15,21,33,…; (3)22-12,32-13,42-14,52-15,…;(4)0.9,0.99,0.999,0.9999,…; (5)32,1,710,917,…. 【思路探究】 分析各项a n 与对应序号n 之间的关系,从中发现规律,得到一个合适的函数解析式,再验证是否正确即可.【自主解答】 (1)数列各项的绝对值为1,3,5,7,9,…是连续的正奇数,考虑(-1)n +1具有转换符号的作用,所以数列的一个通项公式为a n =(-1)n +1(2n -1).(2)数列可化为3,9,15,21,27,…, 即3×1, 3×3,3×5,3×7,3×9,…,每个根号里面可分解成两个数之积,前一个因数为常数3,后一个因数为2n -1,故原数列的一个通项公式为a n =3(2n -1)=6n -3.(3)这个数列的前4项的分母都是序号加上1,分子都是分母的平方减去1,所以它的一个通项公式是:a n =(n +1)2-1n +1.(4)原数列可变形为:1-110,1-1102,1-1103,1-1104,…,故所给数列的一个通项为a n =1-110n . (5)将数列统一为32,55,710,917,…对于分子3,5,7,9,…,是序号的2倍加1,可得分子的通项公式为b n =2n +1;对于分母2,5,10,17,…联想到数列1,4,9,16,…即数列{n 2},可得分母的通项公式为c n =n 2+1,∴可得原数列的一个通项公式为a n =2n +1n 2+1.1.本题通过观察各项与项数的关系,再进行比较,归纳出结论,主要从以下几个方面来考虑:(1)符号用(-1)n或(-1)n +1来调节.(2)分式形式的数列,分子、分母分别找通项,要充分借助分子、分母的关系.(3)将数列的各项分解成若干个基本数列后再进行分析归纳.2.根据数列的前几项求它的一个通项公式,要注意观察每一项的特点,可以用添项、还原、分割等办法,转化为一些常见数列的通项公式来求.根据数列的前几项,写出数列的一个通项公式. (1)23,415,635,863,…;(2)12,2,92,8,252,…; (3)2,22,222,2 222,….【解】 (1)分子均为偶数,分母分别为1×3,3×5,5×7,7×9是相邻两个奇数的乘积,故a n =2n(2n -1)(2n +1).(2)将分母统一成2,在数列12,42,92,162,252,…中分母为2,分子为n 2,故a n =n 22.(3)由9,99,999,9 999,…的通项公式a n =10n-1可知,2,22,222,2 222,…的通项公式为a n =29(10n-1).利用通项公式确定数列的项已知数列{a n }的通项公式为a n =3n 2-28n . (1)写出数列的第4项和第6项;(2)-49和68是该数列的项吗?若是,是第几项?若不是,请说明理由. 【思路探究】 (1)将n =4,6代入a n 即可.(2)若某个数是数列的某一项,则在通项中必存在一个正整数n 与其对应,否则就不是数列中的项.【自主解答】 (1)∵a n =3n 2-28n , ∴a 4=3×42-28×4=-64,a 6=3×62-28×6=-60.(2)令3n 2-28n =-49,即3n 2-28n +49=0, 解得n =7,或n =73(舍).∴-49是该数列的第7项, 即a 7=-49.令3n 2-28n =68,即3n 2-28n -68=0, 解得n =-2,或n =343.∵-2∉N +,343∉N +,∴68不是该数列的项.1.数列的通项公式给出了第n 项a n 与它的位置序号n 之间的关系,只要用序号代替公式中的n ,就可以求出数列的相应项.2.判断某数值是否为该数列的项,需假定它是数列中的项去列方程.若方程的解为正整数则是数列的一项;若方程无解或解不是正整数,则不是该数列的一项.若本例的条件不变,(1)试写出该数列的第3项和第8项;(2)问20是不是该数列的一项,若是,应是第几项?【解】 (1)∵a n =3n 2-28n , ∴a 3=3×32-28×3=-57,a 8=3×82-28×8=-32.(2)设3n 2-28n =20,解得n =10或n =-23(舍去).∵n ∈N +,∴20是该数列的第10项.(对应学生用书第3页)归纳推理在求数列通项公式中的应用(12分)根据下面的图形及相应的点数,在空格及括号中分别填上适当的图形和点数,并写出由图中点数依次组成的数列的通项公式.(1) (3) (6) 图1-1-2【思路点拨】 观察图形的构成规律,寻找点数构成的数列中a 1与a 2,a 2与a 3的关系,便可发现a 4,a 5,…,a n 的取值规律及图形的构成特征.【规范解答】 观察前3个图形和点数,易知(10) (15)4分记图形中的点数构成的数列为{a n }.观察可知:a 1=1=22=1×22, a 2=3=62=2×32, a 3=6=122=3×42, a 4=10=202=4×52, a 5=15=302=5×62.9分∴数列{a n }的通项公式为a n =n (n +1)2.12分本题先观察数列前n 项的共同特点,再概括出数列的通项公式.这种推理就是归纳推理.归纳推理就是由个别事实概括出一般结论的推理,归纳推理是一种重要的推理方法,在数学领域有着广泛的应用.1.对通项公式的理解(1)数列的通项公式的表示形式不一定是唯一的,如数列:1,0,-1,0,1,0,-1,0,…,通项公式可以是a n =sinn π2,也可以是a n =cosn -12π(n ∈N +).(2)并不是所有数列都能写出通项公式.如由π的精确度的数值排列:3,3.1,3.14,3.141,3.1415,…就写不出通项公式.2.根据数列的前几项写出数列的一个通项公式是不完全归纳法,它蕴涵着“从特殊到一般”的思想.3.数列是一类特殊函数,因此用函数观点解决数列问题是一种常用的方法,但要注意其定义域为正整数集或其有限子集.(对应学生用书第4页)1.下列说法中,正确的是( )A .数列1,3,5,7可表示为{}1,3,5,7B .数列1,0,-1,-2与数列-2,-1,0,1是相同的数列C .数列{n +1n }的第k 项为1+1kD .数列0,2,4,6,8,…可记为{2n }【解析】 由数列定义知A 错,B 中排列次序不同,D 中n ∈N . 【答案】 C2.(2013·宝鸡高二检测)数列13,24,35,46,…的一个通项公式是( )A .a n =1n -1B .a n =n 2n -1C .a n =n n +2 D .a n =n2n +1【解析】 观察前4项的特点易知a n =nn +2.【答案】 C3.(原创题)在数列{n 2-1n }中,第7项是________.【解析】 令n =7,则n 2-1n =72-17=487.【答案】4874.已知数列{a n },a n =kn -5,且a 8=1,求a 16. 【解】 由a 8=1,得8k -5=1,解得k =34,∴a n =34n -5,∴a 16=34×16-5=7.(对应学生用书第79页)一、选择题1.下列解析式中不是数列1,-1,1,-1,1,…的通项公式的是( ) A .a n =(-1)nB .a n =(-1)n +1C .a n =(-1)n -1 D .a n =⎩⎪⎨⎪⎧1 n 为奇数,-1 n 为偶数.【解析】 A 中当n =1时,a 1=-1,n =2时,a 2=1,显然不是数列1,-1,1,-1,1,…的通项公式.【答案】 A2.已知数列{a n }的通项公式是a n =n 2+2,则其第3、4项分别是( ) A .11,3 B .11,15 C .11,18 D .13,18【解析】 a 3=32+2=11,a 4=42+2=18. 【答案】 C3.已知数列1,3,5,7,…,2n -1,…则35是它的( ) A .第22项 B .第23项 C .第24项 D .第28项【解析】 令2n -1=35,解得n =23. 【答案】 B4.下列四个数中,是数列{n (n +1)}中的一项的是( ) A .380 B .39 C .32 D .23【解析】 分别令n (n +1)=380,39,32,23解出n ∈N +即可,验证知n =19时,19×20=380.【答案】 A5.(2013·德州高二检测)数列-13×5,25×7,-37×9,49×11,…的通项公式a n 为( )A .(-1)n +11(2n +1)(2n +3)B .(-1)n +1n(2n +1)(2n +3)C .(-1)n1(2n +1)(2n +3)D .(-1)nn(2n +1)(2n +3)【解析】 观察式子的分子为1,2,3,4,…,n ,…,分母为3×5,5×7,7×9,…,(2n +1)(2n +3),…,而且正负间隔,故通项公式a n =(-1)nn(2n +1)(2n +3).【答案】 D 二、填空题6.数列35,12,511,37,717,…的一个通项公式是________.【解析】 数列35,12,511,37,717,…即数列35,48,511,614,717,…,故a n =n +23n +2.【答案】 a n =n +23n +27.已知数列{a n }的通项公式a n =-n 2+7n +9,则其第3、4项分别是________、________. 【解析】 a 3=-32+7×3+9=21,a 4=-42+7×4+9=21. 【答案】 21 218.已知曲线y =x 2+1,点(n ,a n )(n ∈N +)位于该曲线上,则a 10=________. 【解析】 ∵点(n ,a n )位于曲线y =x 2+1上,∴a n =n 2+1,故a 10=102+1=101. 【答案】 101 三、解答题9.根据数列的前几项,写出下列各数列的一个通项公式. (1)-1,7,-13,19,… (2)0.8,0.88,0.888,… (3)12,14,-58,1316,-2932,6164,… 【解】 (1)符号可通过(-1)n表示,后面的数的绝对值总比前面的数的绝对值大6, 故通项公式为a n =(-1)n·(6n -5).(2)将数列变形为89(1-0.1),89(1-0.01),89(1-0.001),…,∴a n =89(1-110n ).(3)各项的分母分别为21,22,23,24,…,易看出第2,3,4项的分子分别比分母少3.因此把第1项变为-2-32.原数列可化为-21-321,22-322,-23-323,24-324,…,∴a n =(-1)n·2n-32n .10.已知数列{a n }中,a 1=2,a 17=66,通项公式是项数n 的一次函数. (1)求数列{a n }的通项公式; (2)88是否是数列{a n }中的项?【解】 (1)设a n =an +b .∴a 1=a +b =2,①a 17=17a +b =66.②②-①,得16a =64,∴a =4,b =-2. ∴a n =4n -2(n ∈N +).(2)令4n -2=88⇒4n =90,n =452∉N +,∴88不是数列{a n }中的项.图1-1-311.如图1-1-3所示,有n (n ≥2)行n +1列的士兵方阵:(1)写出一个数列,用它表示当n 分别为2,3,4,5,6,…时方阵中的士兵人数.(2)说出(1)中数列的第5,6项,用a 5,a 6表示; (3)若把(1)中的数列记为{a n },求该数列的通项公式a n ; (4)求a 10,并说明a 10所表示的实际意义.【解】 (1)当n =2时,表示士兵的人数为2行3列,人数为6;当n =3时,表示3行4列,人数为12,依此类推,故所求数列为6,12,20,30,42,….(2)方阵的行数比数列的序号大1,因此第5项表示的是6行7列,第6项表示7行8列,故a 5=42,a 6=56.(3)根据对数列的前几项的观察、归纳,猜想数列的通项公式. 前4项分别为:6=2×3,12=3×4,20=4×5,30=5×6 因此a n =(n +1)(n +2).(4)由(3)知a 10=11×12=132,a 10表示11行12列的士兵方阵中士兵的人数.(教师用书独具)数列{a n }的通项公式是a n =n 2-21n2(n ∈N +).(1)0和1是不是数列{a n }中的项?如果是,那么是第几项?(2)数列{a n }中是否存在连续且相等的两项?若存在,分别是第几项?【思路探究】 若某个数是数列的某一项,则在通项中必存在一个正整数n 与其对应,否则就不是数列中的项.【自主解答】 (1)若0是{a n }中的第n 项,则n 2-21n2=0,∵n ∈N +,∴n =21.∴0是{a n }中的第21项. 若1是{a n }中的第n 项,则n 2-21n2=1,∴n 2-21n =2,即n 2-21n -2=0. ∵方程n 2-21n -2=0不存在正整数解, ∴1不是{a n }中的项.(2)假设{a n }中存在第m 项与第m +1项相等,即a m =a m +1,则解得m =10. ∴数列{a n }中存在连续的两项第10项与第11项相等.1.本题易忽视n ∈N +,导致解方程n 2-21n -2=0出错.2.数列通项公式反映了一个项与项数的函数关系,通项公式的作用: (1)求数列中任意一项;(2)检验某数是否是该数列中的一项.在上述例题中,当n 为何值时,a n <0? 【解】 由a n <0,得0<n <21, 又∵n ∈N +,∴当n =1,2,3,…,20时,a n <0.1.2 数列的函数特性(教师用书独具)●三维目标1.知识与技能了解递增数列、递减数列、常数列的概念.掌握判断数列增减性的方法.2.过程与方法通过画数列图像,观察图像的升降趋势的学习过程使学生体会数列的增减性,学习过程采用启发、引导式教学.3.情感、态度与价值观通过本节课的学习培养学生数形结合思想,函数思想的应用.●重点难点判定数列的增减性.(教师用书独具)●教学建议针对判断数列的增减性问题可以从以下两种方法着手解决:(1)图像法:利用数列的图像的升、降趋势进行判断.(2)定义法:根据相邻两项a n与a n+1的大小关系来判断.判断这两项的大小可采用作差或作商的方法.●教学流程根据本节知识,提出问题:从函数的单调性上观察数列特点⇒引导学生回答问题引出递增、递减、常数列,讲解各自特点⇒通过例1及变式训练,使学生掌握数列的图像及应用⇒通过例2及变式训练,让学生掌握数列增减性的判断⇒通过例3及变式训练,使学生会求数列的最大(小)项问题⇒归纳整理,进行课堂小结,整体认识本节课所学知识⇒完成当堂双基达标,巩固所学知识并进行反馈矫正(对应学生用书第4页)课标解读1.了解数列的几种简单的表示方法(列表、图像、通项公式)(重点).2.了解递增数列、递减数列、常数列的概念.3.掌握判断数列增减性的方法(难点).数列的表示法表示一个数列我们可以用图像、列表、通项公式.数列增减性【问题导思】观察以下几个数列:①1,2,3,4,…;②-2,-4,-6,-8,…;③1,1,1,1,….从函数的单调性上考查,以上三个数列有何特点?【提示】①是递增的数列②是递减的数列③是常数列名称定义表达式图像特点递增数列从第2项起,每一项都大于它前面的一项a n+1>a n上升递减数列从第2项起,每一项都小于它前面的一项a n+1<a n下降常数列各项都相等a n+1=a n不升不降(对应学生用书第5页)数列的图像及应用已知数列{a n }的通项公式为a n =22n -9,画出它的图像,并判断增减性.【思路探究】 借助函数y =22x -9的图像作出数列{a n }的图像,然后根据图像的升降趋势判断单调性.【自主解答】 图像如图所示,该数列在{1,2,3,4}上是递减的,在{5,6,…}上也是递减的.1.解答本题的关键是借助函数y =1x -92的图像.2.若数列的通项公式a n =f (n )所对应的函数y =f (x )是基本初等函数,则可利用对应函数的图像及性质,研究数列的性质.把数列{n 2-9n }用列表法表示出来,在直角坐标系中画出它的图像,并根据图像指出它的增减性.【解】 列表法表示为: 序号 1 2 3 4 5 6 7 8 … 项-8-14-18-20-20-18-14-8…记a n =n 2-qn ,数列图像如图所示:由图像直观地看出它在{1,2,3,4}上是递减的,在{5,6,7,8,…}上是递增的.数列增减性的判断已知数列{a n }的通项公式a n =nn 2+1,试判断该数列的增减性.【思路探究】 可用作差法或作商法判断数列的增减性.【自主解答】 a n +1-a n =n +1(n +1)2+1-nn 2+1=1-n 2-n[(n +1)2+1](n 2+1). 因为n ∈N +,所以1-n 2-n <0, 所以a n +1-a n <0,即a n +1<a n .故该数列为递减数列.1.本题中1-n 2-n 的符号判断是关键,不要忽视n ∈N +这一条件.2.应用函数单调性的判断方法来判断数列的单调性,常用的方法有:作差法,将a n +1-a n 与0进行比较;作商法,将a n +1a n与1进行比较(在作商时,要注意a n <0还是 a n >0).判断数列1,23,35,47,…,n2n -1,…的增减性.【解】 设a n =n2n -1. ∵a n +1-a n =n +12n +1-n 2n -1=-1(2n +1)(2n -1)<0,∴a n +1<a n ,∴{a n }是递减数列.求数列的最大(小)项已知数列{a n }的通项公式a n =(n +1)(1011)n(n ∈N +),试问数列{a n }有没有最大项?若有,求最大项和最大项的项数;若没有,说明理由.【思路探究】 假设存在最大项→作差a n +1-a n →讨论差式的符号→确定最大项 【自主解答】 法一 假设数列{a n }中存在最大项. ∵a n +1-a n=(n +2)(1011)n +1-(n +1)(1011)n =(1011)n ·9-n11,当n <9时,a n +1-a n >0,即a n +1>a n ; 当n =9时,a n +1-a n =0,即a n +1=a n ; 当n >9时,a n +1-a n <0,即a n +1<a n . 故a 1<a 2<a 3<…<a 9=a 10>a 11>a 12…,所以数列中有最大项,最大项为第9、10项,且a 9=a 10=1010119.法二 假设数列{a n }中有最大项,并设第k 项为最大项,则⎩⎪⎨⎪⎧a k ≥a k -1a k ≥a k +1对任意的k ∈N +且k≥2都成立.即⎩⎪⎨⎪⎧(k +1)(1011)k≥k (1011)k -1,(k +1)(1011)k≥(k +2)(1011)k +1,∴⎩⎪⎨⎪⎧1011(k +1)≥k ,k +1≥1011(k +2),解得9≤k ≤10. 又k ∈N +,∴数列{a n }中存在的最大项是第9项和第10项, 且a 9=a 10=1010119.1.解答探索性题目的方法:首先假设存在,然后在此前提下,利用已知条件进行推理,若推出合理的结论,则说明存在;若推出矛盾的结论,则说明不存在.2.求数列的最大(小)项的两种方法:(1)利用判断函数增减性的方法,先判断数列的增减情况,再求数列的最大项或最小项. (2)设a k 是最大项,则有⎩⎪⎨⎪⎧a k ≥a k -1a k ≥a k +1对任意的k ∈N +且k ≥2都成立,解不等式组即可.已知数列{a n }的通项公式为a n =4n -122n -7,求数列{a n }的最大项和最小项.【解】 ∵a n +1-a n =4n -82n -5-4n -122n -7=(4n -8)(2n -7)-(4n -12)(2n -5)(2n -5)(2n -7)=(8n 2-44n +56)-(8n 2-44n +60)(2n -5)(2n -7)=-4(2n -5)(2n -7)=-1(n -52)(n -72)当n ≤2时,a n +1-a n <0,即a n +1<a n ; 当n =3时,a n +1-a n >0,即a n +1>a n ; 当n ≥4时,a n +1-a n <0,即a n +1<a n . 又当n ≤3时,a n <2;当n ≥4时,a n >2. ∴a 4>a 5>…>a n >…>2>a 1>a 2>a 3. 故a 3最小为0,a 4最大为4.(对应学生用书第6页)忽视n 的范围致误设数列{a n }的通项公式为:a n =n 2+kn (n ∈N +),若数列{a n }是单调递增数列,求实数k 的取值范围 .【错解】 ∵a n =n 2+kn ,其图像对称轴方程为n =-k2,又数列{a n }是单调递增数列, ∴-k2≤1,得k ≥-2.故实数k 的取值范围为[-2,+∞).【错因分析】 导致上述错解的原因是仅考虑了数列{a n }为单调递增数列时的一种情形,而没考虑到n ∈N +,n 的值是离散的.【防范措施】 数列是特殊函数,一定要注意其定义域是N +(或它的有限子集). 【正解】 法一 ∵数列{a n }是单调递增数列, ∴a n +1-a n >0(n ∈N +)恒成立. 又∵a n =n 2+kn (n ∈N +),∴(n +1)2+k (n +1)-(n 2+kn )>0恒成立. 即2n +1+k >0.∴k >-(2n +1)(n ∈N +)恒成立.而n ∈N +时,-(2n +1)的最大值为-3(n =1时), ∴k >-3.即k 的取值范围为(-3,+∞).法二 结合二次函数y =x 2+kx 的图像,要使{a n }是递增数列,只要a 1<a 2,即可, 即1+k <4+2k ,得k >-3, 所以k 的取值范围为(-3,+∞).1.数列的三种表示方法各有优缺点:(1)用通项公式表示数列,简洁明了,便于计算.公式法是常用的数学方法.(2)列表法的优点是不经过计算,就可以直接看出项数与项的对应关系.(3)图像能直观形象地表示出随着序号的变化,相应项变化的趋势.2.判断一个数列的增减性,可以借助于图像的升、降趋势进行判断,也可以利用递增数列、递减数列、常数列的定义进行判断,即通过判断一个数列的任意相邻两项之间的大小关系来确定数列的增减性.(对应学生用书第7页)1.已知数列{a n }的通项公式a n =a ⎝ ⎛⎭⎪⎫12n(a <0),则该数列是( )A .递减数列B .递增数列C .常数列D .以上都不是【解析】 ∵a n +1-a n =a ⎝ ⎛⎭⎪⎫12n +1-a ⎝ ⎛⎭⎪⎫12n= -a ⎝ ⎛⎭⎪⎫12n +1>0,即a n +1>a n ,∴该数列是递增数列.【答案】 B2.递减数列{a n }中,a n =kn (k 为常数),则实数k 的取值范围是( ) A .R B .(0,+∞) C .(-∞,0) D .(-∞,0]【解析】 a n +1-a n =k (n +1)-kn =k <0. 【答案】 C3.若数列{a n }的通项公式为a n =k3n (k >0,且k 为常数),则该数列是________(填“递增”、“递减”)数列.【解析】 a n +1a n =k 3n +1·3n k =13<1.∵k >0,∴a n >0,∴a n +1<a n ,∴{a n }是递减数列. 【答案】 递减4.写出数列1,24,37,410,513,…的通项公式,并判断其增减性.【解】 通项公式为a n =n 3n -2. ∵a n +1-a n =n +13(n +1)-2-n 3n -2=-2(3n +1)(3n -2)<0,∴a n +1<a n ,∴{a n }是递减数列.(对应学生用书第81页)一、选择题1.已知数列{a n }中,a n +1=a n +2,则数列{a n }是( ) A .递增数列 B .递减数列 C .常数列 D .以上都不对【解析】 ∵a n +1=a n +2,∴a n +1-a n =2>0, ∴a n +1>a n ,故数列{a n }为递增数列. 【答案】 A2.已知数列{a n }满足a 1>0,且a n +1=nn +1a n ,则数列{a n }的最大项是( ) A .a 1 B .a 9 C .a 10 D .不存在 【解析】 ∵a 1>0且a n +1=nn +1a n ,∴a n >0,a n +1a n =nn +1<1, ∴a n +1<a n ,∴此数列为递减数列,故最大项为a 1. 【答案】 A3.(2013·西安高二检测)已知数列{a n }的通项公式是a n =2nn +1,那么这个数列是( ) A .递增数列 B .递减数列C .摆动数列D .常数列【解析】 a n +1-a n =2(n +1)n +2-2n n +1=2(n +1)2-2n 2-4n (n +1)(n +2)=2(n +1)(n +2)>0,∴{a n }是递增数列.【答案】 A4.已知a n =-2n 2+9n +3,则数列{a n }中的最大项为( ) A .a 1=10 B .a 2=13 C .a 3=12 D .以上均不正确【解析】 a n =-2(n -94)2+1058,由于n ∈N +,∴当n =2时,a 2=13最大. 【答案】 B5.(2013·沈阳高二检测)函数y =f (x )的图像在下列图中,并且对任意a 1∈(0,1),由关系式a n +1=f (a n )得到的数列{a n }满足a n +1>a n (n ∈N +),则该函数的图像可能是( )【解析】 由a n +1=f (a n )及a n +1>a n 可知,f (a n )>a n ,即图像上每一点的纵坐标大于其横坐标,∴函数y =f (x )的图像应在直线y =x 上方,故选A.【答案】 A 二、填空题6.(2013·黄冈高二检测)已知数列{a n }满足a 1=2,a n +1=1+a n1-a n(n ∈N +),则a 2 012=________.【解析】 ∵a 1=2由a n +1=1+a n 1-a n 得a 2=-3,a 3=-12,a 4=13,a 5=2,∴{a n }为周期为4的数列,∴a 2 012=a 4×503=a 4=13.【答案】 137.已知数列{a n },a n =2n 2-10n +3,它的最小项是________.【解析】 a n =2n 2-10n +3=2(n -52)2-192.故当n =2或3时,a n 最小.【答案】 2或3项8.已知数列{a n }的通项公式为a n =4n -102,则数列从第________项开始值大于零.【解析】 令4n -102>0得n >2512,∴数列{a n }从第26项开始大于零. 【答案】 26 三、解答题9.已知数列{a n }的通项公式为a n =-n 2+10n +11,试作出其图像,并判断数列的增减性.【解】 列表:n 1 2 3 4 5 6 7 8 9 10 11 … a n20273235363532272011…图像如图所示:由数列的图像知,当1≤n ≤5时数列递增;当n ≥5时数列递减. 10.已知函数f (x )=x -1x,设a n =f (n )(n ∈N +), (1)求证:a n <1;(2){a n }是递增数列还是递减数列?为什么? 【解】 (1)证明 a n =f (n )=n -1n =1-1n<1. (2)∵a n +1-a n =(n +1)-1n +1-n -1n =(1-1n +1)-(1-1n )=1n (n +1)>0,∴a n +1>a n , ∴{a n }是递增数列.11.(2013·广州高二检测)已知数列{a n }的通项公式为a n =n 2-5n +4. (1)数列中有多少项是负数?(2)n 为何值时,a n 有最小值?并求出最小值. 【解】 (1)由n 2-5n +4<0,解得1<n <4. ∵n ∈N +,∴n =2,3. ∴数列中有两项是负数.(2)法一 ∵a n =n 2-5n +4=⎝ ⎛⎭⎪⎫n -522-94,可知对称轴方程为n =52.又因n ∈N +,故n =2或3时,a n 有最小值,其最小值为a 2=a 3=22-5×2+4=32-5×3+4=-2.法二 设第n 项最小,由⎩⎪⎨⎪⎧a n ≤a n +1a n ≤a n -1,得⎩⎪⎨⎪⎧n 2-5n +4≤(n +1)2-5(n +1)+4,n 2-5n +4≤(n -1)2-5(n -1)+4. 解这个不等式组得2≤n ≤3, ∴n =2,3,∴a 2=a 3且最小,∴a 2=a 3=22-5×2+4=32-5×3+4=-2.(教师用书独具)已知函数f (x )=2x -2-x,数列{a n }满足f (log 2a n )=-2n . (1)求数列{a n }的通项公式; (2)证明数列{a n }是递减数列.【思路探究】 首先建立关于a n 的一元二次方程求解,再证明a n >a n +1即可证明数列{a n }是递减数列.【自主解答】 (1)∵f (x )=2x-2-x,f (log 2a n )=-2n , ∴2log 2a n -2-log 2a n =-2n , ∴a n -1a n=-2n ,∴a n 2+2na n -1=0,解得a n =-n ±n 2+1. ∵a n >0,∴a n =n 2+1-n ,n ∈N +.(2)a n +1a n =(n +1)2+1-(n +1)n 2+1-n=n 2+1+n(n +1)2+1+(n +1)<1. ∵a n >0,∴a n +1<a n , ∴数列{a n }是递减数列.本题是函数、方程与数列的典型结合与运用,要比较a n 与a n +1的大小,可以用作差法或作商法,即若a n +1-a n >0,则a n +1>a n ,可以判断数列{a n }是递增数列;当a n >0时,若a n +1a n>1,则a n +1>a n ,也能判断数列{a n }是递增数列.对于递减数列,同理可以给出判断.若数列{a n }的通项公式为a n =-2n 2+13n (n ∈N +),画出它在x 轴上方的图像,并根据图像求出a n 的最大值,并在同一坐标系中画出函数f (x )=-2x 2+13x 的图像,根据图像求出f (x )的最大值.若用函数来求a n =-2n 2+13n 的最大值,应如何处理?【解】 由-2n 2+13n >0,可得0<n <132.又因为n ∈N +,所以n =1,2,3,4,5,6,分别代入通项公式,可得a 1=11,a 2=18,a 3=21,a 4=20,a 5=15,a 6=6,图像如图所示,为6个点.最大值为21.函数f (x )=-2x 2+13x 的图像如图所示(图中曲线).f (x )=-2x 2+13x =-2(x -134)2+1698,所以当x =134时,f (x )max =1698. 用函数来求{a n }的最大值时, 因为3<134<4,且314离3较近,所以最大值为a 3=21.§2等差数列2.1 等差数列 第1课时 等差数列(教师用书独具)●三维目标 1.知识与技能掌握等差数列通项公式及推导,掌握判断等差数列的方法. 2.过程与方法通过对等差数列图像的应用进一步渗透数形结合思想,通过等差数列通项公式的运用,渗透方程思想.3.情感、态度与价值观通过对等差数列的研究,使学生明白等差数列与一般数列的内在联系,从而渗透特殊与一般的辨证唯物主义观点.●重点难点重点:等差数列的判定.难点:求等差数列的通项公式及其应用.(教师用书独具)●教学建议问题:数列:1,3,( ),7,9,…2,5,8,( ),14,…-2,3,8,( ),18,…师:先根据数列的特点填空,再思考一下这些数列的共同特点?生:后一项减前一项都等于常数.师:对这样的数列,如何表示相邻两项的关系(a n+1与a n)?生:a n+1-a n=d(d为常数).师:这样的数列就是我们这节课要讲的等差数列.(板书课题)●教学流程创设情境,提出了2个问题⇒引导学生根据问题引入等差数列⇒通过例1及互动探究,使学生掌握等差数列的判定⇒通过例2及变式训练,使学生掌握如何求通项公式⇒通过例3及变式训练,使学生掌握等差数列通项公式的应用⇒归纳整理,进行课堂小结,整体认识本节课所学知识⇒完成当堂双基达标,巩固所学知识并进行反馈矫正(对应学生用书第7页)课标解读1.理解等差数列的概念(重点).2.掌握等差数列的判断方法(重点).3.掌握等差数列的通项公式及其应用(重点、难点).等差数列的概念【问题导思】对于数列2,4,6,8,…该数列相邻两项的差(后项减去前项)有什么特点?怎样表示相邻两项间的关系?【提示】等于同一常数.a n+1-a n=2或a n-a n-1=2(n≥2).文字语言从第2项起,每一项与它前一项的差等于同一个常数,这样的数列就叫做等差数列.称这个常数为等差数列的公差,通常用字母d表示.符号语言若a n-a n-1=d(n≥2),则数列{a n}为等差数列.等差数列的通项公式【问题导思】你能观察出数列2,4,6,8,…的通项公式吗?能否给予证明?【提示】a n=2n,证明如下:由a n+1-a n=2,。
北师大版高二数学上册必修5第一章数列第一课数列的概念课件(共21张PPT)

昨日的明天是今天。明天的昨日是今天。为什么要计较于过去呢(先别急着纠正我的错误,你确实可以在评判过去中学到许多)。但是我发现有的人过分地瞻前顾后了。为 何不想想“现在”呢?为何不及时行乐呢?如果你的回答是“不”,那么是时候该重新考虑一下了。成功的最大障碍是惧怕失败。这些句子都教育我们:不要惧怕失败。如 果你失败了他不会坐下来说:“靠,我真失败,我放弃。”并且不是一个婴儿会如此做,他们都会反反复复,一次一次地尝试。如果一条路走不通,那就走走其他途径,不 断尝试。惧怕失败仅仅是社会导致的一种品质,没有人生来害怕失败,记住这一点。宁愿做事而犯错,也不要为了不犯错而什么都不做。不一定要等到时机完全成熟才动手。 开头也许艰难,但是随着时间的流逝,你会渐渐熟悉你的事业。世上往往没有完美的时机,所以当你觉得做某事还不是时候,先做起来再说吧。喜欢追梦的人,切记不要被 梦想主宰;善于谋划的人,切记空想达不到目标;拥有实干精神的人,切记选对方向比努力做事重要。太阳不会因为你的失意,明天不再升起;月亮不会因为你的抱怨,今 晚不再降落。蒙住自己的眼睛,不等于世界就漆黑一团;蒙住别人的眼睛,不等于光明就属于自己!鱼搅不浑大海,雾压不倒高山,雷声叫不倒山岗,扇子驱不散大雾。鹿 的脖子再长,总高不过它的脑袋。人的脚指头再长,也长不过他的脚板。人的行动再快也快不过思想!以前认为水不可能倒流,那是还没有找到发明抽水机的方法;现在认 为太阳不可能从西边出来,这是还没住到太阳从西边出来的星球上。这个世界只有想不到的,没有做不到的!不是井里没有水,而是挖的不够深;不是成功来的慢,而是放 弃速度快。得到一件东西需要智慧,放弃一样东西则需要勇气!终而复始,日月是也。死而复生,四时是也。奇正相生,循环无端,涨跌相生,循环无端,涨跌相生,循环 无穷。机遇孕育着挑战,挑战中孕育着机遇,这是千古验证了的定律!种子放在水泥地板上会被晒死,种子放在水里会被淹死,种子放到肥沃的土壤里就生根发芽结果。选
北师大版高中必修5第一章数列课程设计

北师大版高中必修5第一章数列课程设计一、背景数列是数学中一种基本的概念,也是高中数学必修的一个章节。
数列的概念不仅在数学中有广泛的应用,也涉及到某些实际问题的策略和方法。
因此,数列的学习对高中数学的日常课程以及未来的学习和发展有重要的影响。
二、课程设计目标通过本课程,学生应该能够达到以下目标:•掌握数列的概念和性质;•熟练进行数列的公式推导及题目求解;•对数列的应用能够有一定的理解和掌握。
三、教学内容3.1 数列的概念1.数列概念1.等差数列的概念2.等比数列的概念3.斐波那契数列的概念2.数列的性质1.数列有界性及数列极限的概念2.数列的递推公式及通项公式3.2 数列的基本操作1.求和公式的推导及实际应用2.数列基本操作题目讲解及习题完成3.3 数列的应用1.数列在实际问题中的应用2.数列应用题目讲解及习题完成四、教学步骤4.1 第一课时4.1.1 导入数列是数学中的一个基础概念,本章的教学将介绍所涉及到的数列类型及数列的基本性质,让同学们对此有一个清晰的认识。
4.1.2 引入本节课将主要讲解等差数列的概念及性质,包括差、首项、公差等。
学生应该学会如何求出等差数列的通项公式及其与和式的关系。
4.1.3 操作1.老师首先讲解等差数列的概念及性质。
2.引导学生完成一系列简单的等差数列题目,以掌握其推导和应用方法。
3.最后让学生独立完成几道综合性的等差数列应用题目。
4.2 第二课时4.2.1 导入本节课将主要讲解等比数列的概念及性质,包括比、首项、公比等。
学生应该学会如何求出等比数列的通项公式及其与和式的关系。
4.2.2 引入本章主要讲解斐波那契数列的概念及其应用,引导学生从一个简单的问题入手,渐渐深入到一系列的高层应用。
4.2.3 操作1.老师首先讲解等比数列的概念及性质。
2.引导学生完成一系列简单的等比数列题目,以掌握其推导和应用方法。
3.最后让学生独立完成几道综合性的等比数列应用题目。
4.3 第三课时4.3.1 导入数列学习的最后一个环节是数列的应用,是这个学习过程的重点,将深入介绍数列在实际问题中的应用。
数学北师大版高中必修5北师大版高中数学必修5第一章《数列》第一课时 数列的概念

第一课时 1.1.1 数列的概念一、教学目标1、知识与技能:(1)理解数列及其有关概念;(2)了解数列的通项公式,并会用通项公式写出数列的任意一项;(3)对于比较简单的数列,会根据其前几项写出它的通项公式。
2、过程与方法:(1)采用探究法,按照思考、交流、实验、观察、分析、得出结论的方法进行启发式教学;(2)发挥学生的主体作用,作好探究性学习;(3)理论联系实际,激发学生的学习积极性。
3、情感态度与价值观:(1).通过日常生活中的大量实例,鼓励学生动手试验.理论联系实际,激发学生对科学的探究精神和严肃认真的科学态度,培养学生的辩证唯物主义观点;(2).通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣二、教学重点:数列及其有关概念,通项公式及其应用教学难点根据一些数列的前几项抽象、归纳数列的通项公式.三、教学方法:探究、交流、实验、观察、分析四、教学过程(一)、揭示课题:今天开始我们研究一个新课题.先举一个生活中的例子:场地上堆放了一些圆钢,最底下的一层有100根,在其上一层(称作第二层)码放了99根,第三层码放了98根,依此类推,问:最多可放多少层?第57层有多少根?从第1层到第57层一共有多少根?我们不能满足于一层层的去数,而是要但求如何去研究,找出一般规律.实际上我们要研究的是这样的一列数象这样排好队的数就是我们的研究对象——数列.(二)、推进新课[合作探究]折纸问题师请同学们想一想,一张纸可以重复对折多少次?请同学们随便取一张纸试试(学生们兴趣一定很浓生一般折5、6次就不能折下去了,厚度太高了师你知道这是为什么吗?我们设纸原来的厚度为1长度单位,面积为1面积单位,随依次折的次数,它的厚度和每层纸的面积依次怎样?生随着对折数厚度依次为:2,4,8,16,…,256,…;随着对折数面积依次为21,41 ,81 ,161 ,…,2561生 对折8次以后,纸的厚度为原来的256倍,其面积为原来的分 1[]256式,再折下去太困难了师 说得很好,随数学水平的提高,我们的思维会更加理性化.请同学们观察上面我们列出的这一列一列的数,看它们有何共同特点?生 均是一列数生 还有一定次序师 它们的共同特点:都是有一定次序的一列数[教师精讲]1.数列的定义:按一定顺序排列着的一列数叫做数列注意:(1)数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;(2)定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现2.数列的项:数列中的每一个数都叫做这个数列的项.各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,….同学们能举例说明吗?生 例如,上述例子均是数列,其中①中,“2”是这个数列的第1项(或首项),“16”是这个数列中的第4项为表述方便给出几个名称:项--------数列中的每一个数叫做这个数列的项.首项-------其中数列的第一项也称首项.通项-------数列的第n 项叫数列的通项.以上述两个数列为例,让学生练习指出某一个数列的首项是多少,第二项是多少,指出某一个数列的一些项的项数.由此可以看出,给定一个数列,应能够指明第一项是多少,第二项是多少,……,每一项都是确定的,即指明项数,对应的项就确定.所以数列中的每一项与其项数有着对应关系,这与我们学过的函数有密切关系.3.数列的分类:1)根据数列项数的多少分:有穷数列:项数有限的数列.例如数列1,2,3,4,5,6是有穷数列无穷数列:项数无限的数列.例如数列1,2,3,4,5,6…是无穷数列2)根据数列项的大小分:递增数列:从第2项起,每一项都不小于它的前一项的数列.递减数列:从第2项起,每一项都不大于它的前一项的数列.常数数列:各项相等的数列.摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列请同学们观察:课本的六组数列,哪些是递增数列、递减数列、常数数列、摆动数列? 生 这六组数列分别是(1)递增数列,(2)递增数列,(3)常数数列,(4)递减数列,(5)摆动数列,(6)1.递增数列,2.递减数列4、通项公式法:如数列的通项公式为 ;的通项公式为 ;的通项公式为 ;数列的通项公式具有双重身份,它表示了数列的第 项,又是这个数列中所有各项的一般表示.通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项.例如,数列 的通项公式 ,则 . 值得注意的是,正如一个函数未必能用解析式表示一样,不是所有的数列都有通项公式,即便有通项公式,通项公式也未必唯一. [知识拓展]师 你能说出上述数列①中的256是这数列的第多少项?能否写出它的第n 项? 生 256是这数列的第8项,我能写出它的第n 项,应为a n =2n[例题剖析]例1.根据下面数列{a n }的通项公式,写出前5项:(1)a n =1 n n ;(2)a n =(-1)n ·n师 由通项公式定义可知,只要将通项公式中n 依次取1,2,3,4,5,即可得到数列的前5项生 解:(1)n =1,2,3,4,5.a 1=21;a 2=32;a 3=43;a 4=54;a 5=65 (2)n =1,2,3,4,5.a 1=-1;a 2=2;a 3=-3;a 4=4;a 5=-师 好!就这样解例2.根据下面数列的前几项的值,写出数列的一个通项公式:(1)3,5,7,9,11,…;(2)32,154,356,638,9910,…; (3)0,1,0,1,0,1,…;(4)1,3,3,5,5,7,7,9,9,…;(5)2,-6,12,-20,30,-42,师 这里只给出数列的前几项的值,哪位同学能写出这些数列的一个通项公式?(给学生一定的思考时间生老师,我写好了!解:(1)a n =2n +1;(2)a n =)12)(12(2+-n n n ;(3)a n =2)1(1n-+; (4)将数列变形为1+0,2+1,3+0,4+1,5+0,6+1,7+0,8+1,…,a n =n +2)1(1n -+;(5)将数列变形为1×2,-2×3,3×4,-4×5,5×6,…,a n =(-1)n +1n (n +师 完全正确!这是由“数”给出数列的“式”的例子,解决的关键是要找出这列数呈现出的规律性的东西,然后再通过归纳写出这个数列的通项公式(三)、学生课堂练习:课本本节练习1、2、3、4补充题:已知数列{a n }的通项公式是a n =2n 2-n ,那么(A.30是数列{a n }的一项B .44是数列{a n }的一项C.66是数列{a n }的一项 D .90是数列{a n }的一项分析:注意到30,44,66,90均比较小,可以写出这个数列的前几项,如果这前几项中出现了这四个数中的某一个,则问题就可以解决了.若出现的数比较大,还可以用解方程求正整数解的方法加以解决答案:点评:看一个数A 是不是数列{a n }中的某一项,实质上就是看能不能找出一个非零自然数n ,使得a n =A(四)、课堂小结:对于本节内容应着重掌握数列及有关定义,会根据通项公式求其任意一项,并会根据数列的前n 项求一些简单数列的通项公式。
高中数学 第一章《数列》等比数列的前n项和课件 北师大必修5

1、等比数列1,2,4,8,…从第5项到
第10项的和为
S
S10S411221011224
或
Sa51q6 1q
24126 12
2、求数列1,x,x2,x3,…,xn,…的 前n项和。
3、求和:(x1 y)(x2y 12) (xny 1n)
▪1、纪律是集体的面貌,集体的声音,集体的动作,集体的表情,集体的信念。 ▪2、知之者不如好之者,好之者不如乐之者。 ▪3、反思自我时展示了勇气,自我反思是一切思想的源泉。 ▪4、在教师手里操着幼年人的命运,便操着民族和人类的命运。一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。 ▪5、诚实比一切智谋更好,而且它是智谋的基本条件。 ▪6、做老师的只要有一次向学生撒谎撒漏了底,就可能使他的全部教育成果从此为之失败。2022年1月2022/1/302022/1/302022/1/301/30/2022 ▪7、凡为教者必期于达到不须教。对人以诚信,人不欺我;对事以诚信,事无不成。2022/1/302022/1/30January 30, 2022 ▪8、教育者,非为已往,非为现在,而专为将来。2022/1/302022/1/302022/1/302022/1/30
当人们把一袋一袋的麦子搬来开始计数时, 国王才发现:就是把全印度甚至全世界的麦粒 全拿来,也满足不了那位宰相的要求。
那么,宰相要求得到的麦粒到底有多少呢? 第第第第 第
一 二 三 四 ……64 格格格格 格
12 122 2 63
= 18446744073709551615(粒)
假定千粒麦子的质量为10g,那么麦 粒的总质量超过了7000亿吨。
5 5 1 .1 5 1 .1 2 5 1 .1 n 1
解:由题意,从第1年起,每年的产量
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列的概念
教学目标
1.通过教学使学生理解数列的概念,了解数列的表示法,能够根据通项公式写出数列的项.
2.通过数列定义的归纳概括,初步培养学生的观察、抽象概括能力;渗透函数思想.
3.通过有关数列实际应用的介绍,激发学生学习研究数列的积极性.
教学重难点
教学重点是数列的定义的归纳与认识;
教学难点是数列与函数的联系与区别.
教学过程
一.揭示课题
先举一个生活中的例子:场地上堆放了一些圆钢,最底下的一层有100根,在其上一层(称作第二层)码放了99根,第三层码放了98根,依此类推,问:最多可放多少层?第57层有多少根?从第1层到第57层一共有多少根?我们不能满足于一层层的去数,而是要求如何去研究,找出一般规律.实际上我们要研究的是这样的一列数
(板书)
象这样排好队的数就是我们的研究对象——数列. (板书)第一章 数列
(一)数列的概念
二.讲解新课
要研究数列先要知道何为数列,即先要给数列下定义,为帮助同学概括出数列的定义,再给出几列数:
②我国1998~2002年GDP 值(亿元):78345 82067 89442 95933 102389 ③五次人口普查的数量(百万):60193 72307 103188 116002 129533
④正弦函数x y sin =的图像在y 轴左边所有最低点从右向左,它们的横坐标依次
排成一列数:2π
- 2
5π- 29π- 213π- 217π- ……
⑤正整数 的倒数排成一列数:41,31,21,1…… ⑥某人2006年1~~12月工资,按月顺序排列为:1100 1100 1100 …… 1100 ⑦函数21x
y =当 依次取n ,...,3,2,1(*∈N n )时得到一列数:21,...,91,41,1n
请学生观察7列数,说明每列数就是一个数列,数列中的每个数都有自己的特定的位置,这样数列就是按一定顺序排成的一列数.
(板书)1.数列的定义:按一定次序排成的一列数叫做数列.
为表述方便给出几个名称:项,项数,首项(以幻灯片的形式给出).以上述七个数列为例,让学生练习指出某一个数列的首项是多少,第二项是多少,指出某一个数列的一些项的项数.
由此可以看出,给定一个数列,应能够指明第一项是多少,第二项是多少,……,每一项都是确定的,即指明项数,对应的项就确定.所以数列中的每一项与其项数有着对应关系,这与我们学过的函数有密切关系.
对概念的理解
数集中的元素具有确定性,互异性,无序性,那么数列中的项是否具有这些属性? 教师提出问题:
1:1,2,3,4与4,3,2,1是否为同一数列?
2: -1,1,-1,1是否为一个数列?
遇到数学概念不但要下定义,还要给其数学表示,以便研究与交流,下面探讨数列的表示法.
(板书)2.数列的表示法
数列可看作特殊的函数,其表示也应与函数的表示法有联系,首先请学生回忆函数的表示法:列表法,图象法,解析式法.相对于列表法表示一个函数,数列有这样的表示法:用
表示第一项,用 表示第一项,……,用 表示第 项,依次写
出成为
(板书)(1)列举法
. 简记为 .
一个函数的直观形式是其图象,我们也可用图形表示一个数列,把它称作图示法. (板书)(2)图示法
启发学生仿照函数图象的画法画数列的图形.具体方法是以项数 为横坐标,相应的项
为纵坐标,即以 为坐标在平面直角坐标系中做出点(以前面提到的数列 41,31,21,1…为例,做出一个数列的图象),所得的数列的图形是一群孤立的点,因为横坐标为正整数,所以这些点都在 轴的右侧,而点的个数取决于数列的项数.从图象中可以直观地看到数列的项随项数由小到大变化而变化的趋势. 有些函数可以用解析式来表示,解析式反映了一个函数的函数值与自变量之间的数量关系,类似地有一些数列的项能用其项数的函数式表示出来,即
,这个函数式叫做数列的通项公式.
(板书)(3)通项公式法 认识数列的通项公式
数列可看作特殊的函数,其表示也应与函数的表示法有联系,首先请学生回忆函数的表示法:列表法,图象法,解析式法。
对应于函数的解析式法,认识数列的通项公式。
如 1100 1100 1100 …… 1100的通项公式为 1100=n a (121≤≤n ) 41,31,21,1… 的通项公式为n
a n 1=*∈N n ; 数列的通项公式具有双重身份,它表示了数列的第 项,又是这个数列中所有各项的一般表示.通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项.
例如,数列 的通项公式 ,则 . 值得注意的是,正如一个函数未必能用解析式表示一样,不是所有的数列都有通项公式,即便有通项公式,通项公式也未必唯一.
除了以上三种表示法,某些数列相邻的两项(或几项)有关系,这个关系用一个公式来表示,叫做递推公式.
(板书)3.数列与函数的关系
认识数列与函数的关系
数列中的数和它的序号是什么关系?哪个是变动的量,哪个是随之变动的量?你能联想到以前学过的哪些相关内容?
教师:举例。
将序号写在上面,下面的相应位置写上数列的各项。
首先引导学生说出上下两行是两组变量,然后分析这两组变量之间的关系。
学生:联想到函数间的变量依赖关系,认识到数列是函数。
教师:数列的定义域和值域分别是什么?
教师引导学生归纳出:数列可以看成是以正整数N*(或它的有限子集{1,2,3,…,n })为定义域的函数
)(n f a n =,当自变量按照从小到大的顺序依次取值时,所对应
的一列函数值。
数列可以看作特殊的函数,项数是其自变量,项是项数所对应的函数值,数列的定义域是正整数集 ,或是正整数集 的有限子集 . 于是我们研究数列就可借用函数的研究方法,用函数的观点看待数列. 例:P5课本例题
练习:(1)数列{}n a 的通项公式1n a n n
=
+-174是该数列中的第 16 项.
(2)已知数列{}n a 的通项公式2412n a n n =--,则4a = 12-,7a = 9 ,65是它
的第 11 项 ;从第 7 项起各项为正;{}n a 中第 2 项的值最小为 16-
(3){}n a 中29100n a n n =--,则值最小的项是第 4或5 项.
三.小结
1.数列的概念2.数列的四种表示四.作业略
五.板书设计。