2019年安徽省淮南市高考数学一模试卷

合集下载

2019年安徽省淮南第十九中学高考数学选择题专项训练(一模)

2019年安徽省淮南第十九中学高考数学选择题专项训练(一模)

2019年安徽省淮南第十九中学高考数学选择题专项训练(一模)抽选各地名校试卷,经典试题,有针对性的应对高考数学考点中的难点、重点和常规考点进行强化训练。

第1 题:来源: 2017届陕西省汉中市高三数学下学期第二次教学质量检测(4月模拟)试题试卷及答案理已知函数f(x)=sin 2x+cos 2x-m在上有两个零点x1,x2,则tan的值为( ).A. B. C. D.【答案】B第 2 题:来源:江西省抚州市乐安县2016-2017学年高二数学12月月考试题试卷及答案理“”是“方程为椭圆方程”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件【答案】C第 3 题:来源:重庆市綦江中学2018_2019学年高二数学上学期第三学月考试题理与同一平面平行的两条直线( )A.平行 B.相交C.异面 D.平行、相交或异面【答案】D第 4 题:来源:江西省南昌市第二中学2018_2019学年高二数学上学期期中试题理分别是双曲线的左右焦点,过的直线与双曲线的左右两支分别交于两点.若为等边三角形,则的面积为()A. 8B.C.D.16【答案】C第 5 题:来源: 2019高中数学第二章基本初等函数(Ⅰ)单元测试(二)新人教A版必修1函数是幂函数,则()A. 1 B.C.或1 D.2【答案】B【解析】因为函数是幂函数,所以且,解得.故选B.第 6 题:来源:黑龙江省哈尔滨市呼兰区第一中学2019届高三数学上学期期中试题理幂函数f(x)=(a∈Z)为偶函数,且f(x)在区间(0,+∞)上是减函数,则a等于( )A.3 B.4 C.5 D.6【答案】C第 7 题:来源: 17年海南省海口市高考调研测试数学试题(理科)含答案已知圆与直线及都相切,圆心在直线上,则圆的方程为()A. B. C.D.【答案】C第 8 题:来源:浙江省杭州市2016_2017学年高一数学3月月考试题将函数y=sinx图象上所有的点向左平移个单位长度,再将图象上所有的点的横坐标伸长到原来的2倍(纵坐标不变),则所得图象的函数解析式为 ( )A. B. C. D.【答案】 A第 9 题:来源:重庆市2017_2018学年高一数学上学期第一次月考试题.如图,直线y=k和双曲线相交于点P,过点P作PA0垂直于x轴,垂足为A0,x轴上的点A0,A1,A2,…An的横坐标是连续整数,过点A1,A2,…An:分别作x轴的垂线,与双曲线(k>0)及直线y=k分别交于点B1,B2,…Bn和点C1,C2,…Cn,则的值为()A.B.C. D.【答案】C第 10 题:来源:广东省天河区普通高中2017_2018学年高一数学10月月考试题试卷及答案04 下列四个集合中,表示空集的是()A.B.C. D.【答案】D第 11 题:来源:安徽省滁州市全椒县襄河镇2016-2017学年高二数学下学期期中试题试卷及答案理已知点P(sinα-cosα,tanα)在第一象限,则在[0,2π]内α的取值范围是()A. (,)∪(π,)B.(,)∪(π,)C.(,)∪(,)D.(,)∪(,π)【答案】A第 12 题:来源:湖北省荆州市2017_2018学年高一数学上学期期中试题理试卷及答案设全集是实数集,,,则如图所示阴影部分所表示的集合是()A.B.C.D.【答案】A第 13 题:来源:宁夏平罗县2018届高三数学上学期第一次月考试题理已知定义在上的函数,若对任意的,不等式恒成立,则实数的取值范围是()A. B. C. D.【答案】第 14 题:来源:山东省威海市2017届高考第二次模拟考试数学试题(理)含答案给定两个命题,“为假”是“为真”的(A)充分不必要条件 (B)必要不充分条件(C)充要条件 (D)既不充分也不必要条件【答案】B第 15 题:来源:山东省济南市2017_2018学年高二数学上学期期中试题试卷及答案等差数列中,若,则A. B. C.D.【答案】C第 16 题:来源:山东省桓台县2017_2018学年高二数学上学期第一次(9月)月考试题试卷及答案已知命题p:∀x>0,总有(x+1)ex>1,则非p为 ( )A.∃x0≤0,使得(x0+1)ex0≤1B.∃x0>0,使得(x0+1)ex0≤1C.∀x>0,总有(x+1)ex≤1D.∀x≤0,使得(x+1)ex≤1【答案】B第 17 题:来源:安徽省蚌埠市第二中学2018_2019学年高一数学下学期期中试题(含解析)对函数的表述错误的是A. 最小正周期为B. 函数向左平移个单位可得到C. 在区间上递增D. 点是的一个对称中心【答案】D【详解】因为,所以最小正周期为,向左平移个单位可得到,因为,所以,即递增,因为时,,所以点不是的对称中心,第 18 题:来源: 2016_2017学年安徽省滁州市全椒县襄河镇高一数学下学期期中试题试卷及答案理已知△的内角满足,则()A.B.C.D.【答案】C第 19 题:来源:河北省鸡泽县2018届高三数学10月月考试题理试卷及答案设△ABC的内角A,B,C所对的边分别为a,b,c,若(acosB+bcosA)=2csinC,a+b=4(a,b在变化),且△ABC的面积最大值为,则此时△ABC的形状是( )A.锐角三角形B.直角三角形 C.等腰三角形 D.正三角形【答案】C第 20 题:来源:甘肃省兰州市2017_2018学年高一数学上学期期中试题试卷及答案已知函数,则满足的a的取值范围是()A.B.∪C.D.∪【答案】D第 21 题:来源: 2016-2017学年内蒙古集宁一中高二数学上学期期末考试试题试卷及答案理已知F1,F2是椭圆+=1的两个焦点,P是该椭圆上的任意一点,则|PF1|·|PF2|的最大值是( )A.9 B.16 C.25 D.【答案】 C第 22 题:来源:安徽省滁州市定远县育才学校2018_2019学年高一数学下学期第一次月考试题(普通班)设α,β都是锐角,且cosα=,sin(α+β)=,则cosβ=( )A. B. C.或 D.或【答案】A第 23 题:来源:新疆维吾尔自治区阿克苏市2017_2018学年高二数学上学期第二次月考试题试卷及答案理若命题:“”为假命题,则实数的取值范围是()A. B. C. D.【答案】B【解析】由题意可得:对于∀,恒成立,当a=0时,命题成立,否则,结合二次函数的性质应满足:,求解关于实数a的不等式可得:,综上可得:实数的取值范围是.第 24 题:来源:河南省林州市2017_2018学年高二数学上学期开学检测试题试卷及答案圆x2+y2-4=0与圆x2+y2-4x+4y-12=0的公共弦长为( )A. B. C. 2 D. 3【答案】C【解析】两圆公共弦所在的直线方程为x-y+2=0,圆x2+y2-4=0的圆心到公共弦的距离为d==,所以公共弦长为l=2=2.第 25 题:来源: 2016-2017学年内蒙古集宁一中高二数学上学期期末考试试题试卷及答案理由曲线与直线围成的曲边梯形的面积为()A. B. C. D.16【答案】 B第 26 题:来源:河北省武邑中学2018_2019学年高一数学上学期第二次月考试题(含解析).设则满足的的取值范围为A. B. C. D.【答案】B【详解】根据题意画出分段函数的图像,则只需要2x在单调递减的一次函数部分即可,而x+1在2x右侧即可,故答案为:B.第 27 题:来源:安徽省六安市新安中学2016-2017学年高二数学上学期期末考试试题试卷及答案理设原命题为:“若空间两个向量与()共线,则存在实数,使得”则其逆命题、否命题、逆否命题为真的个数( )A.1 B.2 C.3D.4【答案】C第 28 题:来源:安徽省赛口中学2018_2019学年高二数学下学期期中试题文执行如图所示的程序框图,则输出的S值是A.4 B. C. D.-1 【答案】D第 29 题:来源:山东省夏津一中2019届高三数学10月月考试题理若,则下列结论不正确的是 ( )A.a2 < b 2 B .ab<b2 C.D.|a|+|b|>|a+b|【答案】D第 30 题:来源:江西省赣州市2016_2017学年高二数学下学期第二次(5月)月考试题理已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(1)+lnx,则f′(1)=()A.﹣ e B.﹣ 1 C. 1 D. e【答案】B第 31 题:来源:陕西省渭南市2017_2018学年高一数学上学期第二次月考试题试卷及答案如果函数在区间(-∞,4]上单调递减,那么实数的取值范围是()A.(-∞,-3] B.[-3,+∞) C.(-∞,5] D.[5,+∞)第 32 题:来源:河北省行唐县三中2019届高三数学上学期11月月考试题理曲线y=x2+2与直线5x-y-4=0所围成的图形的面积为( )A. B. C. D.【答案】C第 33 题:来源:宁夏银川市2017_2018学年高二数学上学期期末考试试题理试卷及答案在正方体ABCD—A1B1C1D1中,E是AD的中点,则异面直线C1E与BC所成的角的余弦值是A. B. C. D.【答案】C第 34 题:来源: 2018届高考数学文科总复习课时跟踪检测试卷(6)函数的奇偶性及周期性试卷及答案已知偶函数f(x)在区间[0,+∞)上单调递增,则满足f(2x-1)<f的x的取值范围是( )【答案】A第 35 题:来源:海南省洋浦中学2016-2017学年高二数学上学期期末考试试题试卷及答案理若焦点在y轴上的椭圆的离心率为,则的值为( )A. B. C. D.以上答案均不对【答案】C[解析] 由题意得a2=2,b2=m,∴c2=2-m,又=,∴=,∴m=.第 36 题:来源:四川省遂宁市射洪县2016_2017学年高一数学下学期第三次月考试卷理(含解析)已知向量=(2,4),=(﹣1,1),则2﹣=()A.(5,7) B.(5,9) C.(3,7) D.(3,9)第 37 题:来源:四川省内江市2019届高三数学上学期第一次模拟考试试题理(含解析)如图是民航部门统计的某年春运期间12个城市售出的往返机票的平均价格以及相比上年同期变化幅度的数据统计图表,根据图表,下面叙述不正确的是()A. 深圳的变化幅度最小,北京的平均价格最髙B. 深圳和厦门的平均价格同去年相比有所下降C. 平均价格从高到低居于前三位的城市为北京、深圳、广州D. 平均价格的涨幅从高到低居于前三位的城市为天津、西安、厦门【答案】D【解析】【分析】根据折线的变化率,得到相比去年同期变化幅度、升降趋势,逐一验证即可.【详解】由图可知,选项A、B、C都正确,对于D,因为要判断涨幅从高到低,而不是判断变化幅度,所以错误.第 38 题:来源:福建省泉州市2017届高考数学模拟试卷(文科)含答案解析下列表示旅客搭乘动车的流程中,正确的是()A.买票→候车厅候车→上车→候车检票口检票B.候车厅候车→买票→上车→候车检票口检票C.买票→候车厅候车→候车检票口检票→上车D.候车厅候车→上车→候车检票口检票→买票【答案】 C【考点】EH:绘制简单实际问题的流程图.【分析】旅客搭乘动车,应买票→候车→检票→上车,可得结论.【解答】解:旅客搭乘动车,应买票→候车→检票→上车,故选C.【点评】本题考查流程图的作用,考查学生分析解决问题的能力,属于基础题.第 39 题:来源:安徽省阜阳市第三中学2018_2019学年高一数学上学期小期末考试(期末模拟)试题(理文A)已知是定义在R上的奇函数,且对任意的,都有.当时,,则()A.-2 B.-1 C. 0 D. 1【答案】C第 40 题:来源:江西省南昌市2017_2018学年高二数学上学期第三次月考试题试卷及答案理已知命题,,则为()A. B. C. D.【答案】 B第 41 题:来源:四川省宜宾第三中学2019届高三数学11月月考试题理(含解析)已知展开式中,各项系数的和与其各二项式系数的和之比,则等于()A. B. C. D.【答案】C【解析】令,可得各项系数的和为,二项式系数的和为,因为各项系数的和与其各二项式系数的和之比是,所以,故选.第 42 题:来源:江西省吉安市新干县2016_2017学年高一数学下学期第一次段考试题试卷及答案在中,,则角与角的关系为()A. B.C. D.【答案】C第 43 题:来源:山东省济南市2017_2018学年高二数学上学期期中试题试卷及答案已知,且,则等于 []A. B. C. D.【答案】C第 44 题:来源: 2016_2017学年河南省南阳市高二数学下学期第一次月考(3月)试题理已知点在曲线上,为曲线在点处的切线的倾斜角,则的取值范围是()A. B. C. D.【答案】A第 45 题:来源:甘肃省会宁县2017_2018学年高二数学上学期期中试题试卷及答案在下列函数中,最小值是2的是 ( )A.且)B.C.D.【答案】C第 46 题:来源:重庆市长寿一中2018_2019学年高二数学上学期第一次月考试题直线的倾斜角为()A、 B、 C、 D、与a取值有关【答案】B第 47 题:来源:已知命题p:,x2-x+1≥0;命题q:若a2<b2,则a<b。

2019年安徽省淮南市高考数学一模试卷(文科)含答案解析

2019年安徽省淮南市高考数学一模试卷(文科)含答案解析

2019年安徽省淮南市高考数学一模试卷(文科)一、选择题1.已知全集∪={1,2,3},集合B={1,2},且A∩B={1},则满足条件的集合A的个数为()A.0 B.1 C.2 D.32.复数的虚部是()A.i B.﹣i C.1 D.﹣13.如图的程序框图,能判断任意输入的整数x的奇偶性:其中判断框内的条件是()A.m=0 B.x=0 C.x=1 D.m=14.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是()A.B.C.D.5.经过抛物线x2=4y的焦点和双曲线﹣=1的右焦点的直线方程为()A.x+48y﹣3=0 B.x+80y﹣5=0 C.x+3y﹣3=0 D.x+5y﹣5=06.函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象如图所示,则ω,φ的值分别是()A.2,﹣ B.2,﹣ C.4,﹣ D.4,7.数列{a n}的通项公式a n=ncos,其前n项和为S n,则S2019等于()A.2019 B.1008 C.504 D.08.O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足,λ∈[0,+∞),则P的轨迹一定通过△ABC的()A.外心 B.内心 C.重心 D.垂心9.函数y=﹣xcosx的部分图象是()A.B.C.D.10.设椭圆C:=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点,PF2⊥F1F2,∠PF1F2=30°,则C的离心率为()A.B.C.D.11.如图,有一圆柱形无盖水杯,其轴截面ABCD是边长为2的正方形,P是BC的中点,现有一只蚂蚁位于外壁A处,内壁P处有一粒米,则这只蚂蚁取得米粒所经过的最短路程是()A.B.π+1 C.D.12.已知函数f(x)=x3﹣3ax,若f(x)存在唯一的零点x0,则实数a的取值范围是()A.(0,+∞)B.[0,+∞)C.(﹣∞,0)D.(﹣∞,0]二.填空题13.若2x+2y=1,则x+y的取值范围是.14.已知过点M(﹣3,﹣3)的直线l被圆x2+y2+4y﹣21=0所截得的弦长为10,求直线l 的方程为.15.二次函数y=ax2+2ax+1在区间[﹣3,2]上最大值为4,则a等于.16.定义在[﹣2,2]上的偶函数f(x)在[﹣2,0]上为增,若满足f(1﹣m)<f(m),则m的取值范围是.三.解答题17.在△ABC中,B=,AC=,求AB+BC的最大值并判断取得最大值时△ABC的形状.18.已知等差数列{a n}的公差不为零,a1=25,且a1,a11,a13成等比数列.(Ⅰ)求{a n}的通项公式;.(Ⅱ)求a1+a4+a7+…+a3n﹣219.如图,在斜三棱柱ABC﹣A1B1C1中,A1B⊥AC,且A1B=AC=5,AA1=BC=13,且AB=12.(1)求证:AA1⊥AC;(2)求点B到面ACC1A1的距离.20.如图,设P是圆x2+y2=25上的动点,点D是P在x轴上的射影,M为PD上一点,且|MD|=|PD|.(Ⅰ)当P在圆上运动时,求点M的轨迹C的方程(Ⅱ)求过点(3,0)且斜率的直线被C所截线段的长度.21.已知函数f(x)=xlnx+(2a﹣1)x﹣ax2﹣a+1,(1)若,求f(x)的单调区间;(2)求证:时,若x∈[1,+∞),则f(x)≤0.四.选做题,以下三题任选一题22.已知函数f(x)=sin(x﹣ϕ)cos(x﹣ϕ)﹣cos2(x﹣ϕ)+(0≤ϕ≤)为偶函数.(I)求函数的最小正周期及单调减区间;(II)把函数的图象向右平移个单位(纵坐标不变),得到函数g(x)的图象,求函数g (x)的对称中心.23.已知<2;q:x2﹣2x+1﹣m2<0,若¬p是¬q的充分非必要条件,求实数m的取值范围.24.在直角坐标系xOy中,已知点A(1,1),B(2,3),C(3,2),点P(x,y)在△ABC三边围成的区域(含边界)上.(Ⅰ)若++=,求||;(Ⅱ)设=m+n(m,n∈R),用x,y表示m﹣n,并求m﹣n的最大值.2019年安徽省淮南市高考数学一模试卷(文科)参考答案与试题解析一、选择题1.已知全集∪={1,2,3},集合B={1,2},且A∩B={1},则满足条件的集合A的个数为()A.0 B.1 C.2 D.3【考点】交集及其运算.【分析】根据交集的定义可知,2∉A,1∈A,故3可在或不在集合A中,由子集个数公式可得.【解答】解:∵全集I={1,2,3},集合B={1,2},且A∩B={1},∴2∉A,1∈A,故3可在或不在集合A中,∴满足条件的A集合的个数为21=2.故选:C.2.复数的虚部是()A.i B.﹣i C.1 D.﹣1【考点】复数的基本概念.【分析】根据复数的基本运算化简复数即可.【解答】解:=,则复数的虚部是1,故选:C3.如图的程序框图,能判断任意输入的整数x的奇偶性:其中判断框内的条件是()A.m=0 B.x=0 C.x=1 D.m=1【考点】设计程序框图解决实际问题;程序框图.【分析】本题考查了选择结构,由程序框图所体现的算法可知判断一个数是奇数还是偶数,看这个数除以2的余数是1还是0,从而得到判断框条件.【解答】解:由程序框图所体现的算法可知判断一个数是奇数还是偶数,看这个数除以2的余数是1还是0.由图可知应该填m=0.故选A.4.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是()A.B.C.D.【考点】平面图形的直观图.【分析】根据斜二测画法知,平行于x轴的线段长度不变,平行于y的线段变为原来的,由此得出原来的图形是什么.【解答】解:根据斜二测画法知,平行于x轴的线段长度不变,平行于y的线段变为原来的,∵O′C′=1,O′A′=,∴OC=O′C′=1,OA=2O′A′=2;由此得出原来的图形是A.故选:A.5.经过抛物线x2=4y的焦点和双曲线﹣=1的右焦点的直线方程为()A.x+48y﹣3=0 B.x+80y﹣5=0 C.x+3y﹣3=0 D.x+5y﹣5=0【考点】双曲线的简单性质.【分析】求得抛物线的焦点为(0,1),求出双曲线的a,b,c,可得右焦点为(5,0),运用直线方程的截距式,即可得到所求方程.【解答】解:抛物线x2=4y的焦点为(0,1),双曲线﹣=1的a=,b=2,c==5,可得右焦点为(5,0),由直线方程的截距式可得+y=1,即为x+5y﹣5=0.故选:D .6.函数f (x )=2sin (ωx +φ)(ω>0,﹣<φ<)的部分图象如图所示,则ω,φ的值分别是( )A .2,﹣B .2,﹣C .4,﹣D .4,【考点】由y=Asin (ωx +φ)的部分图象确定其解析式;y=Asin (ωx +φ)中参数的物理意义.【分析】通过图象求出函数的周期,再求出ω,由(,2)确定φ,推出选项.【解答】解:由图象可知: T==,∴T=π,∴ω==2;∵(,2)在图象上,所以 2×+φ=2k ,φ=2k π,(k ∈Z ).∵﹣<φ<, ∴k=0,∴φ=. 故选:A .7.数列{a n }的通项公式a n =ncos,其前n 项和为S n ,则S 2019等于( ) A .2019 B .1008 C .504 D .0【考点】数列的求和.【分析】a n =ncos ,可得a 2k ﹣1==0,k ∈N *,a 2k =2kcosk π=2k (﹣1)k .即可得出S 2019=a 2+a 4+…+a 2019.【解答】解:∵a n =ncos,∴a 2k ﹣1==0,k ∈N *.a 2k =2kcosk π=2k (﹣1)k .则S2019=a2+a4+…+a2019=2[(2﹣1)+(4﹣3)+…+]=1008,故选:B.8.O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足,λ∈[0,+∞),则P的轨迹一定通过△ABC的()A.外心 B.内心 C.重心 D.垂心【考点】向量的线性运算性质及几何意义.【分析】先根据、分别表示向量、方向上的单位向量,确定+的方向与∠BAC的角平分线一致,再由可得到=λ(+),可得答案.【解答】解:∵、分别表示向量、方向上的单位向量∴+的方向与∠BAC的角平分线一致又∵,∴=λ(+)∴向量的方向与∠BAC的角平分线一致∴一定通过△ABC的内心故选B.9.函数y=﹣xcosx的部分图象是()A.B.C.D.【考点】函数的图象;奇偶函数图象的对称性;余弦函数的图象.【分析】由函数的表达式可以看出,函数是一个奇函数,因只用这一个特征不能确定那一个选项,故可以再引入特殊值来进行鉴别.【解答】解:设y=f(x),则f(﹣x)=xcosx=﹣f(x),f(x)为奇函数;又时f(x)<0,此时图象应在x轴的下方故应选D.10.设椭圆C:=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点,PF2⊥F1F2,∠PF1F2=30°,则C的离心率为()A.B.C.D.【考点】椭圆的简单性质.【分析】设|PF2|=x,在直角三角形PF1F2中,依题意可求得|PF1|与|F1F2|,利用椭圆离心率的性质即可求得答案.【解答】解:设|PF2|=x,∵PF2⊥F1F2,∠PF1F2=30°,∴|PF1|=2x,|F1F2|=x,又|PF1|+|PF2|=2a,|F1F2|=2c∴2a=3x,2c=x,∴C的离心率为:e==.故选A.11.如图,有一圆柱形无盖水杯,其轴截面ABCD是边长为2的正方形,P是BC的中点,现有一只蚂蚁位于外壁A处,内壁P处有一粒米,则这只蚂蚁取得米粒所经过的最短路程是()A.B.π+1 C.D.【考点】多面体和旋转体表面上的最短距离问题.【分析】画出圆柱的侧面展开图,根据对称性,求出AQ+PQ的最小值就是AE的长,求解即可.【解答】解:侧面展开后得矩形ABCD,其中AB=π,AD=2问题转化为在CD上找一点Q 使AQ+PQ最短作P关于CD的对称点E,连接AE,令AE与CD交于点Q,则得AQ+PQ的最小值就是AE为.故选:D.12.已知函数f(x)=x3﹣3ax,若f(x)存在唯一的零点x0,则实数a的取值范围是()A.(0,+∞)B.[0,+∞)C.(﹣∞,0)D.(﹣∞,0]【考点】利用导数研究函数的单调性;导数的加法与减法法则.【分析】求导f′(x)=3x2﹣6ax=3x(x﹣2a);从而分类讨论以确定函数的单调性,从而转化为极值问题求解即可.【解答】解:∵f(x)=x3﹣3ax2,∴f′(x)=3x2﹣6ax=3x(x﹣2a);当a=0时,f(x)=x3﹣3ax2在R上是增函数,故f(x)存在唯一的零点;当a<0时,f(x)=x3﹣3ax2在(﹣∞,2a)上是增函数,在(2a,0)上是减函数,在(0,+∞)上是增函数;而且f(0)=0,f(x)存在唯一的零点;当a>0时,f(x)=x3﹣3ax2在(﹣∞,0)上是增函数,在(0,2a)上是减函数,在(2a,+∞)上是增函数;而且f(0)=0,故只需使f(2a)=8a3﹣12a3>0,无解综上所述,a的取值范围为[﹣∞,0],故选:D.二.填空题13.若2x+2y=1,则x+y的取值范围是(﹣∞,﹣2] .【考点】基本不等式在最值问题中的应用.【分析】利用基本不等式构造出2x•2y,利用指数的运算性质,即可求得x+y的取值范围.【解答】解:∵2x>0,2y>0,∴2x+2y≥=,当且仅当2x=2y,即x=y时取“=”,∵2x+2y=1,∴≤1,即=2﹣2,∴x+y≤﹣2,∴x+y的取值范围是(﹣∞,﹣2].故答案为:(﹣∞,﹣2].14.已知过点M(﹣3,﹣3)的直线l被圆x2+y2+4y﹣21=0所截得的弦长为10,求直线l 的方程为x﹣3y﹣6=0.【考点】直线与圆的位置关系.【分析】当直线l的斜率不存在时,过点M(﹣3,﹣3)的直线l的方程为x=﹣3,不合题意.当直线l的斜率存在时,设直线l:y=k(x+3)﹣3,求出圆x2+y2+4y﹣21=0的圆心、半径及圆心(0,﹣2)到直线l:y=k(x+3)﹣3的距离,根据过点M(﹣3,﹣3)的直线l被圆x2+y2+4y﹣21=0所截得的弦长为10,由勾股定理能求出直线l.【解答】解:当直线l的斜率不存在时,过点M(﹣3,﹣3)的直线l的方程为x=﹣3,联立,得,或,∴直线l:x=﹣3被圆x2+y2+4y﹣21=0所截得的弦长为4,不合题意.当直线l的斜率存在时,设直线l:y=k(x+3)﹣3,圆x2+y2+4y﹣21=0的圆心(0,﹣2),半径r==5,圆心(0,﹣2)到直线l:y=k(x+3)﹣3的距离d==,∵过点M(﹣3,﹣3)的直线l被圆x2+y2+4y﹣21=0所截得的弦长为10,∴由勾股定理得:,即25=+25,解得k=,∴直线l:y=(x+3)﹣3,整理,得x﹣3y﹣6=0.故答案为:x﹣3y﹣6=0.15.二次函数y=ax2+2ax+1在区间[﹣3,2]上最大值为4,则a等于﹣3或.【考点】二次函数在闭区间上的最值.【分析】根据函数解析式确定函数对称轴和定点,数形结合确定最大值点,建立等量关系求解a的值.【解答】解:根据所给二次函数解析式可知,对称轴为x=﹣1,且恒过定点(0,1),(1)当a<0时,函数在[﹣3,﹣1]上单调递增,在[﹣1,2]上单调递减,所以函数在x=﹣1处取得最大值,因为f(﹣1)=﹣a+1=4,所以a=﹣3.(2)当a>0时,函数在[﹣3,﹣1]上单调递减,在[﹣1,2]上单调递增,所以函数在x=2处取得最大值,因为f(2)=8a+1=4,所以a=,故答案为﹣3或.16.定义在[﹣2,2]上的偶函数f(x)在[﹣2,0]上为增,若满足f(1﹣m)<f(m),则m的取值范围是.【考点】奇偶性与单调性的综合.【分析】根据偶函数的性质等价转化所求的不等式,利用函数的单调性和定义域,列出关于m的不等式组,再求出m的取值范围.【解答】解:因为f(x)是定义在[﹣2,2]上的偶函数,所以不等式f(1﹣m)<f(m)等价于:f(|1﹣m|)<f(|m|),因为f(x)在[﹣2,0]上为增函数,所以,解得﹣1≤m<,即m的取值范围是,故答案为:.三.解答题17.在△ABC中,B=,AC=,求AB+BC的最大值并判断取得最大值时△ABC的形状.【考点】正弦定理.【分析】根据正弦定理可得AB=2sinC,BC=2sinA,从而利用三角函数恒等变换的应用可求AB+BC=,利用正弦函数的图象和性质即可得解.【解答】(本题满分为12分)解:∵B=,AC=,∴在△ABC中,根据==,得AB=•sinC=sinC=2sinC,∴同理BC=2sinA,∴AB+BC=2sinC+2sinA,…=2sinC+2sin(π﹣C)=,…当C=,可得AB+BC的最大值为,…取最大值时,因而△ABC是等边三角形.…18.已知等差数列{a n}的公差不为零,a1=25,且a1,a11,a13成等比数列.(Ⅰ)求{a n}的通项公式;(Ⅱ)求a1+a4+a7+…+a3n.﹣2【考点】数列的求和;等差数列的通项公式;等比数列的通项公式.【分析】(I)设等差数列{a n}的公差为d≠0,利用成等比数列的定义可得,,再利用等差数列的通项公式可得,化为d(2a1+25d)=0,解出d即可得到通项公式a n;=﹣2(3n﹣2)+27=﹣6n+31,可知此数列是以25为首项,﹣6为公(II)由(I)可得a3n﹣2.差的等差数列.利用等差数列的前n项和公式即可得出a1+a4+a7+…+a3n﹣2【解答】解:(I)设等差数列{a n}的公差为d≠0,由题意a1,a11,a13成等比数列,∴,∴,化为d(2a1+25d)=0,∵d≠0,∴2×25+25d=0,解得d=﹣2.∴a n=25+(n﹣1)×(﹣2)=﹣2n+27.=﹣2(3n﹣2)+27=﹣6n+31,可知此数列是以25为首项,﹣6为公(II)由(I)可得a3n﹣2差的等差数列.=∴S n=a1+a4+a7+…+a3n﹣2==﹣3n2+28n.19.如图,在斜三棱柱ABC﹣A1B1C1中,A1B⊥AC,且A1B=AC=5,AA1=BC=13,且AB=12.(1)求证:AA1⊥AC;(2)求点B到面ACC1A1的距离.【考点】点、线、面间的距离计算.【分析】(1)根据线面垂直的判定定理证明AC⊥平面ABB1A1即可,(2)根据体积法建立方程关系进行求解.【解答】(1)证明:在△ABC中,∵AB2+AC2=BC2,∴AC⊥AB,…又∵A1B⊥AC且A1B、AC是面ABB1A1内的两条相交直线,∴AC⊥平面ABB1A1,又AA1⊂平面ABB1A1,∴AA1⊥AC;…(2)在△ABC中,∵,∴A1B⊥AB,又∵A1B⊥AC且AB、AC是面ABC内的两条相交直线,∴A1B⊥面ABC,…由(1)知,AA1⊥AC,∴,∵,设点B到面ACC1A1的距离为h,由得,,解得,∴点B到面ACC1A1的距离为…20.如图,设P是圆x2+y2=25上的动点,点D是P在x轴上的射影,M为PD上一点,且|MD|=|PD|.(Ⅰ)当P在圆上运动时,求点M的轨迹C的方程(Ⅱ)求过点(3,0)且斜率的直线被C所截线段的长度.【考点】轨迹方程;直线与圆相交的性质.【分析】(Ⅰ)由题意P是圆x2+y2=25上的动点,点D是P在x轴上的射影,M为PD上一点,且|MD|=|PD|,利用相关点法即可求轨迹;(Ⅱ)由题意写出直线方程与曲线C的方程进行联立,利用根与系数的关系得到线段长度.【解答】解:(Ⅰ)设M的坐标为(x,y)P的坐标为(x p,y p)由已知得:∵P在圆上,∴,即C的方程为.(Ⅱ)过点(3,0)且斜率为的直线方程为:,设直线与C的交点为A(x1,y1)B(x2,y2),将直线方程即:,∴线段AB的长度为|AB|===.21.已知函数f(x)=xlnx+(2a﹣1)x﹣ax2﹣a+1,(1)若,求f(x)的单调区间;(2)求证:时,若x∈[1,+∞),则f(x)≤0.【考点】利用导数研究函数的单调性.【分析】(1)可求导数,f′(x)=lnx﹣2a(x﹣1),进而求出a=时的导数,为判断导数符号需进一步求导,这样即可判断导数f′(x)的符号,从而求出f(x)的单调区间;(2)可令f′(x)=0,从而得到lnx=2a(x﹣1),容易得出函数lnx在x=1处的切线为y=x﹣1,根据上面可以得出a=时,可得出f(x)≤0,而a时,数形结合即可得出f(x)≤0,这样即证出结论.【解答】解:(1)f′(x)=lnx﹣2a(x﹣1)当时,f′(x)=lnx﹣(x﹣1)令g(x)=lnx﹣(x﹣1),则.x∈(0,1)时g′(x)>0;x∈(1,+∞)时g′(x)<0∴g(x)≤g(1)=0,即f′(x)≤0(只在x=1处取等号)∴f(x)的单减区间是(0,+∞);(2)f′(x)=lnx﹣2a(x﹣1)令f′(x)=0,则lnx=2a(x﹣1)且函数lnx在x=1处的切线为y=x﹣1由(1)知,时,f(x)在[1,+∞)上单减且f(1)=0∴f(x)≤0,合题意当a>时,数形结合知,f(x)在[1,+∞)上仍单减且f(1)=0∴f(x)≤f(1)=0综上:若,且x∈[1,+∞),恒有f(x)≤0.四.选做题,以下三题任选一题22.已知函数f(x)=sin(x﹣ϕ)cos(x﹣ϕ)﹣cos2(x﹣ϕ)+(0≤ϕ≤)为偶函数.(I)求函数的最小正周期及单调减区间;(II)把函数的图象向右平移个单位(纵坐标不变),得到函数g(x)的图象,求函数g(x)的对称中心.【考点】两角和与差的正弦函数;二倍角的余弦;正弦函数的单调性;正弦函数的对称性.【分析】(I)把函数解析式第一项利用二倍角的正弦函数公式化简,第二项利用二倍角的余弦函数公式化简,合并整理后,再利用两角和与差的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,即为函数解析式的最简形式,即可求出最小正周期以及单调区间;(II)由题意根据平移变换求出函数的解析式,然后求出函数的对称中心即可.【解答】解:(I)函数f(x)=sin(x﹣ϕ)cos(x﹣ϕ)﹣cos2(x﹣ϕ)+=sin(2x﹣2φ)﹣(2cos2φ﹣1)=sin(2x﹣2φ)﹣cos(2x﹣2φ)=sin(2x﹣2φ)函数f(x)为偶函数,则﹣2φ=kπ,k∈z∵0≤ϕ≤∴φ=∴f(x)=sin(2x﹣π)=﹣sin2x∴函数的最小正周期T==π令2x∈[﹣+2kπ, +2kπ]k∈Z 解得:﹣+kπ≤x≤+kπ∴函数f(x)的单调递减区间为[﹣+kπ, +kπ]k∈Z(II)由(I)知f(x)=﹣sin2x由题意知g(x)=﹣sin[2(x﹣)]=﹣sin(2x﹣)令2x﹣=kπ(k∈Z),则x=+(k∈Z),∴函数的对称中心坐标为(+,0)(k∈Z).23.已知<2;q:x2﹣2x+1﹣m2<0,若¬p是¬q的充分非必要条件,求实数m的取值范围.【考点】必要条件、充分条件与充要条件的判断.【分析】<2⇔﹣2<x<10,记A={x|﹣2<x<10},B={x|x2﹣2x+1﹣m2<0},由¬p是¬q的充分非必要条件,可知:B⊊A.再利用二次函数的图象与性质即可得出.【解答】解:<2⇔﹣2<x<10,…记A={x|﹣2<x<10},B={x|x2﹣2x+1﹣m2<0},由¬p是¬q的充分非必要条件,可知:B⊊A…记,f(x)=x2﹣2x+1﹣m2,则,即解此不等式组得,﹣3≤m≤3…经检验m=±3时上等式组中两不等式的等号不同时成立.∴m的取值范围是﹣3≤m≤3…24.在直角坐标系xOy中,已知点A(1,1),B(2,3),C(3,2),点P(x,y)在△ABC三边围成的区域(含边界)上.(Ⅰ)若++=,求||;(Ⅱ)设=m+n(m,n∈R),用x,y表示m﹣n,并求m﹣n的最大值.【考点】平面向量的基本定理及其意义;平面向量的坐标运算.【分析】(Ⅰ)先根据++=,以及各点的坐标,求出点p的坐标,再根据向量模的公式,问题得以解决;(Ⅱ)利用向量的坐标运算,先求出,,再根据=m+n,表示出m﹣n=y﹣x,最后结合图形,求出m﹣n的最小值.【解答】解:(Ⅰ)∵A(1,1),B(2,3),C(3,2),++=,∴(1﹣x,1﹣y)+(2﹣x,3﹣y)+(3﹣x,2﹣y)=0∴3x﹣6=0,3y﹣6=0∴x=2,y=2,即=(2,2)∴(Ⅱ)∵A(1,1),B(2,3),C(3,2),∴,∵=m+n,∴(x,y)=(m+2n,2m+n)∴x=m+2n,y=2m+n∴m﹣n=y﹣x,令y﹣x=t,由图知,当直线y=x+t过点B(2,3)时,t取得最大值1,故m﹣n的最大值为1.2019年8月5日。

2019年安徽省淮南市高考数学一模试卷(文科)

2019年安徽省淮南市高考数学一模试卷(文科)

2019年安徽省淮南市高考数学一模试卷(文科)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个符合题目要求的.1.(5分)已知P={x|﹣1<x<1},,则P∪Q=()A.B.(﹣2,1)C.D.(﹣2,﹣1)2.(5分)|1+2i|=()A.B.C.D.33.(5分)函数f(x)=x2(e x﹣e﹣x)的大致图象为()A.B.C.D.4.(5分)某三棱锥的三视图如图所示,其侧(左)视图为直角三角形,则该三棱锥外接球的表面积为()A.50πB.50πC.40πD.40π5.(5分)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cos2A+cos2A=0,a =7,c=6,则b=()A.10B.9C.8D.56.(5分)在平行四边形ABCD中,已知AB=4,AD=3,,,则的值是()A.4B.6C.8D.107.(5分)如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,它是由4个全等的直角三角形与中间的小正方形拼成的一个大正方形,现向大正方形内丢一粒黄豆,当每个直角三角形的两直角边之比都是2:3时,则该黄豆落入小正方形内的概率为()A.B.C.D.8.(5分)某圆锥的侧面展开图是面积为3π,圆心角为的扇形,则该圆锥的母线与底面所成的角的余弦值为()A.B.C.D.9.(5分)已知奇函数f(x)满足f(x)=f(x+4),当x∈(0,1)时,f(x)=4x,则f(log4184)=()A.﹣B.C.D.10.(5分)已知点P是双曲线﹣=1(a>0,b>0)右支上一点,F1、F2分别是双曲线的左、右焦点,M为△PF1F2的内心,若=+成立,则双曲线的离心率为()A.4B.C.2D.11.(5分)如图是函数在区间上的图象,将该图象向右平移|m|(m<0)个单位后,所得图象关于直线对称,则m 的最大值为()A.B.C.D.12.(5分)在平面直角坐标系中,设点p(x,y),定义[OP]=|x|+|y|,其中O为坐标原点,对于下列结论:(1)符合[OP]=2的点p的轨迹围成的图形面积为8;(2)设点p是直线:上任意一点,则[OP]min=1;(3)设点p是直线:y=kx+1(k∈R)上任意一点,则使得“[OP]最小的点P有无数个”的必要条件是k=1;(4)设点p是圆x2+y2=2上任意一点,则[OP]max=2.其中正确的结论序号为()A.(1)(2)(3)B.(1)(3)(4)C.(2)(3)(4)D.(1)(2)(4)二、填空题:本题共4小题,每小题5分,共20分13.(5分)若直线x﹣my+m=0经过抛物线x2=2py(p>0)的焦点,则p=.14.(5分)若x,y满足约束条件,则的最小值为.15.(5分)已知等差数列{a n},若点在经过点(4,8)的定直线l上,则数列{a n}的前7项和S7=.16.(5分)已知函数,若关于x的方程[f(x)]2+tf(x)﹣15=0(t∈R)有m个不同的实数解,则m的所有可能的值构成的集合为.三.解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答,第22、23为选考题,考生根据要求作答.17.(12分)已知等差数列{a n}的前n项和为S n,且S3=9,a1,a3,a7成等比数列.(1)求数列{a n}的通项公式;(2)若a n≠a1(当n≥2时),数列{b n}满足,求数列{a n b n}的前n项和T n.18.(12分)某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示.(Ⅰ)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?(Ⅱ)在(1)的条件下,该市决定在第3,4组的志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.19.(12分)如图,在四棱锥中O﹣ABCD中,底面ABCD是边长为4的正方形,侧棱OB ⊥底面ABCD,且侧棱OB的长是4,点E,F,G分别是AB,OD,BC的中点.(1)证明:OD⊥平面EFG;(2)求三棱锥O﹣EFG的体积.20.(12分)设椭圆的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且.(1)求椭圆C的方程;(2)过椭圆C的右焦点F2作斜率为1的直线l与椭圆C交于M,N两点,试在x轴上求一点P,使得以PM,PN为邻边的平行四边形是菱形.21.(12分)已知函数f(x)=2lnx+x2﹣mx(m∈R).(1)若f(x)在其定义域内单调递增,求实数m的取值范围;(2)若有两个极值点x1,x2(x1<x2),求f(x1)﹣f(x2)的取值范围.[选做题]22.(10分)已知直线l过点P(1,0),且倾斜角为α,以坐标原点为极点,x轴的正半轴为极轴建立坐标系,圆C的极坐标方程为ρ=4cosθ.(1)求圆C的直角坐标系方程及直线l的参数方程;(2)若直线l与圆C交于A,B两点,求的最大值和最小值.23.已知函数f(x)=|2x﹣1|+|x﹣2|.(1)求不等式f(x)≥3的解集;(2)若对任意x∈R恒成立,求m+n的最小值.2019年安徽省淮南市高考数学一模试卷(文科)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个符合题目要求的.1.(5分)已知P={x|﹣1<x<1},,则P∪Q=()A.B.(﹣2,1)C.D.(﹣2,﹣1)【考点】1D:并集及其运算.【专题】11:计算题;37:集合思想;4O:定义法;5J:集合.【分析】利用并集定义直接求解.【解答】解:∵P={x|﹣1<x<1},,∴P∪Q={x|﹣2<x<1}=(﹣2,1).故选:B.【点评】本题考查并集的求法,考查并集定义等基础知识,考查运算求解能力,是基础题.2.(5分)|1+2i|=()A.B.C.D.3【考点】A8:复数的模.【专题】38:对应思想;4R:转化法;5N:数系的扩充和复数.【分析】根据复数模的定义求出复数的模即可.【解答】解:|1+2i|==,故选:C.【点评】本题考查了复数求模问题,考查转化思想,是一道常规题.3.(5分)函数f(x)=x2(e x﹣e﹣x)的大致图象为()A.B.C.D.【考点】3A:函数的图象与图象的变换.【专题】11:计算题;33:函数思想;44:数形结合法;51:函数的性质及应用.【分析】判断函数的奇偶性,利用函数的单调性和函数值的变化趋势判断即可.【解答】解:∵f(x)=x2(e x﹣e﹣x),∴f(﹣x)=(﹣x)2(e﹣x﹣e x)=﹣x2(e x﹣e﹣x)=﹣f(x),∴f(x)为奇函数,其图象关于原点对称,故排除B,D,∵y=x2,是增函数x∈(0,+∞),f(x)>0,y=e x﹣e﹣x是增函数x∈(0,+∞),y>0,f(x)=x2(e x﹣e﹣x)在(0,+∞)是增函数,排除C.(或者)当x→+∞时,f(x)→+∞,故排除C,故选:A.【点评】本题考查函数的图象的判断,函数的奇偶性以及函数的单调性的判断与应用,考查计算能力.4.(5分)某三棱锥的三视图如图所示,其侧(左)视图为直角三角形,则该三棱锥外接球的表面积为()A.50πB.50πC.40πD.40π【考点】L!:由三视图求面积、体积;LF:棱柱、棱锥、棱台的体积.【专题】11:计算题;31:数形结合;5F:空间位置关系与距离;5Q:立体几何.【分析】由已知中的三视图可得:该几何体是一个以俯视图为底面的三棱锥,其外接球相当于以以俯视图为底面的三棱柱的外接球,进而得到答案.【解答】解:由已知中的三视图可得:该几何体是一个以俯视图为底面的三棱锥,其外接球相当于以以俯视图为底面的三棱柱的外接球,由底面三边长为3,4,5,故底面外接圆半径r=,球心到底面的距离d=,故球半径R=,故外接球的表面积S=4πR2=50π,故选:A.【点评】本题考查的知识点是球的体积和表面积,空间几何体的三视图,难度中档.5.(5分)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cos2A+cos2A=0,a =7,c=6,则b=()A.10B.9C.8D.5【考点】HR:余弦定理.【专题】58:解三角形.【分析】利用二倍角的余弦函数公式化简已知的等式,求出cos A的值,再由a与c的值,利用余弦定理即可求出b的值.【解答】解:∵23cos2A+cos2A=23cos2A+2cos2A﹣1=0,即cos2A=,A为锐角,∴cos A=,又a=7,c=6,根据余弦定理得:a2=b2+c2﹣2bc•cos A,即49=b2+36﹣b,解得:b=5或b=﹣(舍去),则b=5.故选:D.【点评】此题考查了余弦定理,二倍角的余弦函数公式,熟练掌握余弦定理是解本题的关键.6.(5分)在平行四边形ABCD中,已知AB=4,AD=3,,,则的值是()A.4B.6C.8D.10【考点】9O:平面向量数量积的性质及其运算.【专题】11:计算题;5A:平面向量及应用.【分析】由已知,结合向量加法的平行四边形法则可知可知•()=2,展开后可求.【解答】解:平行四边形ABCD中,已知AB=4,AD=3,,又∵,∴•()=2,∴++=2,即9﹣+﹣1×3=2,∴=8.故选:C.【点评】本题主要考查了向量的基本运算及向量的数量积的性质的简单应用,属于基础试题.7.(5分)如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,它是由4个全等的直角三角形与中间的小正方形拼成的一个大正方形,现向大正方形内丢一粒黄豆,当每个直角三角形的两直角边之比都是2:3时,则该黄豆落入小正方形内的概率为()A.B.C.D.【考点】CF:几何概型.【专题】11:计算题;5I:概率与统计.【分析】由勾股定理得:设小正方形的边长为a,大正方形的边长为:=a,由正方形的面积公式及几何概型中的面积型有:P(A)===,得解.【解答】解:设小正方形的边长为a,由每个直角三角形的两直角边之比都是2:3,则直角三角形的两边长分别为:2a,3a,则大正方形的边长为:=a,设事件A为“向大正方形内丢一粒黄豆,黄豆落入小正方形内”,则P(A)===,故选:D.【点评】本题考查了正方形的面积公式,勾股定理及几何概型中的面积型,属中档题.8.(5分)某圆锥的侧面展开图是面积为3π,圆心角为的扇形,则该圆锥的母线与底面所成的角的余弦值为()A.B.C.D.【考点】L5:旋转体(圆柱、圆锥、圆台).【专题】11:计算题;35:转化思想;5Q:立体几何.【分析】根据已知计算出圆锥的母线长和底面半径,可得答案.【解答】解:∵圆锥的侧面展开图是面积为3π,圆心角为的扇形,则圆锥的母线l满足:故圆锥的母线长为3,又由可得圆锥的底面半径为1,故该圆锥的母线与底面所成的角的余弦值为.故选:B.【点评】本题考查的知识点是旋转体,熟练掌握圆锥的几何特征,是解答的关键.9.(5分)已知奇函数f(x)满足f(x)=f(x+4),当x∈(0,1)时,f(x)=4x,则f(log4184)=()A.﹣B.C.D.【考点】3K:函数奇偶性的性质与判断;4H:对数的运算性质.【专题】11:计算题;33:函数思想;4O:定义法;51:函数的性质及应用.【分析】推导出f(log4184)=﹣f(log4184﹣4)=﹣(),由此能求出结果.【解答】解:∵奇函数f(x)满足f(x)=f(x+4),当x∈(0,1)时,f(x)=4x,∴f(log4184)=﹣f(log4184﹣4)=﹣()=﹣=﹣.故选:A.【点评】本题考查函数值的求法,考查函数的奇偶性、周期性等基础知识,考查运算求解能力,是基础题.10.(5分)已知点P是双曲线﹣=1(a>0,b>0)右支上一点,F1、F2分别是双曲线的左、右焦点,M为△PF1F2的内心,若=+成立,则双曲线的离心率为()A.4B.C.2D.【考点】KC:双曲线的性质.【专题】15:综合题;35:转化思想;4G:演绎法;5D:圆锥曲线的定义、性质与方程.【分析】设圆M与△PF1F2的三边F1F2、PF1、PF2分别相切于点E、F、G,连接ME、MF、MG,可得△MF1F2,△MPF1,△MPF2可看作三个高相等且均为圆I半径r的三角形.利用三角形面积公式,代入已知式,化简可得|PF1|﹣|PF2|=|F1F2|,再结合双曲线的定义与离心率的公式,可求出此双曲线的离心率.【解答】解:如图,设圆M与△PF1F2的三边F1F2、PF1、PF2分别相切于点E、F、G,连接ME、MF、MG,则ME⊥F1F2,MF⊥PF1,MG⊥PF2,它们分别是△MF1F2,△MPF1,△MPF2的高,∴=|PF1|×|MF|=|PF1|,=|PF2|×|MG|=|PF2|=×|F1F2|×|ME|=|F1F2|,其中r是△PF1F2的内切圆的半径.∵=+∴|PF1|=|PF2|+|F1F2|两边约去得:|PF1|=|PF2|+|F1F2|∴|PF1|﹣|PF2|=|F1F2|根据双曲线定义,得|PF1|﹣|PF2|=2a,|F1F2|=2c∴2a=c⇒离心率为e==2故选:C.【点评】本题将三角形的内切圆放入到双曲线当中,用来求双曲线的离心率,着重考查了双曲线的基本性质、三角形内切圆的性质和面积计算公式等知识点,属于中档题.11.(5分)如图是函数在区间上的图象,将该图象向右平移|m|(m<0)个单位后,所得图象关于直线对称,则m的最大值为()A.B.C.D.【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】11:计算题;31:数形结合;44:数形结合法;57:三角函数的图象与性质.【分析】由周期求出ω,由五点法作图求出φ的值,可得函数的f(x)的解析式.再根据函数y=A sin(ωx+φ)的图象的变换规律,可得结论.【解答】解:由函数y=sin(ωx+φ),(ω>0,|φ|<)的图象可得T==﹣(﹣)=π,可得:ω=2.再由五点法作图可得2×(﹣)+φ=0,可得:φ=.故函数的f(x)的解析式为f(x)=sin(2x+)=sin2(x+).故把f(x)=sin2(x+)的图象向右平移|m|(m<0)个单位长度,可得g(x)=sin2(x﹣|m|+)的图象,由于:所得图象关于直线x=对称,可得:sin2(﹣|m|+)=±1,可得:2(﹣|m|+)=+kπ,解得:|m|=﹣kπ,k∈Z,由于:m<0,可得:m=kπ﹣,k∈Z,可得:当k=0时,m的最大值为:﹣.故选:B.【点评】本题主要考查由函数y=A sin(ωx+φ)的部分图象求解析式,函数y=A sin(ωx+φ)的图象的变换规律,属于中档题.12.(5分)在平面直角坐标系中,设点p(x,y),定义[OP]=|x|+|y|,其中O为坐标原点,对于下列结论:(1)符合[OP]=2的点p的轨迹围成的图形面积为8;(2)设点p是直线:上任意一点,则[OP]min=1;(3)设点p是直线:y=kx+1(k∈R)上任意一点,则使得“[OP]最小的点P有无数个”的必要条件是k=1;(4)设点p是圆x2+y2=2上任意一点,则[OP]max=2.其中正确的结论序号为()A.(1)(2)(3)B.(1)(3)(4)C.(2)(3)(4)D.(1)(2)(4)【考点】2K:命题的真假判断与应用.【专题】34:方程思想;48:分析法;5B:直线与圆.【分析】(1)根据新定义由[OP]=|x|+|y|=1,讨论x的取值,得到y与x的分段函数关系式,画出分段函数的图象,由图象可知点P的轨迹围成的图形为边长是2的正方形,求出正方形的面积即可;(2)运用绝对值的含义和一次函数的单调性,可得[OP]的最小值;(3)根据|x|+|y|大于等于|x+y|或|x﹣y|,把y=kx+1代入即可得到当[OP]最小的点P有无数个时,k等于1或﹣1;而k等于1或﹣1推出[OP]最小的点P有无数个,得到k=±1是“使[OP]最小的点P有无数个”的充要条件;(4)把P的坐标用参数表示,然后利用三角函数的化积求得[OP]=|x|+|y|的最大值说明命题正确.【解答】解:(1)由[OP]=2,根据新定义得:|x|+|y|=2,由方程表示的图形关于x,y轴对称和原点对称,且x+y=2(0≤x≤2,0≤y≤2),画出图象如图所示:根据图形得到:四边形ABCD为边长是2的正方形,面积等于8,故(1)正确;(2)P(x,y)为直线:上任一点,可得y=1﹣x,可得|x|+|y|=|x|+|1﹣x|,当x≤0时,[OP]=1﹣(1+)x≥1;当0<x<时,[OP]=1+(1﹣)x∈(1,);当x≥时,可得[OP]=﹣1+(1+)x≥,综上可得[OP]的最小值为1,故(2)正确;(3)∵|x|+|y|≥|x+y|=|(k+1)x+1|,当k=﹣1时,|x|+|y|≥|1|=1,满足题意;而|x|+|y|≥|x﹣y|=|(k﹣1)x﹣1|,当k=1时,|x|+|y|≥|﹣1|=1,满足题意.∴“使[OP]最小的点P有无数个”的充要条件是“k=±1”,(3)不正确;(4)∵点P是圆x2+y2=2上任意一点,则可设x=cosθ,y=sinθ,θ∈[0,2π),[OP]=|x|+|y|=(cosθ+sinθ)=2sin(θ+),θ∈[0,],∴[OP]max=2,(4)正确.则正确的结论有:(1)、(2)、(4).故选:D.【点评】此题考查学生理解及运用新定义的能力,考查了数形结合的数学思想,关键是对题意的理解,是中档题.二、填空题:本题共4小题,每小题5分,共20分13.(5分)若直线x﹣my+m=0经过抛物线x2=2py(p>0)的焦点,则p=2.【考点】K8:抛物线的性质.【专题】35:转化思想;4O:定义法;5D:圆锥曲线的定义、性质与方程.【分析】由直线方程求出直线过点(0,1),从而得到抛物线的焦点坐标,则p可求;【解答】解:∵直线x﹣my+m=0过点(0,1),即抛物线x2=2py(p>0)的焦点F为(0,1),∴,则p=2;故答案为:2.【点评】本题考查了抛物线的简单性质,是基础题.14.(5分)若x,y满足约束条件,则的最小值为﹣2.【考点】7C:简单线性规划.【专题】11:计算题;31:数形结合;35:转化思想;49:综合法;5T:不等式.【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=x+y表示直线在y 轴上的截距,只需求出可行域直线在y轴上的截距最小值即可.【解答】解:先根据x,y满足约束条件画出可行域:当直线z=x+y过点B(0,﹣2)时,z最小是﹣2,故答案为:﹣2.【点评】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.15.(5分)已知等差数列{a n},若点在经过点(4,8)的定直线l上,则数列{a n}的前7项和S7=56.【考点】85:等差数列的前n项和.【专题】11:计算题;34:方程思想;4O:定义法;54:等差数列与等比数列.【分析】推导出a4=8,数列{a n}的前7项和S7=,由此能求出结果.【解答】解:等差数列{a n}中,点在经过点(4,8)的定直线l上,∴a4=8,∴数列{a n}的前7项和S7==56.故答案为:56.【点评】本题考查等差数列前7项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.16.(5分)已知函数,若关于x的方程[f(x)]2+tf(x)﹣15=0(t∈R)有m个不同的实数解,则m的所有可能的值构成的集合为{4}.【考点】53:函数的零点与方程根的关系.【专题】31:数形结合;32:分类讨论;35:转化思想;4J:换元法;4R:转化法;51:函数的性质及应用.【分析】求函数f(x)的导数,判断函数的极值,作出函数f(x)的图象,设n=f(x),利用根与系数之间的关系得到n2﹣nt﹣15=0的两根之积n1n2=﹣15,利用数形结合进行讨论求解即可.【解答】解:函数f(x)的导数为f′(x)=x2+2x﹣3,由f′(x)>0,得x>1或x<﹣3时,f(x)递增;由f′(x)<0,得﹣3<x<1时,f(x)递减.即有f(x)在x=1处取得极小值f(1)==﹣;在x=﹣3处取得极大值f(﹣3)=+(﹣3)2﹣3×(﹣3)=9,作出f(x)的图象,如图所示;关于x的方程f2(x)﹣tf(x)﹣15=0,由判别式△=t2+60>0,方程有两个不等实根,令n=f(x),则n2﹣nt﹣15=0,n1n2=﹣15<0,则原方程有一正一负实根.而﹣×9=﹣15,即当n1=9,则n2=﹣,此时y=n1,和f(x)有两个交点,y=n2与f(x)有两个交点,此时共有4个交点,当n1>9,则﹣<n2<0,此时y=n1,和f(x)有1个交点,y=n2与f(x)有3个交点,此时共有4个交点,当﹣<n1<9,则n2<﹣或n2>9,此时y=n1和f(x)有3个交点,y=n2与f(x)有1个交点,此时共有4个交点,当n1=﹣,则n2=9,此时y=n1和f(x)有2个交点,y=n2与f(x)有2个交点,此时共有4个交点,当n1<﹣,则0<n2<9,此时y=n1和f(x)有1个交点,y=n2与f(x)有3个交点,此时共有4个交点,综上方程[f(x)]2+tf(x)﹣15=0(t∈R)恒有4个不同的实数解,即m=4,即m的所有可能的值构成的集合为{4},故答案为:{4}.【点评】本题考查方程的根的个数的判断,考查函数方程的转化思想,注意运用二次方程的判别式和韦达定理,考查数形结合和分类讨论的思想方法,综合性较强,难度较大.三.解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答,第22、23为选考题,考生根据要求作答.17.(12分)已知等差数列{a n}的前n项和为S n,且S3=9,a1,a3,a7成等比数列.(1)求数列{a n}的通项公式;(2)若a n≠a1(当n≥2时),数列{b n}满足,求数列{a n b n}的前n项和T n.【考点】84:等差数列的通项公式;8E:数列的求和.【专题】35:转化思想;49:综合法;54:等差数列与等比数列.【分析】(1)求得首项和公差即可;(2)由(1)可得a n b n,再由错位相减求和得T n.【解答】解:(1)∵S3=9,∴a2=3,∴a1+d=3①∵a1,a3,a7成等比数列,∴a32=a1a7,∴(a1+2d)2=a1(a1+6d)②由①②得:或,当时,a n=3当时,a n=n+1;(2)∵a n≠a1(当n≥2时),∴d≠0,∴a n=n+1,∴b n=2n+1,∴a n b n=(n+1)2n+1,∴T n=2•22+3•23+4•24+…+(n+1)2n+1①2T n=2•23+3•24+4•25+…+(n+1)2n+2②①﹣②得﹣T n=4+22+23+24+…+2n+1﹣(n+1)2n+2=4+﹣(n+1)2n+2=﹣n•2n+2∴T n=n•2n+2【点评】本题考查了等差数列的通项公式及等比数列的前n项和公式、错位相减法求和,考查了推理能力与计算能力,属于中档题.18.(12分)某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示.(Ⅰ)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?(Ⅱ)在(1)的条件下,该市决定在第3,4组的志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.【考点】B8:频率分布直方图;C6:等可能事件和等可能事件的概率.【专题】5I:概率与统计.【分析】(Ⅰ)先分别求出这3组的人数,再利用分层抽样的方法即可得出答案;(Ⅱ)从5名志愿者中抽取2名志愿者有10种情况,其中第4组的2名志愿者B1,B2至少有一名志愿者被抽中有7种情况,再利用古典概型的概率计算公式即可得出.【解答】解:(Ⅰ)第3组的人数为0.3×100=30,第4组的人数为0.2×100=20,第5组的人数为0.1×100=10.因为第3,4,5组共有60名志愿者,所以利用分层抽样的方法在60名志愿者中抽取6名志愿者,每组抽取的人数分别为:第3组:×6=3;第4组:×6=2;第5组:×6=1.所以应从第3,4,5组中分别抽取3人,2人,1人;(Ⅱ)记第3组的3名志愿者为A1,A2,A3,第4组的2名志愿者为B1,B2,.则从5名志愿者中抽取2名志愿者有:(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A2,A3),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2)共有10种.其中第4组的2名志愿者B1,B2至少有一名志愿者被抽中的有:(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2),共有7种所以第4组至少有一名志愿者被抽中的概率为.【点评】熟练掌握频率分布直方图、分层抽样的定义、古典概型的概率计算公式、互斥事件及相互独立事件的概率计算公式是解题的关键.19.(12分)如图,在四棱锥中O﹣ABCD中,底面ABCD是边长为4的正方形,侧棱OB ⊥底面ABCD,且侧棱OB的长是4,点E,F,G分别是AB,OD,BC的中点.(1)证明:OD⊥平面EFG;(2)求三棱锥O﹣EFG的体积.【考点】LF:棱柱、棱锥、棱台的体积;LW:直线与平面垂直.【专题】31:数形结合;49:综合法;5F:空间位置关系与距离.【分析】(1)由已知证明OB⊥AB,EF⊥OD.FG⊥OD,由此能证明OD⊥平面EFG;(2)由OD⊥平面EFG,得以OF是三棱锥中O到平面EFG的距离,由此能求出三棱锥O﹣EFG的体积.【解答】(1)证明:∵四边形ABCD是边长为4的正方形,E是AB的中点,∴DE=,又侧棱OB⊥底面ABCD,AB⊂面ABCD,OB⊥AB,又OB=4,EB=2,OE=,DE=OE=,∴△ODE是等腰三角形,∵F是OD的中点,∴EF⊥OD.同理DG=DO=,△ODG是等腰三角形,∵F是OD的中点,∴FG⊥OD,∵EF∩FG=F,EF,FG⊂面EFG,∴OD⊥平面EFG;(2)解:∵侧棱OB⊥底面ABCD,BD⊂面ABCD,∴OB⊥BD,OB=4,BD=4,OD=4,由(1)知:OD⊥平面EFG,OF是三棱锥中,O到平面EFG的距离,∵F是OD的中点,OF=,DE=OE=,EF⊥OD,EF=,DG=DO=,FH⊥OD,FG=,四边形ABCD是边长为4的正方形,E、G分别是AB、BC的中点,EG=,△EFG是等边三角形,S△EFG=,∴三棱锥O﹣EFG的体积V O﹣EFG=×S△EFG×OF=××=4.【点评】本题考查线面垂直的证明,考查三棱锥的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.20.(12分)设椭圆的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且.(1)求椭圆C的方程;(2)过椭圆C的右焦点F2作斜率为1的直线l与椭圆C交于M,N两点,试在x轴上求一点P,使得以PM,PN为邻边的平行四边形是菱形.【考点】KL:直线与椭圆的综合.【专题】11:计算题;21:阅读型;35:转化思想;4P:设而不求法;5D:圆锥曲线的定义、性质与方程.【分析】(1)设点Q的坐标为(x0,0),且x0<0,利用AF2⊥AQ得出点Q的坐标,再利用已知条件得出b与c之间的等量关系,利用a、b、c之间的关系得出b的值,从而得出椭圆C的方程;(2)设点M(x1,y1)、N(x2,y2),写出直线l的方程,并将直线l的方程与椭圆C的方程联立,列出韦达定理,求出线段MN的中点E的坐标,利用条件PM,PN为邻边的平行四边形是菱形,得出PE⊥MN,由这两条直线的斜率之积为﹣1得出点P的坐标,从而解答该问题.【解答】解:(1)设椭圆C的焦距为2c(c>0),则点F1的坐标为(﹣c,0),点F2的坐标为(c,0),设点Q的坐标为(x0,0),且x0<0,,,∵,则x0+c+2c=0,所以,x0=﹣3c,则点Q的坐标为(﹣3c,0),∵直线AF2与直线AQ垂直,且点A(b,0),所以,,,由,得b2=3c2,∵4=b2+c2=4c2,所以,,c=1.因此,椭圆C的方程为;(2)设点M(x1,y1)、N(x2,y2),直线l的方程为y=x﹣1,将直线l的方程与椭圆C的方程联立,消去y并整理得7x2﹣8x﹣8=0,由韦达定理得,,所以,.因此,线段MN的中点为.设点P的坐标为(t,0),由于PM,PN为邻边的平行四边形是菱形,则PE⊥MN.直线PE的斜率为,解得t=,因此,当点P的坐标为(,0)时,以PM,PN为邻边的平行四边形是菱形.【点评】本题考查直线与椭圆的综合,考查椭圆的方程以及韦达定理设而不求法在椭圆综合中的应用,考查向量的坐标运算,属于中等题.21.(12分)已知函数f(x)=2lnx+x2﹣mx(m∈R).(1)若f(x)在其定义域内单调递增,求实数m的取值范围;(2)若有两个极值点x1,x2(x1<x2),求f(x1)﹣f(x2)的取值范围.【考点】6B:利用导数研究函数的单调性;6D:利用导数研究函数的极值.【专题】16:压轴题;33:函数思想;4R:转化法;53:导数的综合应用.【分析】(1)先求导,再根据导数和函数的单调性的关系即可求出m的范围,(2)根据f(x)有两个极值点,得到x1+x2=>0,x1x2=1,求出<x1<,再f(x1)﹣f(x2)=﹣x12+4lnx1,构造函数,求导,判断函数的单调性,求出范围即可.【解答】解:(1)∵f(x)=2lnx+x2﹣mx的定义域为(0,+∞),且f(x)在其定义域内单调递增,∴f′(x)=+2x﹣m≥0,即m≤2(+x)在区间(0,+∞)恒成立,∵2(+x)≥4=4,当且仅当x=1时取等号,∴m≤4,即实数m的范围(﹣∞,4];(2)由(1)知f′(x)=+2x﹣m=,令2x2﹣mx+2=0,∵5<m<时,f(x)有两个极值点,此时x1+x2=>0,x1x2=1,∴0<x1<1<x2,∵m=2(+x1)∈(5,),解得<x1<,由于x2=,于是f(x1)﹣f(x2)=(x12﹣mx1+2lnx1)﹣(x22﹣mx2+2lnx2)=(x12﹣x22)﹣m(x1﹣x2)+2(lnx1﹣lnx2)=﹣x12+4lnx1,令h(x)=﹣x2+4lnx,则h′(x)=<0,∴h(x)在区间(,)内单调递减,∵h()=16﹣﹣8ln2=﹣8ln2,h()=4﹣﹣4ln2=﹣4ln2,即﹣4ln2<f(x1)﹣f(x2)<﹣8ln2,故f(x1)﹣f(x2)的取值范围为(﹣4ln2,﹣8ln2).【点评】本题考查了函数的单调性、最值问题,考查导数的应用,考查转化思想,属于难题.[选做题]22.(10分)已知直线l过点P(1,0),且倾斜角为α,以坐标原点为极点,x轴的正半轴为极轴建立坐标系,圆C的极坐标方程为ρ=4cosθ.(1)求圆C的直角坐标系方程及直线l的参数方程;(2)若直线l与圆C交于A,B两点,求的最大值和最小值.【考点】Q4:简单曲线的极坐标方程;QJ:直线的参数方程.【专题】11:计算题;35:转化思想;4R:转化法;5S:坐标系和参数方程.【分析】(1)由ρ=4cosθ,得ρ2=4ρcosθ,由此能求出圆C的直角坐标方程;由直线l 过点P(1,0),且倾斜角为α,能求出直线l的参数方程.(2)将代入(x﹣2)2+y2=4,得t2﹣2t cosα﹣3=0,由此能求出的最大值和最小值.【解答】解:(1)由ρ=4cosθ,得ρ2=4ρcosθ,即x2+y2=4x,所以圆C的直角坐标方程为(x﹣2)2+y2=4,直线l过点P(1,0),且倾斜角为α,所以直线l的参数方程为(t为参数).(2)将代入(x﹣2)2+y2=4,得t2﹣2t cosα﹣3=0,△=(2cosα)2+12>0,设A,B两点对应的参数分别为t1,t2,则,因为cosα∈[﹣1,1],所以的最大值为,最小值为.【点评】本题考查圆的直角坐标方程和直线的参数方程的求法,考查两条线段长的倒数和的最大值和最小值的求法,考查参数方程、极坐标方程、直角坐标方程的互化等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.23.已知函数f(x)=|2x﹣1|+|x﹣2|.(1)求不等式f(x)≥3的解集;(2)若对任意x∈R恒成立,求m+n的最小值.【考点】R4:绝对值三角不等式;R5:绝对值不等式的解法.【专题】33:函数思想;4R:转化法;59:不等式的解法及应用.【分析】(1)通过讨论x的范围,求出不等式的解集即可;(2)求出函数的最小值,根据基本不等式的性质求出m+n的最小值即可.【解答】解:(1),∵f(x)≥3,∴或或解得{x|x≤0或x≥2},故f(x)≥3的解集为{x|x≤0或x≥2}.(2)由函数的解析式得:,∴,∴,即,当且仅当m=n时等号成立,∵m,n>0,解得,当且仅当m=n时等号成立,故m+n的最小值为.【点评】本题考查了解绝对值不等式问题,考查基本不等式的性质,是一道中档题.。

2019年高考数学一模试卷含解析

2019年高考数学一模试卷含解析

2019年高考数学一模试卷含解析一、填空题(本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在答题纸的指定位置上)1.已知集合A={﹣1,0,1},B=(﹣∞,0),则A∩B= .2.设复数z满足(1+i)z=2,其中i为虚数单位,则z的虚部为.3.已知样本数据x1,x2,x3,x4,x5的方差s2=3,则样本数据2x1,2x2,2x3,2x4,2x5的方差为.4.如图是一个算法流程图,则输出的x的值是.5.在数字1、2、3、4中随机选两个数字,则选中的数字中至少有一个是偶数的概率为.6.已知实数x,y满足,则的最小值是.7.设双曲线的一条渐近线的倾斜角为30°,则该双曲线的离心率为.8.设{an }是等差数列,若a4+a5+a6=21,则S9= .9.将函数的图象向右平移φ()个单位后,所得函数为偶函数,则φ=.10.将矩形ABCD绕边AB旋转一周得到一个圆柱,AB=3,BC=2,圆柱上底面圆心为O,△EFG为下底面圆的一个内接直角三角形,则三棱锥O﹣EFG体积的最大值是.11.在△ABC中,已知,,则的最大值为.12.如图,在平面直角坐标系中,分别在x轴与直线上从左向右依次取点Ak、Bk ,k=1,2,…,其中A1是坐标原点,使△AkBkAk+1都是等边三角形,则△A10B10A11的边长是.13.在平面直角坐标系xOy中,已知点P为函数y=2lnx的图象与圆M:(x﹣3)2+y2=r2的公共点,且它们在点P处有公切线,若二次函数y=f(x)的图象经过点O,P,M,则y=f(x)的最大值为.14.在△ABC中,A、B、C所对的边分别为a、b、c,若a2+b2+2c2=8,则△ABC 面积的最大值为.二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内)15.如图,在直三棱柱ABC﹣A1B1C1中,BC⊥AC,D,E分别是AB,AC的中点.(1)求证:B1C1∥平面A1DE;(2)求证:平面A1DE⊥平面ACC1A1.16.在△ABC中,a,b,c分别为内角A,B,C的对边,且bsin2C=csinB.(1)求角C;(2)若,求sinA的值.17.在平面直角坐标系xOy中,已知圆O:x2+y2=b2经过椭圆(0<b<2)的焦点.(1)求椭圆E的标准方程;(2)设直线l:y=kx+m交椭圆E于P,Q两点,T为弦PQ的中点,M(﹣1,0),N(1,0),记直线TM,TN的斜率分别为k1,k2,当2m2﹣2k2=1时,求k1•k2的值.18.如图所示,某街道居委会拟在EF地段的居民楼正南方向的空白地段AE上建一个活动中心,其中AE=30米.活动中心东西走向,与居民楼平行.从东向西看活动中心的截面图的下部分是长方形ABCD,上部分是以DC为直径的半圆.为了保证居民楼住户的采光要求,活动中心在与半圆相切的太阳光线照射下落在居民楼上的影长GE不超过2.5米,其中该太阳光线与水平线的夹角θ满足.(1)若设计AB=18米,AD=6米,问能否保证上述采光要求?(2)在保证上述采光要求的前提下,如何设计AB与AD的长度,可使得活动中心的截面面积最大?(注:计算中π取3)19.设函数f(x)=lnx,g(x)=ax+﹣3(a∈R).(1)当a=2时,解关于x的方程g(e x)=0(其中e为自然对数的底数);(2)求函数φ(x)=f(x)+g(x)的单调增区间;(3)当a=1时,记h(x)=f(x)•g(x),是否存在整数λ,使得关于x的不等式2λ≥h(x)有解?若存在,请求出λ的最小值;若不存在,请说明理由.(参考数据:ln2≈0.6931,ln3≈1.0986).20.若存在常数k(k∈N*,k≥2)、q、d,使得无穷数列{a n}满足则称数列{a n}为“段比差数列”,其中常数k、q、d分别叫做段长、段比、段差.设数列{b n}为“段比差数列”.(1)若{b n}的首项、段长、段比、段差分别为1、3、q、3.①当q=0时,求b xx;②当q=1时,设{b n}的前3n项和为S3n,若不等式对n∈N*恒成立,求实数λ的取值范围;(2)设{b n}为等比数列,且首项为b,试写出所有满足条件的{b n},并说明理由.数学附加题部分(本部分满分0分,考试时间30分钟)[选做题](在21、22、23、24四小题中只能选做2题,每小题0分,计20分)[选修4-1:几何证明选讲]21.如图,AB是半圆O的直径,点P为半圆O外一点,PA,PB分别交半圆O 于点D,C.若AD=2,PD=4,PC=3,求BD的长.[选修4-2:矩阵与变换]22.设矩阵M=的一个特征值λ对应的特征向量为,求m与λ的值.[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,已知直线为参数).现以坐标原点O为极点,以x轴非负半轴为极轴建立极坐标系,设圆C的极坐标方程为ρ=2cosθ,直线l与圆C交于A,B两点,求弦AB的长.[选修4-5:不等式选讲]24.若实数x,y,z满足x+2y+z=1,求x2+y2+z2的最小值.[必做题](第25、26题,每小题0分,计20分.请把答案写在答题纸的指定区域内)25.某年级星期一至星期五每天下午排3节课,每天下午随机选择1节作为综合实践课(上午不排该课程),张老师与王老师分别任教甲、乙两个班的综合实践课程.(1)求这两个班“在星期一不同时上综合实践课”的概率;(2)设这两个班“在一周中同时上综合实践课的节数”为X,求X的概率分布表与数学期望E(X).26.设n∈N*,n≥3,k∈N*.(1)求值:k﹣1;①kC n k﹣nC n﹣1②k2C n k﹣n(n﹣1)C n﹣2k﹣2﹣nC n﹣1k﹣1(k≥2);(2)化简:12C n0+22C n1+32C n2+…+(k+1)2C n k+…+(n+1)2C n n.参考答案与试题解析一、填空题(本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在答题纸的指定位置上)1.已知集合A={﹣1,0,1},B=(﹣∞,0),则A∩B={﹣1} .【考点】交集及其运算.【分析】由A与B,求出两集合的交集即可.【解答】解:∵A={﹣1,0,1},B=(﹣∞,0),∴A∩B={﹣1},故答案为:{﹣1}2.设复数z满足(1+i)z=2,其中i为虚数单位,则z的虚部为﹣1.【考点】复数代数形式的乘除运算.【分析】把给出的等式两边同时乘以,然后运用复数的除法进行运算,分子分母同时乘以1﹣i.整理后可得复数z的虚部.【解答】解:由(1+i)z=2,得:.所以,z的虚部为﹣1.故答案为﹣1.3.已知样本数据x1,x2,x3,x4,x5的方差s2=3,则样本数据2x1,2x2,2x3,2x4,2x5的方差为12.【考点】极差、方差与标准差.【分析】利用方差性质求解.【解答】解:∵样本数据x1,x2,x3,x4,x5的方差s2=3,∴样本数据2x1,2x2,2x3,2x4,2x5的方差为:22s2=4×3=12.故答案为:12.4.如图是一个算法流程图,则输出的x的值是9.【考点】程序框图.【分析】模拟执行程序,即可得出结论.【解答】解:由题意,x=1,y=9,x<y,第1次循环,x=5,y=7,x<y,第2次循环,x=9,y=5,x>y,退出循环,输出9.故答案为9.5.在数字1、2、3、4中随机选两个数字,则选中的数字中至少有一个是偶数的概率为.【考点】列举法计算基本事件数及事件发生的概率.【分析】基本事件总数n=,选中的数字中至少有一个是偶数的对立事件是选中的两个数字都是奇数,由此能求出选中的数字中至少有一个是偶数的概率.【解答】解:在数字1、2、3、4中随机选两个数字,基本事件总数n=,选中的数字中至少有一个是偶数的对立事件是选中的两个数字都是奇数,∴选中的数字中至少有一个是偶数的概率为p=1﹣=.故答案为:.6.已知实数x,y满足,则的最小值是.【考点】简单线性规划.【分析】先作出不等式组所表示的平面区域,由于可以看做平面区域内的点与原点的连线的斜率,结合图形可求斜率最大值【解答】解:作出不等式组所表示的平面区域如图所示:由于可以看做平面区域内的点与原点的连线的斜率,结合图形可知,当直线过OA时斜率最小.由于可得A(4,3),此时k=.故答案为:.7.设双曲线的一条渐近线的倾斜角为30°,则该双曲线的离心率为.【考点】双曲线的简单性质.【分析】求出双曲线的渐近线方程,可得a=,则c==2,再由离心率公式,即可得到双曲线的离心率.【解答】解:双曲线的渐近线方程为y=±x,则tan30°=即为a=,则c==2,即有e=.故答案为.8.设{a n}是等差数列,若a4+a5+a6=21,则S9=63.【考点】等差数列的前n项和.【分析】由等差数列的通项公式求出a5=7,再由等差数列的前n项和公式得,由此能求出结果.【解答】解:∵{a n}是等差数列,a4+a5+a6=21,∴a4+a5+a6=3a5=21,解得a5=7,∴=63.故答案为:63.9.将函数的图象向右平移φ()个单位后,所得函数为偶函数,则φ=.【考点】函数y=Asin(ωx+φ)的图象变换.【分析】若所得函数为偶函数,则﹣2φ=+kπ,k∈Z,进而可得答案.【解答】解:把函数f(x)=3sin(2x+)的图象向右平移φ个单位,可得函数y=3sin[2(x﹣φ)+]=3sin(2x+﹣2φ)的图象,若所得函数为偶函数,则﹣2φ=+kπ,k∈Z,解得:φ=﹣+kπ,k∈Z,当k=1时,φ的最小正值为.故答案为:.10.将矩形ABCD绕边AB旋转一周得到一个圆柱,AB=3,BC=2,圆柱上底面圆心为O,△EFG为下底面圆的一个内接直角三角形,则三棱锥O﹣EFG体积的最大值是4.【考点】棱柱、棱锥、棱台的体积.【分析】三棱锥O﹣EFG的高为圆柱的高,即高为ABC,当三棱锥O﹣EFG体积取最大值时,△EFG的面积最大,当EF为直径,且G在EF的垂直平分线上时,)max=,由此能求出三棱锥O﹣EFG体积的最大值.(S△EFG【解答】解:∵将矩形ABCD绕边AB旋转一周得到一个圆柱,AB=3,BC=2,圆柱上底面圆心为O,△EFG为下底面圆的一个内接直角三角形,∴三棱锥O﹣EFG的高为圆柱的高,即高为ABC,∴当三棱锥O﹣EFG体积取最大值时,△EFG的面积最大,当EF为直径,且G在EF的垂直平分线上时,)max=,(S△EFG∴三棱锥O﹣EFG体积的最大值V max==.故答案为:4.11.在△ABC中,已知,,则的最大值为.【考点】平面向量数量积的运算.【分析】可先画出图形,对的两边平方,进行数量积的运算即可得到,根据不等式a2+b2≥2ab即可得到,这样便可求出的最大值.【解答】解:如图,;∴;∴;即;∴=;∴的最大值为.故答案为:.12.如图,在平面直角坐标系中,分别在x轴与直线上从左向右依次取点A k、B k,k=1,2,…,其中A1是坐标原点,使△A k B k A k都是等边三角形,则△A10B10A11+1的边长是512.【考点】数列的求和.【分析】设直线与x轴交点坐标为P,由直线的倾斜角为300,又△A1B1A2是等边三角形,求出△A2B2A3、…找出规律,就可以求出△A10B10A11的边长.【解答】解:∵直线的倾斜角为300,且直线与x轴交点坐标为P(﹣,0),又∵△A1B1A2是等边三角形,∴∠B1A1A2=600,B1A1=,PA2=2,∴△A2B2A3的边长为PA2=2,同理B2A2=PA3=4,…以此类推B10A10=PA10=512,∴△A10B10A11的边长是512,故答案为:512.13.在平面直角坐标系xOy中,已知点P为函数y=2lnx的图象与圆M:(x﹣3)2+y2=r2的公共点,且它们在点P处有公切线,若二次函数y=f(x)的图象经过点O,P,M,则y=f(x)的最大值为.【考点】利用导数研究曲线上某点切线方程.【分析】设P(x0,y0),求得y=2lnx的导数,可得切线的斜率和切线方程;求得圆上一点的切线方程,由直线重合的条件,可得二次函数y=x(3﹣x),满足经过点P,O,M,即可得到所求最大值.【解答】解:设P(x0,y0),函数y=2lnx的导数为y′=,函数y=2lnx在点P处的切线方程为y﹣y0=(x﹣x0),即为x﹣y+y0﹣2=0;圆M:(x﹣3)2+y2=r2的上点P处的切线方程为(x0﹣3)(x﹣3)+yy0=r2,即有(x0﹣3)x+yy0+9﹣3x0﹣r2=0;由切线重合,可得==,即x0(3﹣x0)=2y0,则P为二次函数y=x(3﹣x)图象上的点,且该二次函数图象过O,M,则当x=时,二次函数取得最大值,故答案为:.14.在△ABC中,A、B、C所对的边分别为a、b、c,若a2+b2+2c2=8,则△ABC 面积的最大值为.【考点】余弦定理.【分析】由三角形面积公式,同角三角函数基本关系式,余弦定理可求S2=a2b2﹣,进而利用基本不等式可求S2≤﹣=﹣+c,从而利用二次函数的性质可求最值.【解答】解:由三角形面积公式可得:S=absinC,可得:S2=a2b2(1﹣cos2C)=a2b2[1﹣()2],∵a2+b2+2c2=8,∴a2+b2=8﹣2c2,∴S2=a2b2[1﹣()2]=a2b2[1﹣()2]=a2b2﹣≤﹣=﹣+c,当且仅当a=b时等号成立,∴当c=时,﹣ +c取得最大值,S的最大值为.故答案为:.二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内)15.如图,在直三棱柱ABC﹣A1B1C1中,BC⊥AC,D,E分别是AB,AC的中点.(1)求证:B1C1∥平面A1DE;(2)求证:平面A1DE⊥平面ACC1A1.【考点】平面与平面垂直的判定;直线与平面平行的判定.【分析】(1)证明B1C1∥DE,即可证明B1C1∥平面A1DE;(2)证明DE⊥平面ACC1A1,即可证明平面A1DE⊥平面ACC1A1.【解答】证明:(1)因为D,E分别是AB,AC的中点,所以DE∥BC,…又因为在三棱柱ABC﹣A1B1C1中,B1C1∥BC,所以B1C1∥DE…又B1C1⊄平面A1DE,DE⊂平面A1DE,所以B1C1∥平面A1DE…(2)在直三棱柱ABC﹣A1B1C1中,CC1⊥底面ABC,又DE⊂底面ABC,所以CC1⊥DE…又BC⊥AC,DE∥BC,所以DE⊥AC,…又CC1,AC⊂平面ACC1A1,且CC1∩AC=C,所以DE⊥平面ACC1A1…又DE⊂平面A1DE,所以平面A1DE⊥平面ACC1A1…16.在△ABC中,a,b,c分别为内角A,B,C的对边,且bsin2C=csinB.(1)求角C;(2)若,求sinA的值.【考点】余弦定理;正弦定理.【分析】(1)根据正弦定理化简已知等式得2sinBsinCcosC=sinCsinB,结合sinB >0,sinC>0,可求,结合范围C∈(0,π),可求C的值.(2)由角的范围利用同角三角函数基本关系式可求cos(B﹣)的值,由于A=﹣(B﹣),利用两角差的正弦函数公式即可计算求值得解.【解答】解:(1)由bsin2C=csinB,根据正弦定理,得2sinBsinCcosC=sinCsinB,…因为sinB>0,sinC>0,所以,…又C∈(0,π),所以.…(2)因为,所以,所以,又,所以.…又,即,所以=sin[﹣(B﹣)]…=.…17.在平面直角坐标系xOy中,已知圆O:x2+y2=b2经过椭圆(0<b<2)的焦点.(1)求椭圆E的标准方程;(2)设直线l:y=kx+m交椭圆E于P,Q两点,T为弦PQ的中点,M(﹣1,0),N(1,0),记直线TM,TN的斜率分别为k1,k2,当2m2﹣2k2=1时,求k1•k2的值.【考点】椭圆的简单性质.【分析】(1)椭圆E的焦点在x轴上,圆O:x2+y2=b2经过椭圆E的焦点,所以椭圆的半焦距c=b,所以2b2=4,即b2=2,即可求出椭圆E的方程;(2)求出T的坐标,利用斜率公式,结合条件,即可求k1•k2的值.【解答】解:(1)因0<b<2,所以椭圆E的焦点在x轴上,又圆O:x2+y2=b2经过椭圆E的焦点,所以椭圆的半焦距c=b,…所以2b2=4,即b2=2,所以椭圆E的方程为.…(2)设P(x1,y1),Q(x2,y2),T(x0,y0),联立,消去y,得(1+2k2)x2+4kmx+2m2﹣4=0,所以,又2m2﹣2k2=1,所以x1+x2=,所以,,…则.…18.如图所示,某街道居委会拟在EF地段的居民楼正南方向的空白地段AE上建一个活动中心,其中AE=30米.活动中心东西走向,与居民楼平行.从东向西看活动中心的截面图的下部分是长方形ABCD,上部分是以DC为直径的半圆.为了保证居民楼住户的采光要求,活动中心在与半圆相切的太阳光线照射下落在居民楼上的影长GE不超过2.5米,其中该太阳光线与水平线的夹角θ满足.(1)若设计AB=18米,AD=6米,问能否保证上述采光要求?(2)在保证上述采光要求的前提下,如何设计AB与AD的长度,可使得活动中心的截面面积最大?(注:计算中π取3)【考点】直线和圆的方程的应用.【分析】(1)以点A为坐标原点,AB所在直线为x轴,建立平面直角坐标系.设太阳光线所在直线方程为,利用直线与圆相切,求出直线方程,令x=30,得EG=1.5米<2.5米,即可得出结论;(2)方法一:设太阳光线所在直线方程为,利用直线与圆相切,求出直线方程,令x=30,得h≤25﹣2r,即可求出截面面积最大;方法二:欲使活动中心内部空间尽可能大,则影长EG恰为2.5米,即可求出截面面积最大【解答】解:如图所示,以点A为坐标原点,AB所在直线为x轴,建立平面直角坐标系.(1)因为AB=18,AD=6,所以半圆的圆心为H(9,6),半径r=9.设太阳光线所在直线方程为,即3x+4y﹣4b=0,…则由,解得b=24或(舍).故太阳光线所在直线方程为,…令x=30,得EG=1.5米<2.5米.所以此时能保证上述采光要求…(2)设AD=h米,AB=2r米,则半圆的圆心为H(r,h),半径为r.方法一:设太阳光线所在直线方程为,即3x+4y﹣4b=0,由,解得b=h+2r或b=h﹣2r(舍)…故太阳光线所在直线方程为,令x=30,得,由,得h≤25﹣2r…所以=.当且仅当r=10时取等号.所以当AB=20米且AD=5米时,可使得活动中心的截面面积最大…方法二:欲使活动中心内部空间尽可能大,则影长EG恰为2.5米,则此时点G 为(30,2.5),设过点G的上述太阳光线为l1,则l1所在直线方程为y﹣=﹣(x﹣30),即3x+4y﹣100=0…由直线l1与半圆H相切,得.而点H(r,h)在直线l1的下方,则3r+4h﹣100<0,即,从而h=25﹣2r…又=.当且仅当r=10时取等号.所以当AB=20米且AD=5米时,可使得活动中心的截面面积最大…19.设函数f(x)=lnx,g(x)=ax+﹣3(a∈R).(1)当a=2时,解关于x的方程g(e x)=0(其中e为自然对数的底数);(2)求函数φ(x)=f(x)+g(x)的单调增区间;(3)当a=1时,记h(x)=f(x)•g(x),是否存在整数λ,使得关于x的不等式2λ≥h(x)有解?若存在,请求出λ的最小值;若不存在,请说明理由.(参考数据:ln2≈0.6931,ln3≈1.0986).【考点】利用导数研究函数的单调性.【分析】(1)当a=2时,求出g(x)=0的解,即可解关于x的方程g(e x)=0(其中e为自然对数的底数);(2)φ(x)=f(x)+g(x)=lnx+ax+﹣3,φ′(x)=,分类讨论,利用导数的正负,求函数φ(x)=f(x)+g(x)的单调增区间;(3)判断h(x)不存在最小值,即可得出结论.【解答】解:(1)当a=2时,g(x)=0,可得x=1,g(e x)=0,可得e x=或e x=1,∴x=﹣ln2或0;(2)φ(x)=f(x)+g(x)=lnx+ax+﹣3,φ′(x)=①a=0,φ′(x)=>0,函数的单调递增区间是(0,+∞);②a=1,φ′(x)=•x>0,函数的单调递增区间是(0,+∞);③0<a <1,x=<0,函数的单调递增区间是(0,+∞);④a >1,x=>0,函数的单调递增区间是(,+∞);⑤a <0,x=>0,函数的单调递增区间是(0,);(3)a=1,h (x )=(x ﹣3)lnx ,h′(x )=lnx ﹣+1,h″(x )=+>0恒成立,∴h′(x )在(0,+∞)上单调递增, ∴存在x 0,h′(x 0)=0,即lnx 0=﹣1+,h (x )在(0,x 0)上单调递减,(x 0,+∞)上单调递增,∴h (x )min =h (x 0)=﹣(x 0+)+6,∵h′(1)<0,h′(2)>0,∴x 0∈(1,2),∴h (x )不存在最小值,∴不存在整数λ,使得关于x 的不等式2λ≥h (x )有解.20.若存在常数k (k ∈N *,k ≥2)、q 、d ,使得无穷数列{a n }满足则称数列{a n }为“段比差数列”,其中常数k 、q 、d 分别叫做段长、段比、段差.设数列{b n }为“段比差数列”.(1)若{b n }的首项、段长、段比、段差分别为1、3、q 、3. ①当q=0时,求b xx ;②当q=1时,设{b n }的前3n 项和为S 3n ,若不等式对n ∈N *恒成立,求实数λ的取值范围;(2)设{b n }为等比数列,且首项为b ,试写出所有满足条件的{b n },并说明理由.【考点】数列的应用;等比数列的性质.【分析】(1)①方法一:由{b n }的首项、段长、段比、段差可得b xx =0×b xx =0,再由b xx =b xx +3,b xx =b xx +3即可;方法二:根据{b n }的首项、段长、段比、段差,⇒b 1=1,b 2=4,b 3=7,b 4=0×b 3=0,b 5=b 4+3=3,b 6=b 5+3=6,b 7=0×b 6=0,…⇒b n }是周期为3的周期数列即可; ②方法一:由{b n }的首项、段长、段比、段差,⇒b 3n +2﹣b 3n ﹣1=(b 3n +1+d )﹣b 3n ﹣1=(qb 3n +d )﹣b 3n ﹣1=[q (b 3n ﹣1+d )+d ]﹣b 3n ﹣1=2d=6,⇒{b 3n ﹣1}是等差数列,又∵b3n+b3n﹣1+b3n=(b3n﹣1﹣d)+b3n﹣1+(b3n﹣1+d)=3b3n﹣1,即可求S3n ﹣2方法二:由{b n}的首项、段长、段比、段差⇒b3n+1=b3n,∴b3n+3﹣b3n=b3n+3﹣=2d=6,∴{b3n}是首项为b3=7、公差为6的等差数列即可,b3n+1(2)方法一:设{b n}的段长、段比、段差分别为k、q、d,⇒等比数列的通项公式有,﹣b km+1=d,即bq km+1﹣bq km=bq km(q﹣1)=d恒成立,①若q=1,当m∈N*时,b km+2则d=0,b n=b;②若q≠1,则,则q km为常数,则q=﹣1,k为偶数,d=﹣2b,;方法二:设{b n}的段长、段比、段差分别为k、q、d,①若k=2,则b1=b,b2=b+d,b3=(b+d)q,b4=(b+d)q+d,由,得b+d=bq;由,得(b+d)q2=(b+d)q+d,求得得d 即可②若k≥3,则b1=b,b2=b+d,b3=b+2d,由,求得得d 即可.【解答】(1)①方法一:∵{b n}的首项、段长、段比、段差分别为1、3、0、3,∴b xx=0×b xx=0,∴b xx=b xx+3=3,∴b xx=b xx+3=6.…方法二:∵{b n}的首项、段长、段比、段差分别为1、3、0、3,∴b1=1,b2=4,b3=7,b4=0×b3=0,b5=b4+3=3,b6=b5+3=6,b7=0×b6=0,…∴当n≥4时,{b n}是周期为3的周期数列.∴b xx=b6=6.…②方法一:∵{b n}的首项、段长、段比、段差分别为1、3、1、3,∴b3n﹣b3n﹣1=(b3n+1+d)﹣b3n﹣1=(qb3n+d)﹣b3n﹣1=[q(b3n﹣1+d)+d]﹣b3n﹣1=2d=6,+2}是以b2=4为首项、6为公差的等差数列,∴{b3n﹣1又∵b3n+b3n﹣1+b3n=(b3n﹣1﹣d)+b3n﹣1+(b3n﹣1+d)=3b3n﹣1,∴S3n=(b1+b2+b3)﹣2+(b4+b5+b6)+…+(b3n﹣2+b3n﹣1+b3n)=,…∵,∴,设,则λ≥(c n)max,又,当n=1时,3n2﹣2n﹣2<0,c1<c2;当n≥2时,3n2﹣2n﹣2>0,c n+1<c n,∴c1<c2>c3>…,∴(c n)max=c2=14,…∴λ≥14,得λ∈[14,+∞).…方法二:∵{b n }的首项、段长、段比、段差分别为1、3、1、3,∴b 3n +1=b 3n ,∴b 3n +3﹣b 3n =b 3n +3﹣b 3n +1=2d=6,∴{b 3n }是首项为b 3=7、公差为6的等差数列, ∴,易知{b n }中删掉{b 3n }的项后按原来的顺序构成一个首项为1公差为3的等差数列,∴,∴,…以下同方法一.(2)方法一:设{b n }的段长、段比、段差分别为k 、q 、d , 则等比数列{b n }的公比为,由等比数列的通项公式有,当m ∈N *时,b km +2﹣b km +1=d ,即bq km +1﹣bq km =bq km (q ﹣1)=d 恒成立,… ①若q=1,则d=0,b n =b ;②若q ≠1,则,则q km 为常数,则q=﹣1,k 为偶数,d=﹣2b ,; 经检验,满足条件的{b n }的通项公式为b n =b 或.… 方法二:设{b n }的段长、段比、段差分别为k 、q 、d , ①若k=2,则b 1=b ,b 2=b +d ,b 3=(b +d )q ,b 4=(b +d )q +d , 由,得b +d=bq ;由,得(b +d )q 2=(b +d )q +d , 联立两式,得或,则b n =b 或,经检验均合题意.… ②若k ≥3,则b 1=b ,b 2=b +d ,b 3=b +2d ,由,得(b +d )2=b (b +2d ),得d=0,则b n =b ,经检验适合题意. 综上①②,满足条件的{b n }的通项公式为b n =b 或.…数学附加题部分(本部分满分0分,考试时间30分钟)[选做题](在21、22、23、24四小题中只能选做2题,每小题0分,计20分)[选修4-1:几何证明选讲]21.如图,AB 是半圆O 的直径,点P 为半圆O 外一点,PA ,PB 分别交半圆O 于点D ,C .若AD=2,PD=4,PC=3,求BD 的长.【考点】与圆有关的比例线段.【分析】由切割线定理得:PD•PA=PC•PB,求出BC,利用勾股定理,求BD的长.【解答】解:由切割线定理得:PD•PA=PC•PB则4×(2+4)=3×(3+BC),解得BC=5,…又因为AB是半圆O的直径,故,…则在三角形PDB中有.…[选修4-2:矩阵与变换]22.设矩阵M=的一个特征值λ对应的特征向量为,求m与λ的值.【考点】特征向量的定义.【分析】推导出,由此能求出结果.【解答】解:∵矩阵M=的一个特征值λ对应的特征向量为,∴,…解得m=0,λ=﹣4.…[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,已知直线为参数).现以坐标原点O为极点,以x轴非负半轴为极轴建立极坐标系,设圆C的极坐标方程为ρ=2cosθ,直线l与圆C交于A,B两点,求弦AB的长.【考点】简单曲线的极坐标方程.【分析】直线为参数)化为普通方程,圆C的极坐标方程ρ=2cosθ化为直角坐标方程,求出圆C的圆心到直线l的距离,即可求弦AB的长.【解答】解:直线为参数)化为普通方程为4x﹣3y=0,…圆C的极坐标方程ρ=2cosθ化为直角坐标方程为(x﹣1)2+y2=1,…则圆C的圆心到直线l的距离为,…所以.…[选修4-5:不等式选讲]24.若实数x,y,z满足x+2y+z=1,求x2+y2+z2的最小值.【考点】基本不等式.【分析】利用条件x+2y+z=1,构造柯西不等式(x+y+z)2≤(x2+y2+z2)(12+22+12)进行解题即可.【解答】解:由柯西不等式,得(x+2y+z)2≤(12+22+12)•(x2+y2+z2),即,…又因为x+2y+z=1,所以,当且仅当,即时取等号.综上,.…[必做题](第25、26题,每小题0分,计20分.请把答案写在答题纸的指定区域内)25.某年级星期一至星期五每天下午排3节课,每天下午随机选择1节作为综合实践课(上午不排该课程),张老师与王老师分别任教甲、乙两个班的综合实践课程.(1)求这两个班“在星期一不同时上综合实践课”的概率;(2)设这两个班“在一周中同时上综合实践课的节数”为X,求X的概率分布表与数学期望E(X).【考点】离散型随机变量的期望与方差.【分析】(1)利用对立事件的概率关系求解;(2)两个班“在一星期的任一天同时上综合实践课”的概率为,一周中5天是5次独立重复试验,服从二项分布.【解答】解:(1)这两个班“在星期一不同时上综合实践课”的概率为.…(2)由题意得,.…所以X的概率分布表为:X012345P…所以,X的数学期望为.…26.设n∈N*,n≥3,k∈N*.(1)求值:k﹣1;①kC n k﹣nC n﹣1②k2C n k﹣n(n﹣1)C n﹣2k﹣2﹣nC n﹣1k﹣1(k≥2);(2)化简:12C n0+22C n1+32C n2+…+(k+1)2C n k+…+(n+1)2C n n.【考点】组合及组合数公式.【分析】(1)利用组合数的计算公式即可得出.(2)方法一:由(1)可知当k≥2时=.代入化简即可得出.方法二:当n≥3时,由二项式定理,有,两边同乘以x,得,两边对x求导,得,两边再同乘以x,得,两边再对x求导,得(1+x)n+n(1+x)n﹣1x+n(n﹣1)(1+x)n﹣2x2+2n(1+x)n ﹣1x=.令x=1,即可得出.【解答】解:(1)①=.…②==.…(2)方法一:由(1)可知当k≥2时=.故==(1+4n)+n(n﹣1)2n﹣2+3n(2n﹣1﹣1)+(2n﹣1﹣n)=2n﹣2(n2+5n+4).…方法二:当n≥3时,由二项式定理,有,两边同乘以x,得,两边对x求导,得,…两边再同乘以x,得,两边再对x求导,得(1+x)n+n(1+x)n﹣1x+n(n﹣1)(1+x)n﹣2x2+2n(1+x)n ﹣1x=.…令x=1,得2n+n2n﹣1+n(n﹣1)2n﹣2+2n2n﹣1=,即=2n﹣2(n2+5n+4).…xx2月1日24926 615E 慞# 35558 8AE6 諦36366 8E0E 踎26989 696D 業h40385 9DC1 鷁o39492 9A44 驄34218 85AA 薪32794 801A 耚31093 7975 祵。

2019届安徽省淮南市高三数学(文科)一模试题

2019届安徽省淮南市高三数学(文科)一模试题

2019届安徽省淮南市高三数学(文科)一模试题(考试时间:120分钟 满分:150分)注意事项:1.答题前,务必在答题卡规定的地方填写自己的姓名、准考证号和座位号后两位.2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上书写,要求字体工整、笔迹清晰,作图题可先用铅笔在答题卡规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚,必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在答试题卷、草稿纸上答题无效。

第Ⅰ卷(满分60分)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个符合题目要求的。

1.已知{|11}P x x =-<<,1{|2}2Q x x =-<<,则P Q =U ( ) A. (2,1)- B. 1(1,)2- C. 1(,1)2D. (2,1)-- 2. |12|i +=( ) A. 3 B.7 C. 5 D. 3 3. 函数2()()x x f x x e e -=-的大致图像为( )4.已知某三棱锥的三视图如右图所示,其侧视图为直角三角形,则该三棱锥外接球表面积为( )A. 5πB. 50πC. 25πD. 52π5.已知锐角ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,223cos cos 20A A +=,7a =,6c =,则b = A. 135 B. 115 C. 135或5 D. 5 6.在平行四边形ABCD 中,已知4AB =,3AD =,3CP PD =u u u r u u u r ,2AP BP =u u u r u u u r g ,则AB AD u u u r u u u r g 的值是( )A. 4B. 6C. 8D. 107.如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,它是由4个全等的直角三角形与中间的小正方形拼成的一个大正方形,现向大正方形内丢一粒黄豆,当每个直角三角形的两直角边之比都是2:3时,则该黄豆落入小正方形内的概率为( ) A. 23 B. 13 C. 213 D. 1138.某圆锥的侧面展开图是面积为3π,圆心角为23π的扇形,则该圆锥的母线与底面所成的角的余弦值为( ) A. 12 B. 13 C. 14 D. 159.已知奇函数()f x 满足()(4)f x f x =+,当(0,1)x ∈时,()4x f x =,则4(log 184)f =( ) A. 3223- B. 3223C. 34D. 38- 10.已知点P 是双曲线22221(0,0)x y a b a b-=>>右支上一点,1F 、2F 分别是双曲线的左、右焦点,I 为12PF F ∆的内心,若121213IPF IPF IF F S S S ∆∆∆=+成立,则双曲线的离心率为( ) A. 1 B. 2 C. 3 D. 4 11.如图是函数sin()(0,0)2y x πωϕωϕ=+><<在区间5,66ππ⎡⎤-⎢⎥⎣⎦上的图像, 将该图像向右平移||(0)m m <个单位后,所得图像关于直线4x π=对称,则m 的 最大值为( ) A. 12π- B. 6π- C. 4π- D. 3π- 12.在平面直角坐标系中,设点(,)p x y ,定义[]||||OP x y =+,其中O 为坐标原点,对于下列结论:(1)符合[]2OP =的点p 的轨迹围成的图形面积为8;(2)设点p 3220x y +-=上任意一点,则[]min 1OP =;(3)设点p 是直线:1()y kx k R =+∈上任意一点,则使得“[]OP 最小的点P 有无数个”的必要条件是1k =;(4)设点p 是圆222x y +=上任意一点,则[]max 2OP =. 其中正确的结论序号为( )A.(1)(2)(3)B.(1)(3)(4)C. (2)(3)(4)D. (1)(2)(4)二、填空题:本题共4小题,每小题5分,共20分13.若直线0x my m -+=经过抛物线22(0)x py p =>的焦点,则p =___________. 14.若x ,y 满足约束条件20,20,20,x y y x y -+≥⎧⎪+≥⎨⎪++≥⎩则12z x y =+的最小值为__________. 15.已知数列{}n a ,若点()(),n n a n N *∈在经过点(4,8)的定直线l 上,则数列{}n a 的前7项和7S =_______.16.已知函数321()33f x x x x =+-,若关于x 的方程[]2()()150()f x tf x t R +-=∈有m 个不同的实数解,则m 的所有可能的值构成的集合为_______________.三.解答题:共70分。

2019年高考数学一模试卷(附答案)

2019年高考数学一模试卷(附答案)

的渐近线的
距离为 3 c ,则双曲线的渐近线方程为() 2
A. y 3x
B. y 2x
C. y x
12.在如图的平面图形中,已知
D. y 2x
OM 1,ON 2, MON 120 , BM 2MA,CN 2NA, 则 BC·OM 的值为
A. 15
C. 6 二、填空题
B. 9
D.0
D. b a c
3.如果 ,那么下列不等式成立的是( )
4
2
A. sin cos tan
B. tan sin cos
C. cos sin tan
D. cos tan sin
4.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.
甲:我的成绩比乙高.
乙:丙的成绩比我和甲的都高.
2019 年高考数学一模试卷(附答案)
一、选择题
1.若 tan 3 ,则 cos2 2sin 2 (

4
A. 64
B. 48
C.1
25
25
2.设 a sin 5 , b cos 2 , c tan 2 ,则( )
7
7
7
A. a b c
B. a c b
C. b c a
D. 16 25
【方法点拨】三角函数求值:①“给角求值”将非特殊角向特殊角转化,通过相消或相约消
去非特殊角,进而求出三角函数值;②“给值求值”关键是目标明确,建立已知和所求之间
分成 9 组,制成了如图所示的频率分布直方图. (1)求直方图的 的值; (2)设该市有 30 万居民,估计全市居民中月均用水量不低于 3 吨的人数,说明理由; (3)估计居民月用水量的中位数.
23.如图,已知四棱锥 P ABCD 的底面为等腰梯形, AB//CD , AC BD ,垂足为 H , PH 是四棱锥的高.

2019年安徽省淮南市高考数学一模试卷和答案(理科)

2019年安徽省淮南市高考数学一模试卷和答案(理科)

2019年安徽省淮南市高考数学一模试卷(理科)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个符合题目要求的.1.(5分)已知P={x|﹣1<x<1},,则P∪Q=()A.B.(﹣2,1)C.D.(﹣2,﹣1)2.(5分)=()A.B.C.﹣i D.i3.(5分)函数f(x)=x2(e x﹣e﹣x)的大致图象为()A.B.C.D.4.(5分)的展开式中,x4的系数是()A.40B.60C.80D.1005.(5分)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cos2A+cos2A=0,a =7,c=6,则b=()A.10B.9C.8D.56.(5分)在平行四边形ABCD中,已知AB=4,AD=3,,,则的值是()A.4B.6C.8D.107.(5分)如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,则A、C区域涂色不相同的概率为()A.B.C.D.8.(5分)已知函数f(x)=xlnx,若直线l过点(0,﹣e),且与曲线y=f(x)相切,则直线l的斜率为()A.﹣2B.2C.﹣e D.e9.(5分)已知奇函数f(x)满足f(x)=f(x+4),当x∈(0,1)时,f(x)=4x,则f(log4184)=()A.﹣B.C.D.10.(5分)已知点P是双曲线右支上一点,F1、F2分别是双曲线的左、右焦点,I为△PF1F2的内心,若成立,则双曲线的渐近线方程为()A.B.8x±y=0C.D.3x±y=0 11.(5分)如图是函数在区间上的图象,将该图象向右平移|m|(m<0)个单位后,所得图象关于直线对称,则m 的最大值为()A.B.C.D.12.(5分)在平面直角坐标系中,设点p(x,y),定义[OP]=|x|+|y|,其中O为坐标原点,对于下列结论:(1)符合[OP]=2的点p的轨迹围成的图形面积为8;(2)设点p是直线:上任意一点,则[OP]min=1;(3)设点p是直线:y=kx+1(k∈R)上任意一点,则使得“[OP]最小的点有无数个”的必要条件是k=1;(4)设点p是椭圆上任意一点,则.其中正确的结论序号为()A.(1)(2)(3)B.(1)(3)(4)C.(2)(3)(4)D.(1)(2)(4)二、填空题:本题共4小题,每小题5分,共20分13.(5分)若直线x﹣my+m=0经过抛物线x2=2py(p>0)的焦点,则p=.14.(5分)若x,y满足约束条件则(x+4)2+(y+1)2的最小值为.15.(5分)已知等差数列{a n},若点在经过点(4,8)的定直线l上,则数列{a n}的前7项和S7=.16.(5分)已知函数,若关于x的方程有m 个不同的实数解,则m的所有可能的值构成的集合为.三.解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答,第22、23为选考题,考生根据要求作答.17.(12分)已知等差数列{a n}的前n项和为S n,且S3=9,a1,a3,a7成等比数列.(1)求数列{a n}的通项公式;(2)若a n≠a1(当n≥2时),数列{b n}满足,求数列{a n b n}的前n项和T n.18.(12分)2016年某市政府出台了“2020年创建全国文明城市(简称创文)”的具体规划,今日,作为“创文”项目之一的“市区公交站点的重新布局及建设”基本完成,市有关部门准备对项目进行调查,并根据调查结果决定是否验收,调查人员分别在市区的各公交站点随机抽取若干市民对该项目进行评分,并将结果绘制成如图所示的频率分布直方图,相关规则为:①调查对象为本市市民,被调查者各自独立评分;②采用百分制评分,[60,80)内认定为满意,80分及以上认定为非常满意;③市民对公交站点布局的满意率不低于60%即可进行验收;④用样本的频率代替概率.(1)求被调查者满意或非常满意该项目的频率;(2)若从该市的全体市民中随机抽取3人,试估计恰有2人非常满意该项目的概率;(3)已知在评分低于60分的被调查者中,老年人占,现从评分低于60分的被调查者中按年龄分层抽取9人以便了解不满意的原因,并从中选取2人担任群众督察员,记ξ为群众督查员中老年人的人数,求随机变量ξ的分布列及其数学期望Eξ.19.(12分)如图,在锐角△ABC中,D为边BC的中点,且,,O为△ABC外接圆的圆心,且.(1)求sin∠BAC的值;(2)求△ABC的面积.20.(12分)设椭圆的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且,过A,Q,F2三点的圆恰好与直线相切.(1)求椭圆C的方程;(2)过右焦点F2作斜率为k的直线l与椭圆C交于M,N两点,问在x轴上是否存在点P(m,0),使得以PM,PN为邻边的平行四边形是菱形?如果存在,求出m的取值范围;如果不存在,说明理由.21.(12分)已知函数f(x)=x2﹣ax+2lnx(其中a是实数).(1)求f(x)的单调区间;(2)若设2(e+)<a<,且f(x)有两个极值点x1,x2(x1<x2),求f(x1)﹣f(x2)取值范围.(其中e为自然对数的底数).[选做题]22.(10分)已知直线l过点P(1,0),且倾斜角为α,以坐标原点为极点,x轴的正半轴为极轴建立坐标系,圆C的极坐标方程为ρ=4cosθ.(1)求圆C的直角坐标系方程及直线l的参数方程;(2)若直线l与圆C交于A,B两点,求的最大值和最小值.[选做题]23.已知函数f(x)=|2x﹣1|+|x﹣2|.(1)求不等式f(x)≥3的解集;(2)若对任意x∈R恒成立,求m+n的最小值.2019年安徽省淮南市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个符合题目要求的.1.【解答】解:∵P={x|﹣1<x<1},,∴P∪Q={x|﹣2<x<1}=(﹣2,1).故选:B.2.【解答】解:=.故选:C.3.【解答】解:∵f(x)=x2(e x﹣e﹣x),∴f(﹣x)=(﹣x)2(e﹣x﹣e x)=﹣x2(e x﹣e﹣x)=﹣f(x),∴f(x)为奇函数,其图象关于原点对称,故排除B,D,∵y=x2,是增函数x∈(0,+∞),f(x)>0,y=e x﹣e﹣x是增函数x∈(0,+∞),y>0,f(x)=x2(e x﹣e﹣x)在(0,+∞)是增函数,排除C.(或者)当x→+∞时,f(x)→+∞,故排除C,故选:A.4.【解答】解:二项展开式的通项为=.令,得k=2.因此,二项展开式中x4的系数为.故选:C.5.【解答】解:∵23cos2A+cos2A=23cos2A+2cos2A﹣1=0,即cos2A=,A为锐角,∴cos A=,又a=7,c=6,根据余弦定理得:a2=b2+c2﹣2bc•cos A,即49=b2+36﹣b,解得:b=5或b=﹣(舍去),则b=5.6.【解答】解:平行四边形ABCD中,已知AB=4,AD=3,,又∵,∴•()=2,∴++=2,即9﹣+﹣1×3=2,∴=8.故选:C.7.【解答】解:提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,根据题意,如图,设5个区域依次为A、B、C、D、E,分4步进行分析:①,对于区域A,有5种颜色可选;②,对于区域B,与A区域相邻,有4种颜色可选;③,对于区域E,与A、B区域相邻,有3种颜色可选;④,对于区域D、C,若D与B颜色相同,C区域有3种颜色可选,若D与B颜色不相同,D区域有2种颜色可选,C区域有2种颜色可选,则区域D、C有3+2×2=7种选择,则不同的涂色方案有5×4×3×7=420种,其中,A、C区域涂色不相同的情况有:①,对于区域A,有5种颜色可选;②,对于区域B,与A区域相邻,有4种颜色可选;③,对于区域E,与A、B、C区域相邻,有2种颜色可选;④,对于区域D、C,若D与B颜色相同,C区域有2种颜色可选,若D与B颜色不相同,D区域有1种颜色可选,C区域有1种颜色可选,则区域D、C有2+1×1=3种选择,不同的涂色方案有5×4×2×3=120种,∴A、C区域涂色不相同的概率为p==.8.【解答】解:函数f(x)=xlnx的导数为f′(x)=lnx+1,设切点为(m,n),可得切线的斜率为k=1+lnm,则1+lnm==,解得m=e,k=1+lne=2,故选:B.9.【解答】解:∵奇函数f(x)满足f(x)=f(x+4),当x∈(0,1)时,f(x)=4x,∴f(log4184)=﹣f(log4184﹣4)=﹣()=﹣=﹣.故选:A.10.【解答】解:如图,设圆I与△PF1F2的三边F1F2、PF1、PF2分别相切于点E、F、G,连接IE、IF、IG,则IE⊥F1F2,IF⊥PF1,IG⊥PF2,它们分别是:△IF1F2,△IPF1,△IPF2的高,∴S=|PF 1|•|IF|=|PF1|,S=|PF 2|•|IG|=|PF2|,S=|F 1F2|•|IE|=|F1F2|,其中r是△PF1F2的内切圆的半径.∵,∴|PF1|=|PF2|+|F1F2|,两边约去得:|PF1|=|PF2|+|F1F2|,∴|PF1|﹣|PF2|=|F1F2|,根据双曲线定义,得|PF1|﹣|PF2|=2a,|F1F2|=2c,∴3a=c,b==2a,可得双曲线的渐近线方程为y=±2x.故选:A.11.【解答】解:由函数y=sin(ωx+φ),(ω>0,|φ|<)的图象可得T==﹣(﹣)=π,可得:ω=2.再由五点法作图可得2×(﹣)+φ=0,可得:φ=.故函数的f(x)的解析式为f(x)=sin(2x+)=sin2(x+).故把f(x)=sin2(x+)的图象向右平移|m|(m<0)个单位长度,可得g(x)=sin2(x﹣|m|+)的图象,由于:所得图象关于直线x=对称,可得:sin2(﹣|m|+)=±1,可得:2(﹣|m|+)=+kπ,解得:|m|=﹣kπ,k∈Z,由于:m<0,可得:m=kπ﹣,k∈Z,可得:当k=0时,m的最大值为:﹣.故选:B.12.【解答】解:(1)由[OP]=2,根据新定义得:|x|+|y|=2,由方程表示的图形关于x,y轴对称和原点对称,且x+y=2(0≤x≤2,0≤y≤2),画出图象如图所示:根据图形得到:四边形ABCD为边长是2的正方形,面积等于8,故(1)正确;(2)P(x,y)为直线:上任一点,可得y=1﹣x,可得|x|+|y|=|x|+|1﹣x|,当x≤0时,[OP]=1﹣(1+)x≥1;当0<x<时,[OP]=1+(1﹣)x∈(1,);当x≥时,可得[OP]=﹣1+(1+)x≥,综上可得[OP]的最小值为1,故(2)正确;(3)∵|x|+|y|≥|x+y|=|(k+1)x+1|,当k=﹣1时,|x|+|y|≥|1|=1,满足题意;而|x|+|y|≥|x﹣y|=|(k﹣1)x﹣1|,当k=1时,|x|+|y|≥|﹣1|=1,满足题意.∴“使[OP]最小的点P有无数个”的充要条件是“k=±1”,(3)不正确;(4)∵点P是椭圆上任意一点,则可设x=3cosθ,y=sinθ,θ∈[0,2π),[OP]=|x|+|y|=3cosθ+sinθ=sin(θ+φ),θ∈[0,],∴[OP]max=,(4)正确.则正确的结论有:(1)、(2)、(4).故选:D.二、填空题:本题共4小题,每小题5分,共20分13.【解答】解:∵直线x﹣my+m=0过点(0,1),即抛物线x2=2py(p>0)的焦点F为(0,1),∴,则p=2;故答案为:2.14.【解答】解:作出不等式组对应的平面区域,z的几何意义为区域内的点到定点D(﹣4,﹣1)的距离的平方,则由图象可知,DA距离最小,此时(x+4)2+(y+1)2的最小值为5,故答案为:5.15.【解答】解:等差数列{a n}中,点在经过点(4,8)的定直线l上,∴a4=8,∴数列{a n}的前7项和S7==56.故答案为:56.16.【解答】解:函数f(x)的导数为f′(x)====,由f′(x)>0,得﹣1<x<3,f(x)递增;由f′(x)<0,得x>3或x<﹣1,f(x)递减.即有f(x)在x=﹣1处取得极小值f(﹣1)=﹣2e;在x=3处取得极大值f(3)=,作出f(x)的图象,如图所示;关于x的方程,令n=f(x),则n2﹣nt﹣=0,由判别式△=t2+>0,方程有两个不等实根,n1n2=﹣<0,则原方程有一正一负实根.而﹣2e×═﹣,即当n1=,则n2=﹣2e,此时y=n1,和f(x)有两个交点,y=n2与f(x)有1个交点,此时共有3个交点,当n1>,则﹣2e<n2<0,此时y=n1,和f(x)有1个交点,y=n2与f(x)有2个交点,此时共有3个交点,当0<n1<则n2<﹣2e,此时y=n1和f(x)有3个交点,y=n2与f(x)有0交点,此时共有3个交点,当﹣2e<n1<0,则或n2>,此时y=n1和f(x)有2个交点,y=n2与f(x)有1个交点,此时共有3个交点,当n1=﹣2e,则n2=,此时y=n1和f(x)有1个交点,y=n2与f(x)有2个交点,此时共有3个交点,当n1<﹣2e,则0<n2<,此时y=n1和f(x)有0个交点,y=n2与f(x)有3个交点,此时共有3个交点,综上方程[f(x)]2+tf(x)﹣=0(t∈R)恒有3个不同的实数解,即m=3,即m的所有可能的值构成的集合为{3},故答案为:{3}.三.解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答,第22、23为选考题,考生根据要求作答.17.【解答】解:(1)∵S3=9,∴a2=3,∴a1+d=3①∵a1,a3,a7成等比数列,∴a32=a1a7,∴(a1+2d)2=a1(a1+6d)②由①②得:或,当时,a n=3当时,a n=n+1;(2)∵a n≠a1(当n≥2时),∴d≠0,∴a n=n+1,∴b n=2n+1,∴a n b n=(n+1)2n+1,∴T n=2•22+3•23+4•24+…+(n+1)2n+1①2T n=2•23+3•24+4•25+…+(n+1)2n+2②①﹣②得﹣T n=4+22+23+24+…+2n+1﹣(n+1)2n+2=4+﹣(n+1)2n+2=﹣n•2n+2∴T n=n•2n+218.【解答】(本小题满分12分)解:(1)根据题意:6(0分)或以上被认定为满意或非常满意,在频率分布直方图中,评分在[60,100]的频率为:(0.028+0.03+0.016+0.004)×10=0.78;(2)根据频率分布直方图,被调查者非常满意的频率是,用样本的频率代替概率,从该市的全体市民中随机抽取1人,该人非常满意该项目的概率为,现从中抽取3人恰有2人非常满意该项目的概率为:;(3)∵评分低于6(0分)的被调查者中,老年人占,又从被调查者中按年龄分层抽取9人,∴这9人中,老年人有3人,非老年人6人,随机变量ξ的所有可能取值为0,1,2,,,.ξ的分布列为:ξ的数学期望Eξ=.19.【解答】解:(1)如图所示,∠BOC=2∠BAC,∴cos∠BOC=cos2∠BAC=1﹣2sin2∠BAC=﹣,∴sin2∠BAC=,sin∠BAC=;(2)延长AD至E,使AE=2AD,连接BE,CE,则四边形ABEC为平行四边形,∴CE =AB;在△ACE中,AE=2AD=3,AC=,∠ACE=π﹣∠BAC,cos∠ACE=﹣cos∠BAC=﹣=﹣;由余弦定理得,AE2=AC2+CE2﹣2AC•CE•cos∠ACE,即(3)2=()2+CE2﹣2וCE×(﹣),解得CE=3,∴AB=CE=3,∴S△ABC=AB•AC•sin∠BAC=×3××=.20.【解答】解:(1)设椭圆C的焦距为2c(c>0),则点F1的坐标为(﹣c,0),点F2的坐标为(c,0),设点Q的坐标为(x0,0),且x0<0,如下图所示,,,∵,则x0+c+2c=0,所以,x0=﹣3c,则点Q的坐标为(﹣3c,0),∵直线AF2与直线AQ垂直,且点A(b,0),所以,,,由,得b2=3c2,则,.△AQF2为直角三角形,且F2Q为斜边,线段F2Q的中点为F1(﹣c,0),△AQF2的外接圆半径为2c.由题意可知,点F1到直线的距离为,所以,c=1,a=2c =2,,因此,椭圆C的方程为;(2)由题意知,直线l的斜率k≠0,并设,则直线l的方程为x=ty+1,设点M(x1,y1)、N(x2,y2).将直线l的方程与椭圆C的方程联立,消去x得(3t2+4)y2+6ty﹣9=0,由韦达定理得,.∴,.所以,线段MN的中点为点.由于以PM,PN为邻边的平行四边形是菱形,则PE⊥MN,则k PE•k MN=﹣1,所以,k PE =﹣t.由两点连线的斜率公式可得,得.由于k≠0,则,所以,t2>0,所以,.因此,在x轴上存在点P(m,0),使得以PM,PN为邻边的平行四边形是菱形,且实数m的取值范围是.21.【解答】解:(1)∵f(x)=x2﹣ax+2lnx(其中a是实数),∴f(x)的定义域为(0,+∞),=,….(1分)令g(x)=2x2﹣ax+2,△=a2﹣16,对称轴x=,g(0)=2,当△=a2﹣16≤0,即﹣4≤a≤4时,f′(x)≥0,∴函数f(x)的单调递增区间为(0,+∞),无单调递减区间.…(2分)当△=a2﹣16>0,即a<﹣4或a>4时,①若a<﹣4,则f′(x)>0恒成立,∴f(x)的单调递增区间为(0,+∞),无减区间.…(3分)②若a>4,令f′(x)=0,得,,当x∈(0,x1)∪(x2,+∞)时,f′(x)>0,当x∈(x1,x2)时,f′(x)<0.∴f(x)的单调递增区间为(0,x1),(x2,+∞),单调递减区间为(x1,x2).…(4分)综上所述:当a≤4时,f(x)的单调递增区间为(0,+∞),无单调递减区间.当a>4时,f(x)的单调递增区间为(0,x1)和(x2,+∞),单调递减区间为(x1,x2).…(5分)(2)由(1)知,若f(x)有两个极值点,则a>4,且x1+x2=>0,x1x2=1,∴0<x1<1<x2,又∵,a=2(),,e+<<3+,又0<x1<1,解得.…(7分)∴f(x1)﹣f(x2)=()﹣()=()﹣a(x1﹣x2)+2(lnx1﹣lnx2)=(x1﹣x2)﹣a(x1﹣x2)+2ln=﹣()•(x1+)+4lnx1=,…(9分)令h(x)=,(),则<0恒成立,∴h(x)在()单调递减,∴h()<h(x)<h(),即﹣4<f(x1)﹣f(x2)<﹣4ln3,故f(x1)﹣f(x2)的取值范围为(,).…(12分)[选做题]22.【解答】解:(1)由ρ=4cosθ,得ρ2=4ρcosθ,即x2+y2=4x,所以圆C的直角坐标方程为(x﹣2)2+y2=4,直线l过点P(1,0),且倾斜角为α,所以直线l的参数方程为(t为参数).(2)将代入(x﹣2)2+y2=4,得t2﹣2t cosα﹣3=0,△=(2cosα)2+12>0,设A,B两点对应的参数分别为t1,t2,则,因为cosα∈[﹣1,1],所以的最大值为,最小值为.[选做题]23.【解答】解:(1),∵f(x)≥3,∴或或解得{x|x≤0或x≥2},故f(x)≥3的解集为{x|x≤0或x≥2}.(2)由函数的解析式得:,∴,∴,即,当且仅当m=n时等号成立,∵m,n>0,解得,当且仅当m=n时等号成立,故m+n的最小值为.。

2019年安徽省淮南市高考数学一模试卷(文科)(解析版)

2019年安徽省淮南市高考数学一模试卷(文科)(解析版)

2019年安徽省淮南市高考数学一模试卷(文科)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个符合题目要求的.1.(5分)已知P={x|﹣1<x<1},,则P∪Q=()A.B.(﹣2,1)C.D.(﹣2,﹣1)2.(5分)|1+2i|=()A.B.C.D.33.(5分)函数f(x)=x2(e x﹣e﹣x)的大致图象为()A.B.C.D.4.(5分)某三棱锥的三视图如图所示,其侧(左)视图为直角三角形,则该三棱锥外接球的表面积为()A.50πB.50πC.40πD.40π5.(5分)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cos2A+cos2A=0,a =7,c=6,则b=()A.10B.9C.8D.56.(5分)在平行四边形ABCD中,已知AB=4,AD=3,,,则的值是()A.4B.6C.8D.107.(5分)如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,它是由4个全等的直角三角形与中间的小正方形拼成的一个大正方形,现向大正方形内丢一粒黄豆,当每个直角三角形的两直角边之比都是2:3时,则该黄豆落入小正方形内的概率为()A.B.C.D.8.(5分)某圆锥的侧面展开图是面积为3π,圆心角为的扇形,则该圆锥的母线与底面所成的角的余弦值为()A.B.C.D.9.(5分)已知奇函数f(x)满足f(x)=f(x+4),当x∈(0,1)时,f(x)=4x,则f(log4184)=()A.﹣B.C.D.10.(5分)已知点P是双曲线﹣=1(a>0,b>0)右支上一点,F1、F2分别是双曲线的左、右焦点,M为△PF1F2的内心,若=+成立,则双曲线的离心率为()A.4B.C.2D.11.(5分)如图是函数在区间上的图象,将该图象向右平移|m|(m<0)个单位后,所得图象关于直线对称,则m 的最大值为()A.B.C.D.12.(5分)在平面直角坐标系中,设点p(x,y),定义[OP]=|x|+|y|,其中O为坐标原点,对于下列结论:(1)符合[OP]=2的点p的轨迹围成的图形面积为8;(2)设点p是直线:上任意一点,则[OP]min=1;(3)设点p是直线:y=kx+1(k∈R)上任意一点,则使得“[OP]最小的点P有无数个”的必要条件是k=1;(4)设点p是圆x2+y2=2上任意一点,则[OP]max=2.其中正确的结论序号为()A.(1)(2)(3)B.(1)(3)(4)C.(2)(3)(4)D.(1)(2)(4)二、填空题:本题共4小题,每小题5分,共20分13.(5分)若直线x﹣my+m=0经过抛物线x2=2py(p>0)的焦点,则p=.14.(5分)若x,y满足约束条件,则的最小值为.15.(5分)已知等差数列{a n},若点在经过点(4,8)的定直线l上,则数列{a n}的前7项和S7=.16.(5分)已知函数,若关于x的方程[f(x)]2+tf(x)﹣15=0(t∈R)有m个不同的实数解,则m的所有可能的值构成的集合为.三.解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答,第22、23为选考题,考生根据要求作答.17.(12分)已知等差数列{a n}的前n项和为S n,且S3=9,a1,a3,a7成等比数列.(1)求数列{a n}的通项公式;(2)若a n≠a1(当n≥2时),数列{b n}满足,求数列{a n b n}的前n项和T n.18.(12分)某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示.(Ⅰ)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?(Ⅱ)在(1)的条件下,该市决定在第3,4组的志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.19.(12分)如图,在四棱锥中O﹣ABCD中,底面ABCD是边长为4的正方形,侧棱OB ⊥底面ABCD,且侧棱OB的长是4,点E,F,G分别是AB,OD,BC的中点.(1)证明:OD⊥平面EFG;(2)求三棱锥O﹣EFG的体积.20.(12分)设椭圆的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且.(1)求椭圆C的方程;(2)过椭圆C的右焦点F2作斜率为1的直线l与椭圆C交于M,N两点,试在x轴上求一点P,使得以PM,PN为邻边的平行四边形是菱形.21.(12分)已知函数f(x)=2lnx+x2﹣mx(m∈R).(1)若f(x)在其定义域内单调递增,求实数m的取值范围;(2)若有两个极值点x1,x2(x1<x2),求f(x1)﹣f(x2)的取值范围.[选做题]22.(10分)已知直线l过点P(1,0),且倾斜角为α,以坐标原点为极点,x轴的正半轴为极轴建立坐标系,圆C的极坐标方程为ρ=4cosθ.(1)求圆C的直角坐标系方程及直线l的参数方程;(2)若直线l与圆C交于A,B两点,求的最大值和最小值.23.已知函数f(x)=|2x﹣1|+|x﹣2|.(1)求不等式f(x)≥3的解集;(2)若对任意x∈R恒成立,求m+n的最小值.2019年安徽省淮南市高考数学一模试卷(文科)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个符合题目要求的.1.【解答】解:∵P={x|﹣1<x<1},,∴P∪Q={x|﹣2<x<1}=(﹣2,1).故选:B.2.【解答】解:|1+2i|==,故选:C.3.【解答】解:∵f(x)=x2(e x﹣e﹣x),∴f(﹣x)=(﹣x)2(e﹣x﹣e x)=﹣x2(e x﹣e﹣x)=﹣f(x),∴f(x)为奇函数,其图象关于原点对称,故排除B,D,∵y=x2,是增函数x∈(0,+∞),f(x)>0,y=e x﹣e﹣x是增函数x∈(0,+∞),y>0,f(x)=x2(e x﹣e﹣x)在(0,+∞)是增函数,排除C.(或者)当x→+∞时,f(x)→+∞,故排除C,故选:A.4.【解答】解:由已知中的三视图可得:该几何体是一个以俯视图为底面的三棱锥,其外接球相当于以以俯视图为底面的三棱柱的外接球,由底面三边长为3,4,5,故底面外接圆半径r=,球心到底面的距离d=,故球半径R=,故外接球的表面积S=4πR2=50π,故选:A.5.【解答】解:∵23cos2A+cos2A=23cos2A+2cos2A﹣1=0,即cos2A=,A为锐角,∴cos A=,又a=7,c=6,根据余弦定理得:a2=b2+c2﹣2bc•cos A,即49=b2+36﹣b,解得:b=5或b=﹣(舍去),则b=5.故选:D.6.【解答】解:平行四边形ABCD中,已知AB=4,AD=3,,又∵,∴•()=2,∴++=2,即9﹣+﹣1×3=2,∴=8.故选:C.7.【解答】解:设小正方形的边长为a,由每个直角三角形的两直角边之比都是2:3,则直角三角形的两边长分别为:2a,3a,则大正方形的边长为:=a,设事件A为“向大正方形内丢一粒黄豆,黄豆落入小正方形内”,则P(A)===,故选:D.8.【解答】解:∵圆锥的侧面展开图是面积为3π,圆心角为的扇形,则圆锥的母线l满足:故圆锥的母线长为3,又由可得圆锥的底面半径为1,故该圆锥的母线与底面所成的角的余弦值为.故选:B.9.【解答】解:∵奇函数f(x)满足f(x)=f(x+4),当x∈(0,1)时,f(x)=4x,∴f(log4184)=﹣f(log4184﹣4)=﹣()=﹣=﹣.故选:A.10.【解答】解:如图,设圆M与△PF1F2的三边F1F2、PF1、PF2分别相切于点E、F、G,连接ME、MF、MG,则ME⊥F1F2,MF⊥PF1,MG⊥PF2,它们分别是△MF1F2,△MPF1,△MPF2的高,∴=|PF 1|×|MF|=|PF1|,=|PF2|×|MG|=|PF2|=×|F1F2|×|ME|=|F1F2|,其中r是△PF1F2的内切圆的半径.∵=+∴|PF1|=|PF2|+|F1F2|两边约去得:|PF1|=|PF2|+|F1F2|∴|PF1|﹣|PF2|=|F1F2|根据双曲线定义,得|PF1|﹣|PF2|=2a,|F1F2|=2c∴2a=c⇒离心率为e==2故选:C.11.【解答】解:由函数y=sin(ωx+φ),(ω>0,|φ|<)的图象可得T==﹣(﹣)=π,可得:ω=2.再由五点法作图可得2×(﹣)+φ=0,可得:φ=.故函数的f(x)的解析式为f(x)=sin(2x+)=sin2(x+).故把f(x)=sin2(x+)的图象向右平移|m|(m<0)个单位长度,可得g(x)=sin2(x﹣|m|+)的图象,由于:所得图象关于直线x=对称,可得:sin2(﹣|m|+)=±1,可得:2(﹣|m|+)=+kπ,解得:|m|=﹣kπ,k∈Z,由于:m<0,可得:m=kπ﹣,k∈Z,可得:当k=0时,m的最大值为:﹣.故选:B.12.【解答】解:(1)由[OP]=2,根据新定义得:|x|+|y|=2,由方程表示的图形关于x,y轴对称和原点对称,且x+y=2(0≤x≤2,0≤y≤2),画出图象如图所示:根据图形得到:四边形ABCD为边长是2的正方形,面积等于8,故(1)正确;(2)P(x,y)为直线:上任一点,可得y=1﹣x,可得|x|+|y|=|x|+|1﹣x|,当x≤0时,[OP]=1﹣(1+)x≥1;当0<x<时,[OP]=1+(1﹣)x∈(1,);当x≥时,可得[OP]=﹣1+(1+)x≥,综上可得[OP]的最小值为1,故(2)正确;(3)∵|x|+|y|≥|x+y|=|(k+1)x+1|,当k=﹣1时,|x|+|y|≥|1|=1,满足题意;而|x|+|y|≥|x﹣y|=|(k﹣1)x﹣1|,当k=1时,|x|+|y|≥|﹣1|=1,满足题意.∴“使[OP]最小的点P有无数个”的充要条件是“k=±1”,(3)不正确;(4)∵点P是圆x2+y2=2上任意一点,则可设x=cosθ,y=sinθ,θ∈[0,2π),[OP]=|x|+|y|=(cosθ+sinθ)=2sin(θ+),θ∈[0,],∴[OP]max=2,(4)正确.则正确的结论有:(1)、(2)、(4).故选:D.二、填空题:本题共4小题,每小题5分,共20分13.【解答】解:∵直线x﹣my+m=0过点(0,1),即抛物线x2=2py(p>0)的焦点F为(0,1),∴,则p=2;故答案为:2.14.【解答】解:先根据x,y满足约束条件画出可行域:当直线z=x+y过点B(0,﹣2)时,z最小是﹣2,故答案为:﹣2.15.【解答】解:等差数列{a n}中,点在经过点(4,8)的定直线l上,∴a4=8,∴数列{a n}的前7项和S7==56.故答案为:56.16.【解答】解:函数f(x)的导数为f′(x)=x2+2x﹣3,由f′(x)>0,得x>1或x<﹣3时,f(x)递增;由f′(x)<0,得﹣3<x<1时,f(x)递减.即有f(x)在x=1处取得极小值f(1)==﹣;在x=﹣3处取得极大值f(﹣3)=+(﹣3)2﹣3×(﹣3)=9,作出f(x)的图象,如图所示;关于x的方程f2(x)﹣tf(x)﹣15=0,由判别式△=t2+60>0,方程有两个不等实根,令n=f(x),则n2﹣nt﹣15=0,n1n2=﹣15<0,则原方程有一正一负实根.而﹣×9=﹣15,即当n1=9,则n2=﹣,此时y=n1,和f(x)有两个交点,y=n2与f(x)有两个交点,此时共有4个交点,当n1>9,则﹣<n2<0,此时y=n1,和f(x)有1个交点,y=n2与f(x)有3个交点,此时共有4个交点,当﹣<n1<9,则n2<﹣或n2>9,此时y=n1和f(x)有3个交点,y=n2与f(x)有1个交点,此时共有4个交点,当n1=﹣,则n2=9,此时y=n1和f(x)有2个交点,y=n2与f(x)有2个交点,此时共有4个交点,当n1<﹣,则0<n2<9,此时y=n1和f(x)有1个交点,y=n2与f(x)有3个交点,此时共有4个交点,综上方程[f(x)]2+tf(x)﹣15=0(t∈R)恒有4个不同的实数解,即m=4,即m的所有可能的值构成的集合为{4},故答案为:{4}.三.解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答,第22、23为选考题,考生根据要求作答.17.【解答】解:(1)∵S3=9,∴a2=3,∴a1+d=3①∵a1,a3,a7成等比数列,∴a32=a1a7,∴(a1+2d)2=a1(a1+6d)②由①②得:或,当时,a n=3当时,a n=n+1;(2)∵a n≠a1(当n≥2时),∴d≠0,∴a n=n+1,∴b n=2n+1,∴a n b n=(n+1)2n+1,∴T n=2•22+3•23+4•24+…+(n+1)2n+1①2T n=2•23+3•24+4•25+…+(n+1)2n+2②①﹣②得﹣T n=4+22+23+24+…+2n+1﹣(n+1)2n+2=4+﹣(n+1)2n+2=﹣n•2n+2∴T n=n•2n+218.【解答】解:(Ⅰ)第3组的人数为0.3×100=30,第4组的人数为0.2×100=20,第5组的人数为0.1×100=10.因为第3,4,5组共有60名志愿者,所以利用分层抽样的方法在60名志愿者中抽取6名志愿者,每组抽取的人数分别为:第3组:×6=3;第4组:×6=2;第5组:×6=1.所以应从第3,4,5组中分别抽取3人,2人,1人;(Ⅱ)记第3组的3名志愿者为A1,A2,A3,第4组的2名志愿者为B1,B2,.则从5名志愿者中抽取2名志愿者有:(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A2,A3),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2)共有10种.其中第4组的2名志愿者B1,B2至少有一名志愿者被抽中的有:(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2),共有7种所以第4组至少有一名志愿者被抽中的概率为.19.【解答】(1)证明:∵四边形ABCD是边长为4的正方形,E是AB的中点,∴DE=,又侧棱OB⊥底面ABCD,AB⊂面ABCD,OB⊥AB,又OB=4,EB=2,OE=,DE=OE=,∴△ODE是等腰三角形,∵F是OD的中点,∴EF⊥OD.同理DG=DO=,△ODG是等腰三角形,∵F是OD的中点,∴FG⊥OD,∵EF∩FG=F,EF,FG⊂面EFG,∴OD⊥平面EFG;(2)解:∵侧棱OB⊥底面ABCD,BD⊂面ABCD,∴OB⊥BD,OB=4,BD=4,OD=4,由(1)知:OD⊥平面EFG,OF是三棱锥中,O到平面EFG的距离,∵F是OD的中点,OF=,DE=OE=,EF⊥OD,EF=,DG=DO=,FH⊥OD,FG=,四边形ABCD是边长为4的正方形,E、G分别是AB、BC的中点,EG=,△EFG是等边三角形,S△EFG=,∴三棱锥O﹣EFG的体积V O﹣EFG=×S△EFG×OF=××=4.20.【解答】解:(1)设椭圆C的焦距为2c(c>0),则点F1的坐标为(﹣c,0),点F2的坐标为(c,0),设点Q的坐标为(x0,0),且x0<0,,,∵,则x0+c+2c=0,所以,x0=﹣3c,则点Q的坐标为(﹣3c,0),∵直线AF2与直线AQ垂直,且点A(b,0),所以,,,由,得b2=3c2,∵4=b2+c2=4c2,所以,,c=1.因此,椭圆C的方程为;(2)设点M(x1,y1)、N(x2,y2),直线l的方程为y=x﹣1,将直线l的方程与椭圆C的方程联立,消去y并整理得7x2﹣8x﹣8=0,由韦达定理得,,所以,.因此,线段MN的中点为.设点P的坐标为(t,0),由于PM,PN为邻边的平行四边形是菱形,则PE⊥MN.直线PE的斜率为,解得t=,因此,当点P的坐标为(,0)时,以PM,PN为邻边的平行四边形是菱形.21.【解答】解:(1)∵f(x)=2lnx+x2﹣mx的定义域为(0,+∞),且f(x)在其定义域内单调递增,∴f′(x)=+2x﹣m≥0,即m≤2(+x)在区间(0,+∞)恒成立,∵2(+x)≥4=4,当且仅当x=1时取等号,∴m≤4,即实数m的范围(﹣∞,4];(2)由(1)知f′(x)=+2x﹣m=,令2x2﹣mx+2=0,∵5<m<时,f(x)有两个极值点,此时x1+x2=>0,x1x2=1,∴0<x1<1<x2,∵m=2(+x1)∈(5,),解得<x1<,由于x2=,于是f(x1)﹣f(x2)=(x12﹣mx1+2lnx1)﹣(x22﹣mx2+2lnx2)=(x12﹣x22)﹣m(x1﹣x2)+2(lnx1﹣lnx2)=﹣x12+4lnx1,令h(x)=﹣x2+4lnx,则h′(x)=<0,∴h(x)在区间(,)内单调递减,∵h()=16﹣﹣8ln2=﹣8ln2,h()=4﹣﹣4ln2=﹣4ln2,即﹣4ln2<f(x1)﹣f(x2)<﹣8ln2,故f(x1)﹣f(x2)的取值范围为(﹣4ln2,﹣8ln2).[选做题]22.【解答】解:(1)由ρ=4cosθ,得ρ2=4ρcosθ,即x2+y2=4x,所以圆C的直角坐标方程为(x﹣2)2+y2=4,直线l过点P(1,0),且倾斜角为α,所以直线l的参数方程为(t为参数).(2)将代入(x﹣2)2+y2=4,得t2﹣2t cosα﹣3=0,△=(2cosα)2+12>0,设A,B两点对应的参数分别为t1,t2,则,因为cosα∈[﹣1,1],所以的最大值为,最小值为.23.【解答】解:(1),∵f(x)≥3,∴或或解得{x|x≤0或x≥2},故f(x)≥3的解集为{x|x≤0或x≥2}.(2)由函数的解析式得:,∴,∴,即,当且仅当m=n时等号成立,∵m,n>0,解得,当且仅当m=n时等号成立,故m+n的最小值为.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年安徽省淮南市高考数学一模试卷(理科)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个符合题目要求的.1.(5分)已知P={x|﹣1<x<1},,则P∪Q=()A.B.(﹣2,1)C.D.(﹣2,﹣1)2.(5分)=()A.B.C.﹣i D.i3.(5分)函数f(x)=x2(e x﹣e﹣x)的大致图象为()A.B.C.D.4.(5分)的展开式中,x4的系数是()A.40 B.60 C.80 D.1005.(5分)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cos2A+cos2A=0,a=7,c=6,则b=()A.10 B.9 C.8 D.56.(5分)在平行四边形ABCD中,已知AB=4,AD=3,,,则的值是()A.4 B.6 C.8 D.107.(5分)如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,则A、C区域涂色不相同的概率为()A.B.C.D.8.(5分)已知函数f(x)=xlnx,若直线l过点(0,﹣e),且与曲线y=f(x)相切,则直线l的斜率为()A.﹣2 B.2 C.﹣e D.e9.(5分)已知奇函数f(x)满足f(x)=f(x+4),当x∈(0,1)时,f(x)=4x,则f (log4184)=()A.﹣B.C.D.10.(5分)已知点P是双曲线右支上一点,F1、F2分别是双曲线的左、右焦点,I为△PF1F2的内心,若成立,则双曲线的渐近线方程为()A.B.8x±y=0 C.D.3x±y=011.(5分)如图是函数在区间上的图象,将该图象向右平移|m|(m<0)个单位后,所得图象关于直线对称,则m 的最大值为()A.B.C.D.12.(5分)在平面直角坐标系中,设点p(x,y),定义[OP]=|x|+|y|,其中O为坐标原点,对于下列结论:(1)符合[OP]=2的点p的轨迹围成的图形面积为8;(2)设点p是直线:上任意一点,则[OP]min=1;(3)设点p是直线:y=kx+1(k∈R)上任意一点,则使得“[OP]最小的点有无数个”的必要条件是k=1;(4)设点p是椭圆上任意一点,则.其中正确的结论序号为()A.(1)(2)(3)B.(1)(3)(4)C.(2)(3)(4)D.(1)(2)(4)二、填空题:本题共4小题,每小题5分,共20分13.(5分)若直线x﹣my+m=0经过抛物线x2=2py(p>0)的焦点,则p=.14.(5分)若x,y满足约束条件则(x+4)2+(y+1)2的最小值为.15.(5分)已知等差数列{a n},若点在经过点(4,8)的定直线l上,则数列{a n}的前7项和S7=.16.(5分)已知函数,若关于x的方程有m个不同的实数解,则m的所有可能的值构成的集合为.三.解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答,第22、23为选考题,考生根据要求作答.17.(12分)已知等差数列{a n}的前n项和为S n,且S3=9,a1,a3,a7成等比数列.(1)求数列{a n}的通项公式;(2)若a n≠a1(当n≥2时),数列{b n}满足,求数列{a n b n}的前n项和T n.18.(12分)2016年某市政府出台了“2020年创建全国文明城市(简称创文)”的具体规划,今日,作为“创文”项目之一的“市区公交站点的重新布局及建设”基本完成,市有关部门准备对项目进行调查,并根据调查结果决定是否验收,调查人员分别在市区的各公交站点随机抽取若干市民对该项目进行评分,并将结果绘制成如图所示的频率分布直方图,相关规则为:①调查对象为本市市民,被调查者各自独立评分;②采用百分制评分,[60,80)内认定为满意,80分及以上认定为非常满意;③市民对公交站点布局的满意率不低于60%即可进行验收;④用样本的频率代替概率.(1)求被调查者满意或非常满意该项目的频率;(2)若从该市的全体市民中随机抽取3人,试估计恰有2人非常满意该项目的概率;(3)已知在评分低于60分的被调查者中,老年人占,现从评分低于60分的被调查者中按年龄分层抽取9人以便了解不满意的原因,并从中选取2人担任群众督察员,记ξ为群众督查员中老年人的人数,求随机变量ξ的分布列及其数学期望Eξ.19.(12分)如图,在锐角△ABC中,D为边BC的中点,且,,O为△ABC 外接圆的圆心,且.(1)求sin∠BAC的值;(2)求△ABC的面积.20.(12分)设椭圆的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且,过A,Q,F2三点的圆恰好与直线相切.(1)求椭圆C的方程;(2)过右焦点F2作斜率为k的直线l与椭圆C交于M,N两点,问在x轴上是否存在点P(m,0),使得以PM,PN为邻边的平行四边形是菱形如果存在,求出m的取值范围;如果不存在,说明理由.21.(12分)已知函数f(x)=x2﹣ax+2lnx(其中a是实数).(1)求f(x)的单调区间;(2)若设2(e+)<a<,且f(x)有两个极值点x1,x2(x1<x2),求f(x1)﹣f(x2)取值范围.(其中e为自然对数的底数).[选做题]22.(10分)已知直线l过点P(1,0),且倾斜角为α,以坐标原点为极点,x轴的正半轴为极轴建立坐标系,圆C的极坐标方程为ρ=4cosθ.(1)求圆C的直角坐标系方程及直线l的参数方程;(2)若直线l与圆C交于A,B两点,求的最大值和最小值.[选做题]23.已知函数f(x)=|2x﹣1|+|x﹣2|.(1)求不等式f(x)≥3的解集;(2)若对任意x∈R恒成立,求m+n的最小值.2019年安徽省淮南市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个符合题目要求的.1.(5分)已知P={x|﹣1<x<1},,则P∪Q=()A.B.(﹣2,1)C.D.(﹣2,﹣1)【考点】1D:并集及其运算.【专题】11:计算题;37:集合思想;4O:定义法;5J:集合.【分析】利用并集定义直接求解.【解答】解:∵P={x|﹣1<x<1},,∴P∪Q={x|﹣2<x<1}=(﹣2,1).故选:B.【点评】本题考查并集的求法,考查并集定义等基础知识,考查运算求解能力,是基础题.2.(5分)=()A.B.C.﹣i D.i【考点】A5:复数的运算.【专题】38:对应思想;4A:数学模型法;5N:数系的扩充和复数.【分析】直接利用复数代数形式的乘除运算化简得答案.【解答】解:=.故选:C.【点评】本题考查复数代数形式的乘除运算,是基础题.3.(5分)函数f(x)=x2(e x﹣e﹣x)的大致图象为()A.B.C.D.【考点】3A:函数的图象与图象的变换.【专题】11:计算题;33:函数思想;44:数形结合法;51:函数的性质及应用.【分析】判断函数的奇偶性,利用函数的单调性和函数值的变化趋势判断即可.【解答】解:∵f(x)=x2(e x﹣e﹣x),∴f(﹣x)=(﹣x)2(e﹣x﹣e x)=﹣x2(e x﹣e﹣x)=﹣f(x),∴f(x)为奇函数,其图象关于原点对称,故排除B,D,∵y=x2,是增函数x∈(0,+∞),f(x)>0,y=e x﹣e﹣x是增函数x∈(0,+∞),y >0,f(x)=x2(e x﹣e﹣x)在(0,+∞)是增函数,排除C.(或者)当x→+∞时,f(x)→+∞,故排除C,故选:A.【点评】本题考查函数的图象的判断,函数的奇偶性以及函数的单调性的判断与应用,考查计算能力.4.(5分)的展开式中,x4的系数是()A.40 B.60 C.80 D.100【考点】DA:二项式定理.【专题】11:计算题;21:阅读型;34:方程思想;49:综合法;5P:二项式定理.【分析】先写出二项展开式的通项,然后令x的指数为4,解出相应参数的值,代入通项即可得出答案.【解答】解:二项展开式的通项为=.令,得k=2.因此,二项展开式中x4的系数为.故选:C.【点评】本题考查二项式定理求指定项的系数,考查二项式定理的应用,属于中等题.5.(5分)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cos2A+cos2A=0,a=7,c=6,则b=()A.10 B.9 C.8 D.5【考点】HR:余弦定理.【专题】58:解三角形.【分析】利用二倍角的余弦函数公式化简已知的等式,求出cos A的值,再由a与c的值,利用余弦定理即可求出b的值.【解答】解:∵23cos2A+cos2A=23cos2A+2cos2A﹣1=0,即cos2A=,A为锐角,∴cos A=,又a=7,c=6,根据余弦定理得:a2=b2+c2﹣2bc•cos A,即49=b2+36﹣b,解得:b=5或b=﹣(舍去),则b=5.故选:D.【点评】此题考查了余弦定理,二倍角的余弦函数公式,熟练掌握余弦定理是解本题的关键.6.(5分)在平行四边形ABCD中,已知AB=4,AD=3,,,则的值是()A.4 B.6 C.8 D.10【考点】9O:平面向量数量积的性质及其运算.【专题】11:计算题;5A:平面向量及应用.【分析】由已知,结合向量加法的平行四边形法则可知可知•()=2,展开后可求.【解答】解:平行四边形ABCD中,已知AB=4,AD=3,,又∵,∴•()=2,∴++=2,即9﹣+﹣1×3=2,∴=8.故选:C.【点评】本题主要考查了向量的基本运算及向量的数量积的性质的简单应用,属于基础试题.7.(5分)如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,则A、C区域涂色不相同的概率为()A.B.C.D.【考点】CB:古典概型及其概率计算公式.【专题】11:计算题;31:数形结合;44:数形结合法;5I:概率与统计.【分析】提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,利用分步计数原理求出不同的涂色方案有420种,其中,A、C区域涂色不相同的情况有120种,由此能求出A、C区域涂色不相同的概率.【解答】解:提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,根据题意,如图,设5个区域依次为A、B、C、D、E,分4步进行分析:①,对于区域A,有5种颜色可选;②,对于区域B,与A区域相邻,有4种颜色可选;③,对于区域E,与A、B区域相邻,有3种颜色可选;④,对于区域D、C,若D与B颜色相同,C区域有3种颜色可选,若D与B颜色不相同,D区域有2种颜色可选,C区域有2种颜色可选,则区域D、C有3+2×2=7种选择,则不同的涂色方案有5×4×3×7=420种,其中,A、C区域涂色不相同的情况有:①,对于区域A,有5种颜色可选;②,对于区域B,与A区域相邻,有4种颜色可选;③,对于区域E,与A、B、C区域相邻,有2种颜色可选;④,对于区域D、C,若D与B颜色相同,C区域有2种颜色可选,若D与B颜色不相同,D区域有1种颜色可选,C区域有1种颜色可选,则区域D、C有2+1×1=3种选择,不同的涂色方案有5×4×2×3=120种,∴A、C区域涂色不相同的概率为p==.故选:B.【点评】本题考查概率的求法,考查分步计数原理等基础知识,考查运算求解能力,是中档题.8.(5分)已知函数f(x)=xlnx,若直线l过点(0,﹣e),且与曲线y=f(x)相切,则直线l的斜率为()A.﹣2 B.2 C.﹣e D.e【考点】6H:利用导数研究曲线上某点切线方程.【专题】34:方程思想;48:分析法;52:导数的概念及应用.【分析】求得f(x)的导数,设出切点(m,n),可得切线的斜率,结合两点的斜率公式,解方程可得m,即可得到所求斜率.【解答】解:函数f(x)=xlnx的导数为f′(x)=lnx+1,设切点为(m,n),可得切线的斜率为k=1+lnm,则1+lnm==,解得m=e,k=1+lne=2,故选:B.【点评】本题考查导数的运用:求切线的斜率,考查直线的斜率公式,以及方程思想和运算能力,属于基础题.9.(5分)已知奇函数f(x)满足f(x)=f(x+4),当x∈(0,1)时,f(x)=4x,则f (log4184)=()A.﹣B.C.D.【考点】3K:函数奇偶性的性质与判断;4H:对数的运算性质.【专题】11:计算题;33:函数思想;4O:定义法;51:函数的性质及应用.【分析】推导出f(log4184)=﹣f(log4184﹣4)=﹣(),由此能求出结果.【解答】解:∵奇函数f(x)满足f(x)=f(x+4),当x∈(0,1)时,f(x)=4x,∴f(log4184)=﹣f(log4184﹣4)=﹣()=﹣=﹣.故选:A.【点评】本题考查函数值的求法,考查函数的奇偶性、周期性等基础知识,考查运算求解能力,是基础题.10.(5分)已知点P是双曲线右支上一点,F1、F2分别是双曲线的左、右焦点,I为△PF1F2的内心,若成立,则双曲线的渐近线方程为()A.B.8x±y=0 C.D.3x±y=0【考点】KC:双曲线的性质.【专题】34:方程思想;48:分析法;5D:圆锥曲线的定义、性质与方程.【分析】设圆I与△PF1F2的三边F1F2、PF1、PF2分别相切于点E、F、G,连接IE、IF、IG,可得△IF1F2,△IPF1,△IPF2可看作三个高相等且均为圆I半径r的三角形.利用三角形面积公式,代入已知式,化简可得|PF1|﹣|PF2|=|F1F2|,再结合双曲线的定义与渐近线方程可得所求.【解答】解:如图,设圆I与△PF1F2的三边F1F2、PF1、PF2分别相切于点E、F、G,连接IE、IF、IG,则IE⊥F1F2,IF⊥PF1,IG⊥PF2,它们分别是:△IF1F2,△IPF1,△IPF2的高,∴S=|PF1|•|IF|=|PF1|,S=|PF2|•|IG|=|PF2|,S =|F1F2|•|IE|=|F1F2|,其中r是△PF1F2的内切圆的半径.∵,∴|PF1|=|PF2|+|F1F2|,两边约去得:|PF1|=|PF2|+|F1F2|,∴|PF1|﹣|PF2|=|F1F2|,根据双曲线定义,得|PF1|﹣|PF2|=2a,|F1F2|=2c,∴3a=c,b==2a,可得双曲线的渐近线方程为y=±2x.故选:A.【点评】本题将三角形的内切圆放入到双曲线当中,用来求双曲线的离心率,着重考查了双曲线的基本性质、三角形内切圆的性质和面积计算公式等知识点,属于中档题.11.(5分)如图是函数在区间上的图象,将该图象向右平移|m|(m<0)个单位后,所得图象关于直线对称,则m 的最大值为()A.B.C.D.【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】11:计算题;31:数形结合;44:数形结合法;57:三角函数的图象与性质.【分析】由周期求出ω,由五点法作图求出φ的值,可得函数的f(x)的解析式.再根据函数y=A sin(ωx+φ)的图象的变换规律,可得结论.【解答】解:由函数y=sin(ωx+φ),(ω>0,|φ|<)的图象可得T==﹣(﹣)=π,可得:ω=2.再由五点法作图可得 2×(﹣)+φ=0,可得:φ=.故函数的f(x)的解析式为f(x)=sin(2x+)=sin2(x+).故把f(x)=sin2(x+)的图象向右平移|m|(m<0)个单位长度,可得g(x)=sin2(x﹣|m|+)的图象,由于:所得图象关于直线x=对称,可得:sin2(﹣|m|+)=±1,可得:2(﹣|m|+)=+kπ,解得:|m|=﹣kπ,k∈Z,由于:m<0,可得:m=kπ﹣,k∈Z,可得:当k=0时,m的最大值为:﹣.故选:B.【点评】本题主要考查由函数y=A sin(ωx+φ)的部分图象求解析式,函数y=A sin (ωx+φ)的图象的变换规律,属于中档题.12.(5分)在平面直角坐标系中,设点p(x,y),定义[OP]=|x|+|y|,其中O为坐标原点,对于下列结论:(1)符合[OP]=2的点p的轨迹围成的图形面积为8;(2)设点p是直线:上任意一点,则[OP]min=1;(3)设点p是直线:y=kx+1(k∈R)上任意一点,则使得“[OP]最小的点有无数个”的必要条件是k=1;(4)设点p是椭圆上任意一点,则.其中正确的结论序号为()A.(1)(2)(3)B.(1)(3)(4)C.(2)(3)(4)D.(1)(2)(4)【考点】2K:命题的真假判断与应用.【专题】35:转化思想;48:分析法;5B:直线与圆;5D:圆锥曲线的定义、性质与方程.【分析】(1)根据新定义由[OP]=|x|+|y|=1,讨论x的取值,得到y与x的分段函数关系式,画出分段函数的图象,由图象可知点P的轨迹围成的图形为边长是2的正方形,求出正方形的面积即可;(2)运用绝对值的含义和一次函数的单调性,可得[OP]的最小值;(3)根据|x|+|y|大于等于|x+y|或|x﹣y|,把y=kx+1代入即可得到当[OP]最小的点P 有无数个时,k等于1或﹣1;而k等于1或﹣1推出[OP]最小的点P有无数个,得到k =±1是“使[OP]最小的点P有无数个”的充要条件;(4)把P的坐标用参数表示,然后利用三角函数的化积求得[OP]=|x|+|y|的最大值说明命题正确.【解答】解:(1)由[OP]=2,根据新定义得:|x|+|y|=2,由方程表示的图形关于x,y轴对称和原点对称,且x+y=2(0≤x≤2,0≤y≤2),画出图象如图所示:根据图形得到:四边形ABCD为边长是2的正方形,面积等于8,故(1)正确;(2)P(x,y)为直线:上任一点,可得y=1﹣x,可得|x|+|y|=|x|+|1﹣x|,当x≤0时,[OP]=1﹣(1+)x≥1;当0<x<时,[OP]=1+(1﹣)x∈(1,);当x≥时,可得[OP]=﹣1+(1+)x≥,综上可得[OP]的最小值为1,故(2)正确;(3)∵|x|+|y|≥|x+y|=|(k+1)x+1|,当k=﹣1时,|x|+|y|≥|1|=1,满足题意;而|x|+|y|≥|x﹣y|=|(k﹣1)x﹣1|,当k=1时,|x|+|y|≥|﹣1|=1,满足题意.∴“使[OP]最小的点P有无数个”的充要条件是“k=±1”,(3)不正确;(4)∵点P是椭圆上任意一点,则可设x=3cosθ,y=sinθ,θ∈[0,2π),[OP]=|x|+|y|=3cosθ+sinθ=sin(θ+φ),θ∈[0,],∴[OP]max=,(4)正确.则正确的结论有:(1)、(2)、(4).故选:D.【点评】此题考查学生理解及运用新定义的能力,考查了数形结合的数学思想,关键是对题意的理解,是中档题.二、填空题:本题共4小题,每小题5分,共20分13.(5分)若直线x﹣my+m=0经过抛物线x2=2py(p>0)的焦点,则p= 2 .【考点】K8:抛物线的性质.【专题】35:转化思想;4O:定义法;5D:圆锥曲线的定义、性质与方程.【分析】由直线方程求出直线过点(0,1),从而得到抛物线的焦点坐标,则p可求;【解答】解:∵直线x﹣my+m=0过点(0,1),即抛物线x2=2py(p>0)的焦点F为(0,1),∴,则p=2;故答案为:2.【点评】本题考查了抛物线的简单性质,是基础题.14.(5分)若x,y满足约束条件则(x+4)2+(y+1)2的最小值为 5 .【考点】7C:简单线性规划.【专题】11:计算题;31:数形结合;35:转化思想;49:综合法;5T:不等式.【分析】作出不等式组对应的平面区域,利用z的几何意义,即可得到结论.【解答】解:作出不等式组对应的平面区域,z的几何意义为区域内的点到定点D(﹣4,﹣1)的距离的平方,则由图象可知,DA距离最小,此时(x+4)2+(y+1)2的最小值为5,故答案为:5.【点评】本题主要考查线性规划的应用,利用数形结合以及直线和圆的位置公式是解决本题的关键.15.(5分)已知等差数列{a n},若点在经过点(4,8)的定直线l上,则数列{a n}的前7项和S7=56 .【考点】85:等差数列的前n项和.【专题】11:计算题;34:方程思想;4O:定义法;54:等差数列与等比数列.【分析】推导出a4=8,数列{a n}的前7项和S7=,由此能求出结果.【解答】解:等差数列{a n}中,点在经过点(4,8)的定直线l上,∴a4=8,∴数列{a n}的前7项和S7==56.故答案为:56.【点评】本题考查等差数列前7项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.16.(5分)已知函数,若关于x的方程有m个不同的实数解,则m的所有可能的值构成的集合为{3} .【考点】53:函数的零点与方程根的关系.【专题】31:数形结合;32:分类讨论;4J:换元法;4R:转化法;51:函数的性质及应用.【分析】求函数f(x)的导数,判断函数的极值,作出函数f(x)的图象,设n=f(x),利用根与系数之间的关系得到n2﹣nt﹣15=0的两根之积n1n2=﹣15,利用数形结合进行讨论求解即可.【解答】解:函数f(x)的导数为f′(x)====,由f′(x)>0,得﹣1<x<3,f(x)递增;由f′(x)<0,得x>3或x<﹣1,f(x)递减.即有f(x)在x=﹣1处取得极小值f(﹣1)=﹣2e;在x=3处取得极大值f(3)=,作出f(x)的图象,如图所示;关于x的方程,令n=f(x),则n2﹣nt﹣=0,由判别式△=t2+>0,方程有两个不等实根,n1n2=﹣<0,则原方程有一正一负实根.而﹣2e×═﹣,即当n1=,则n2=﹣2e,此时y=n1,和f(x)有两个交点,y=n2与f(x)有1个交点,此时共有3个交点,当n1>,则﹣2e<n2<0,此时y=n1,和f(x)有1个交点,y=n2与f(x)有2个交点,此时共有3个交点,当0<n1<则n2<﹣2e,此时y=n1和f(x)有3个交点,y=n2与f(x)有0交点,此时共有3个交点,当﹣2e<n1<0,则或n2>,此时y=n1和f(x)有2个交点,y=n2与f(x)有1个交点,此时共有3个交点,当n1=﹣2e,则n2=,此时y=n1和f(x)有1个交点,y=n2与f(x)有2个交点,此时共有3个交点,当n1<﹣2e,则0<n2<,此时y=n1和f(x)有0个交点,y=n2与f(x)有3个交点,此时共有3个交点,综上方程[f(x)]2+tf(x)﹣=0(t∈R)恒有3个不同的实数解,即m=3,即m的所有可能的值构成的集合为{3},故答案为:{3}.【点评】本题考查方程的根的个数的判断,考查函数方程的转化思想,注意运用二次方程的判别式和韦达定理,考查数形结合和分类讨论的思想方法,综合性较强,难度较大.三.解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答,第22、23为选考题,考生根据要求作答.17.(12分)已知等差数列{a n}的前n项和为S n,且S3=9,a1,a3,a7成等比数列.(1)求数列{a n}的通项公式;(2)若a n≠a1(当n≥2时),数列{b n}满足,求数列{a n b n}的前n项和T n.【考点】84:等差数列的通项公式;8E:数列的求和.【专题】35:转化思想;49:综合法;54:等差数列与等比数列.【分析】(1)求得首项和公差即可;(2)由(1)可得a n b n,再由错位相减求和得T n.【解答】解:(1)∵S3=9,∴a2=3,∴a1+d=3①∵a1,a3,a7成等比数列,∴a32=a1a7,∴(a1+2d)2=a1(a1+6d)②由①②得:或,当时,a n=3当时,a n=n+1;(2)∵a n≠a1(当n≥2时),∴d≠0,∴a n=n+1,∴b n=2n+1,∴a n b n=(n+1)2n+1,∴T n=2•22+3•23+4•24+…+(n+1)2n+1①2T n=2•23+3•24+4•25+…+(n+1)2n+2②①﹣②得﹣T n=4+22+23+24+…+2n+1﹣(n+1)2n+2=4+﹣(n+1)2n+2=﹣n•2n+2∴T n=n•2n+2【点评】本题考查了等差数列的通项公式及等比数列的前n项和公式、错位相减法求和,考查了推理能力与计算能力,属于中档题.18.(12分)2016年某市政府出台了“2020年创建全国文明城市(简称创文)”的具体规划,今日,作为“创文”项目之一的“市区公交站点的重新布局及建设”基本完成,市有关部门准备对项目进行调查,并根据调查结果决定是否验收,调查人员分别在市区的各公交站点随机抽取若干市民对该项目进行评分,并将结果绘制成如图所示的频率分布直方图,相关规则为:①调查对象为本市市民,被调查者各自独立评分;②采用百分制评分,[60,80)内认定为满意,80分及以上认定为非常满意;③市民对公交站点布局的满意率不低于60%即可进行验收;④用样本的频率代替概率.(1)求被调查者满意或非常满意该项目的频率;(2)若从该市的全体市民中随机抽取3人,试估计恰有2人非常满意该项目的概率;(3)已知在评分低于60分的被调查者中,老年人占,现从评分低于60分的被调查者中按年龄分层抽取9人以便了解不满意的原因,并从中选取2人担任群众督察员,记ξ为群众督查员中老年人的人数,求随机变量ξ的分布列及其数学期望Eξ.【考点】CG:离散型随机变量及其分布列;CH:离散型随机变量的期望与方差.【分析】(1)根据频率分布直方图,求解在[60,100]的频率即可.(2)根据频率分布直方图,被调查者非常满意的频率是,然后求解抽取3人恰有2人非常满意该项目的概率.(3)从被调查者中按年龄分层抽取9人,这9人中,老年人有3人,非老年人6人,随机变量ξ的所有可能取值为0,1,2,求出概率得到分布列,然后求解期望即可.【解答】(本小题满分12分)解:(1)根据题意:6(0分)或以上被认定为满意或非常满意,在频率分布直方图中,评分在[60,100]的频率为:(+++)×10=;(2)根据频率分布直方图,被调查者非常满意的频率是,用样本的频率代替概率,从该市的全体市民中随机抽取1人,该人非常满意该项目的概率为,现从中抽取3人恰有2人非常满意该项目的概率为:;(3)∵评分低于6(0分)的被调查者中,老年人占,又从被调查者中按年龄分层抽取9人,∴这9人中,老年人有3人,非老年人6人,随机变量ξ的所有可能取值为0,1,2,,,.ξ的分布列为:ξ012pξ的数学期望Eξ=.【点评】本题考查频率分布列,频率分布直方图,期望的求法,考查分层抽样的应用,是基础题.19.(12分)如图,在锐角△ABC中,D为边BC的中点,且,,O为△ABC 外接圆的圆心,且.(1)求sin∠BAC的值;(2)求△ABC的面积.【考点】HT:三角形中的几何计算.【专题】34:方程思想;44:数形结合法;58:解三角形.【分析】(1)根据题意,利用二倍角公式求解即可;(2)延长AD至E,使AE=2AD,连接BE,CE,得四边形ABEC为平行四边形,推出CE=AB;利用余弦定理AE2=AC2+CE2﹣2AC•CE•cos∠ACE,求出CE,再求三角形ABC的面积.【解答】解:(1)如图所示,∠BOC=2∠BAC,∴cos∠BOC=cos2∠BAC=1﹣2sin2∠BAC=﹣,∴sin2∠BAC=,sin∠BAC=;(2)延长AD至E,使AE=2AD,连接BE,CE,则四边形ABEC为平行四边形,∴CE=AB;在△ACE中,AE=2AD=3,AC=,∠ACE=π﹣∠BAC,cos∠ACE=﹣cos∠BAC=﹣=﹣;由余弦定理得,AE2=AC2+CE2﹣2AC•CE•cos∠ACE,即(3)2=()2+CE2﹣2וCE×(﹣),解得CE=3,∴AB=CE=3,∴S△ABC=AB•AC•sin∠BAC=×3××=.【点评】本题考查解三角形的应用问题,也考查了三角恒等变换与计算能力,是中档题.20.(12分)设椭圆的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且,过A,Q,F2三点的圆恰好与直线相切.(1)求椭圆C的方程;(2)过右焦点F2作斜率为k的直线l与椭圆C交于M,N两点,问在x轴上是否存在点P(m,0),使得以PM,PN为邻边的平行四边形是菱形如果存在,求出m的取值范围;如果不存在,说明理由.【考点】KL:直线与椭圆的综合.【专题】11:计算题;21:阅读型;34:方程思想;4P:设而不求法;5E:圆锥曲线中的最值与范围问题.【分析】(1)设点Q的坐标为(x0,0),且x0<0,利用AQ⊥AF2以及得出点Q的坐标,将直角△AQF2的外接圆与直线相切转化为其外接圆圆心F1到该直线的距离等于半径,可求出c的值,进而得出a与b的值,从而得出椭圆C的方程;(2)令,得出t≠0,设点M(x1,y1)、N(x2,y2),将直线l的方程与椭圆C的方程联立,列出韦达定理,并求出线段MN的中点E的坐标,将条件“以PM,PN为邻边的平行四边形是菱形”转化为PE⊥MN,得出这两条直线的斜率之积为﹣1,然后得出m的表达式,利用不等式的性质可求出实数m的取值范围.【解答】解:(1)设椭圆C的焦距为2c(c>0),则点F1的坐标为(﹣c,0),点F2的坐标为(c,0),设点Q的坐标为(x0,0),且x0<0,如下图所示,,,∵,则x0+c+2c=0,所以,x0=﹣3c,则点Q的坐标为(﹣3c,0),∵直线AF2与直线AQ垂直,且点A(b,0),所以,,,由,得b2=3c2,则,.△AQF2为直角三角形,且F2Q为斜边,线段F2Q的中点为F1(﹣c,0),△AQF2的外接圆半径为2c.由题意可知,点F1到直线的距离为,所以,c=1,a=2c =2,,因此,椭圆C的方程为;(2)由题意知,直线l的斜率k≠0,并设,则直线l的方程为x=ty+1,设点M(x1,y1)、N(x2,y2).将直线l的方程与椭圆C的方程联立,消去x得(3t2+4)y2+6ty﹣9=0,由韦达定理得,.∴,.所以,线段MN的中点为点.由于以PM,PN为邻边的平行四边形是菱形,则PE⊥MN,则k PE•k MN=﹣1,所以,k PE=﹣t.由两点连线的斜率公式可得,得.由于k≠0,则,所以,t2>0,所以,.因此,在x轴上存在点P(m,0),使得以PM,PN为邻边的平行四边形是菱形,且实数m 的取值范围是.【点评】本题考查直线与椭圆的综合问题,考查椭圆的方程以及韦达定理设而不求法在椭圆综合中的应用,同时也考查了向量的坐标运算,属于中等题.21.(12分)已知函数f(x)=x2﹣ax+2lnx(其中a是实数).(1)求f(x)的单调区间;(2)若设2(e+)<a<,且f(x)有两个极值点x1,x2(x1<x2),求f(x1)﹣f (x2)取值范围.(其中e为自然对数的底数).【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【专题】11:计算题;32:分类讨论;49:综合法;53:导数的综合应用.【分析】(1)求出f(x)的定义域为(0,+∞),=,由此利用导数性质和分类讨论思想能求出f(x)的单调区间.(2)推导出f(x1)﹣f(x2)=,令h(x)=,(),则<0恒成立,由此能求出f(x1)﹣f(x2)的取值范围.【解答】解:(1)∵f(x)=x2﹣ax+2lnx(其中a是实数),∴f(x)的定义域为(0,+∞),=,….(1分)令g(x)=2x2﹣ax+2,△=a2﹣16,对称轴x=,g(0)=2,当△=a2﹣16≤0,即﹣4≤a≤4时,f′(x)≥0,∴函数f(x)的单调递增区间为(0,+∞),无单调递减区间.…(2分)当△=a2﹣16>0,即a<﹣4或a>4时,①若a<﹣4,则f′(x)>0恒成立,∴f(x)的单调递增区间为(0,+∞),无减区间.…(3分)②若a>4,令f′(x)=0,得,,当x∈(0,x1)∪(x2,+∞)时,f′(x)>0,当x∈(x1,x2)时,f′(x)<0.∴f(x)的单调递增区间为(0,x1),(x2,+∞),单调递减区间为(x1,x2).…(4分)综上所述:当a≤4时,f(x)的单调递增区间为(0,+∞),无单调递减区间.当a>4时,f(x)的单调递增区间为(0,x1)和(x2,+∞),单调递减区间为(x1,x2).…(5分)(2)由(1)知,若f(x)有两个极值点,则a>4,且x1+x2=>0,x1x2=1,∴0<x1<1<x2,又∵,a=2(),,e+<<3+,又0<x1<1,解得.…(7分)∴f(x1)﹣f(x2)=()﹣()=()﹣a(x1﹣x2)+2(lnx1﹣lnx2)=(x1﹣x2)﹣a(x1﹣x2)+2ln=﹣()•(x1+)+4lnx1=,…(9分)令h(x)=,(),则<0恒成立,∴h(x)在()单调递减,∴h()<h(x)<h(),即﹣4<f(x1)﹣f(x2)<﹣4ln3,故f(x1)﹣f(x2)的取值范围为(,).…(12分)【点评】本题考查函数的单调区间的求法,考查函数值之差的取值范围的求法,是中档题,解题时要认真审题,注意导数性质、构造法、分类讨论思想的合理运用.[选做题]22.(10分)已知直线l过点P(1,0),且倾斜角为α,以坐标原点为极点,x轴的正半轴为极轴建立坐标系,圆C的极坐标方程为ρ=4cosθ.(1)求圆C的直角坐标系方程及直线l的参数方程;(2)若直线l与圆C交于A,B两点,求的最大值和最小值.【考点】Q4:简单曲线的极坐标方程;QJ:直线的参数方程.【专题】11:计算题;35:转化思想;4R:转化法;5S:坐标系和参数方程.【分析】(1)由ρ=4cosθ,得ρ2=4ρcosθ,由此能求出圆C的直角坐标方程;由直线l过点P(1,0),且倾斜角为α,能求出直线l的参数方程.(2)将代入(x﹣2)2+y2=4,得t2﹣2t cosα﹣3=0,由此能求出的最大值和最小值.【解答】解:(1)由ρ=4cosθ,得ρ2=4ρcosθ,即x2+y2=4x,所以圆C的直角坐标方程为(x﹣2)2+y2=4,直线l过点P(1,0),且倾斜角为α,所以直线l的参数方程为(t为参数).(2)将代入(x﹣2)2+y2=4,得t2﹣2t cosα﹣3=0,△=(2cosα)2+12>0,设A,B两点对应的参数分别为t1,t2,则,因为cosα∈[﹣1,1],所以的最大值为,最小值为.【点评】本题考查圆的直角坐标方程和直线的参数方程的求法,考查两条线段长的倒数。

相关文档
最新文档