运筹学导论第八版 8整数线性规划概要

合集下载

《运筹学》之整数规划

《运筹学》之整数规划


Bn

X1n

X2n
……

Xnn
指派问题:分配要求
分配 B1 B2 … Bn 工作数
A1
X11
X12
… X1n
∑X1j
A2
X21
X22
… X2n
∑X2j



……

An 人数 要求
Xn1 ∑Xi1 1
Xn2 ∑Xi2 1
… Xnn … ∑Xin …1
∑Xnj
要求 1 1
… 1
指派问题:模型
n n
X1 1
P1:(1,9/10 X2 2 X2 3 P12: (0,3) Z=9
原问题的最优解(1,2) Z=10。
指派问题
设有n 个人A1, A2, …An,要分派去做n件事B1, B2… Bn,要求每一件事都 必须有一个人去做,而 且不同的事由不同的人去做.已知每个人Ai做每 件事Bj的效率(如劳动工时或成本,或创造的价值 等)为Cij,问应如何进行指派(哪个人做哪件事),才 能使 工作效益最好(如工时最少,或成本最低,或 创造的价值最大)?

19 23 22 18

26 17 16 19

19 21 23 17
指派问题:思考问题
1、人数比工作数多怎么处理? 2、人数比工作数少,模型会怎
样变化? 3、计算机求解方法?
特殊约束的处理
➢互斥约束 ➢矛盾约束 在建立数学模型时,有时会遇到相 互矛盾的约束,模型只要求其中的 一个约束起作用。
12 8
x5
6 相机
2 4
x6
7 设备
4 10
x7

整数线性规划

整数线性规划

分枝定界法的理论基础:
1 2 k , i j (1) max cx max (max cx, max cx, , max cx)
x x1 x 2 x k
(2) 若 i j ,则 max cx max cx
xi xi x
分 枝
给定整数规划问题IP max z C T X
若x 的某个分量 xi 不是整数,
0
0
则将 IP分解为两个子问题
max z C X AX b X 0 X为整数向量 xi [ xi0 ]
T max z C X AX b X 0 X为整数向量 xi [ xi0 ] 1
记 z0 z
x1 4, x1 5
将问题B0分解为两个子问题B1和B2(分枝), 分别解B1,B2得 B1: x1=4, x2=2.10, z1=349 B2: x1=5, x2=1.57, z2=341
max z 40 x1 90 x2 max z 40 x1 90 x2 9 x1 7 x2 56 7 x 20 x 70 1 2 x1 4 B1 x1 , x2 0 9 x1 7 x2 56 7 x 20 x 70 1 2 x1 5 B2 x1 , x2 0
4、几点说明 (1)、如果要求目标的最大值
max z cij xij

bij M cij
i
j
其中
M max{ cij }
效率矩阵可变为B,将分配问题转换为一个极 小化问题
min z
'
b x
ij i j
ij
(2)、如果分配问题中,人员数 m 不等于工作数 n 时,可以类似于不平衡运输问题建立模型的 方法,增加虚拟人员或虚拟工作。

《运筹学线性规划》PPT课件

《运筹学线性规划》PPT课件
划问题化成如下的标准型:
max Z x1 2x2 3x4 3x5 0x6 0x7
x1 x2 x4 x5 x6 7 x1 x2 x4 x5 x7 2 3x1 x2 2x4 2x5 5 x1, x2, x4, , x7 0
第二节 线性规划问题的图解法及几何意义
一、线性规划问题的解的概念
(1.4)
标准型具有如下特点: (1)目标函数求最大值; (2)所求的变量都要求是非负的; (3)所有的约束条件都是等式; (4)常数项非负。 综合以上的讨论可以说明任何形式的线 性规划问题都可以通过上述手段把非标准 型的线性规划问题化成标准型。现举例如 下:
例1-4 试将如下线性规划问题化成标准型
多样性给讨论问题带来了不便。为了便于今后讨论,我 们规定线性规划问题的标准型为:
max Z c1x1 c2x2 cnxn
a11x1 a12x2 a21x1 a22x2
a1nxn b1 a2nxn b2
am1x1 am2x2 amnxn bm
x1, x2 , , xn 0
例1-1:(计划安排问题)某工厂在计划期内安排
生产Ⅰ、Ⅱ两种产品,已知生产单位产品所占用的
设备A、B的台时、原材料的消耗及两种产品每件可
获利润见表所示:
I
II 资源总量
设备A(h)
0
3
15
设备B(h)
4
0
12
原材料(公斤)
2
2
14
利润(元)
2
3
问如何安排计划使该工厂获利最多?
解: 假设 x1、x2分别表示在计划期内生产
二、线性规划问题的图解法
对于简单的线性规划问题(只有两个决策变量的
线性规划问题),我们可以通过图解法对它进行求解

运筹学基础-线性规划(方法)

运筹学基础-线性规划(方法)
问题描述
线性规划问题通常由三个基本部分组成,即决策变量、约束条件 和目标函数。决策变量是问题中需要求解的未知数,约束条件是 限制决策变量取值的条件,目标函数是要求最大或最小的函数。
线性规划的应用领域
01
02
03
04
生产计划
在制造业中,线性规划可以用 于制定最优的生产计划,以最 大化利润或最小化成本。
02
线性规划的基本概念
线性方程组
线性方程组是由多个线性方程组成的数学模型,描 述了多个变量之间的线性关系。
线性方程组可以用矩阵和向量表示,通过矩阵运算 和代数方法求解。
线性方程组有多种解法,如高斯消元法、LU分解、 迭代法等。
约束条件与目标函数
02
01
03
约束条件是限制变量取值的条件,通常表示为变量的 上界、下界或等式约束。
目标函数是描述问题目标的数学表达式,通常是最小 化或最大化的线性或非线性函数。
约束条件和目标函数共同构成了线性规划问题的数学 模型。
线性规划的解
线性规划的解是指满足 所有约束条件并使目标 函数取得最优值的变量 取值。
线性规划问题可能有多 个解,也可能无解或无 界解。
最优解的性质包括最优 性、可行性和唯一性。
最优解可以通过求解线 性方程组或使用专门的 优化软件获得。
03
线性规划的求解方法
单纯形法
01
基本概念
单纯形法是一种求解线性规划问题的迭代算法,通过 不断迭代寻找最优解。
02 1. 初始化 选择一个初始可行解,并确定初始基可行解。
03
2. 迭代
根据目标函数系数和约束条件系数,计算出单纯形表 格,然后进行迭代更新。
运筹学基础-线性规划(方法)

运筹学导论第八版8整数线性规划

运筹学导论第八版8整数线性规划
c 1 x 1 c 2 x 2 c n x n ,其 中 c j 0 ,j 1 ,2 , n .
上例中,对所有的 j,cj=1. 如果 cj 表示位置 j 安装 的费 用,那么这些系数就是这些费用值而不再是1.
习题
MobileCo公司拿出1500万美元,最多建造7个发射台来覆盖15个 相邻社区中尽可能多的人口。下表给出了每个发射台可以覆盖 的社区以及建造这个发射台的费用以及社区人口。确定出需要 建设哪几个发射台。
由上例看出,
将其相应的线性规划的最优解“化整”来解原整数线 性规划,虽是最容易想到的,但往往不可行。
化整后不见得是可行解;或虽是可行解,但不一定是 最优解。
因此有必要对整数线性规划的解法进行专门研究。
此类问题为整数线性规划(Integer Linear Programming , ILP),整数线性规划是最近几十年来发展起来的规划论 中的一个分支。
有部分变量取小数,这不符合实际,若采用舍入方法,则 x1= x5=1,这意味着5个项目都要选择,显然是不可行解,
对于采用“是否”决策问题,舍入法不可行。
习题
某唱片公司与一位新的歌手签约录制8首歌曲,这8首歌曲 的时间长度分别为8,3,5,5,9,6,7,12分钟,公司希望将所有的 歌曲分配在磁带的两面,使得两面的歌曲时间长度尽量相 同。请建立整数规划模型,求出最优解。
发射台
覆盖社区
1
1,2
2
2,3,5
3
1,7,9,10
4
4,6,8,9
5
6,7,9,11
6
5,7,10,12,14
7
12,13,14,15
各个社区人口数目
建造费用(百万) 3.6 2.3 4.1 3.15 2.8 2.65 3.1

《运筹学》线性规划课件

《运筹学》线性规划课件

2021/2/22
Page 6
怎样辨别一个模型是线性规划模型?
其特征是: 1.解决问题的目标函数是多个决策变量的
线性函数,通常是求最大值或 最小值; 2.解决问题的约束条件是一组多个决策变量
的线性不等式或等式。
【例1-2】
1.1 线性规划的数学模型 Mathematical Model of LP
x1 2x3x4 4x63x72x8x9 1000
x2
2x4 3x5
x7 2x8 4x9 5x101000
xj 0,j1,2, 10
求下料方案时应注意,余料不能超过最短毛坯的长度;最好将毛 坯长度按降的次序排列,即先切割长度最长的毛坯,再切割次长 的,最后切割最短的,不能遗漏了方案 。如果方案较多,用计 算机编程排方案,去掉余料较长的方案,进行初选。
《运筹学》线性规划课件
1.1 数学模型
Mathematical Model
1.1 线性规划的数学模型 Mathematical Model of LP
Chapter 1 线性规划
Linear Programming
2021/2/22
Page 3
线性规划(Linear Programming,缩写为LP)通常研究资源 的最优利用、设备最佳运行等问题。例如,当任务或目标 确定后,如何统筹兼顾,合理安排,用最少的资源 (如资
资金约束: x 1 x 2 x 3 x 4 x 5 x 6 5 0 0 0
国债投资额约束: x1x2 1000
平均评级约束:
x1x22x33x44x55x62 x1x2x3x4x5x6
平均到期年限约束:
8x110x24x36x43x54x65 x1x2x3x4x5x6

运筹学08整数规划

运筹学08整数规划

8.2 整数规划的应用
二、固定成本问题
例5.高压容器公司制造小、中、大三种尺寸的金属容器,所用资源为 金属板、劳动力和机器设备,制造一个容器所需的各种资源的数量如表 所示。不考虑固定费用,每种容器售出一只所得的利润分别为 4万元、5 万元、6万元,可使用的金属板有500吨,劳动力有300人/月,机器有 100台/月,此外不管每种容器制造的数量是多少,都要支付一笔固定的 费用:小号是l00万元,中号为 150 万元,大号为200万元。现在要制定 一个生产计划,使获得的利润为最大。
8.2 整数规划的应用
解:1) 设xiA、xiB、xiC、xiD ( i =1,2,3,4,5)分别表示第 i 年年初给项目 A,B,C,D的投资额; 设yiA, yiB,是0—1变量,并规定取 1 时分别表示第 i 年给A、B投资, 否则取 0( i = 1, 2, 3, 4, 5)。 设yiC 是非负整数变量,并规定:第2年投资C项目8万元时,取值为4; 第 2年投资C项目6万元时,取值3;第2年投资C项目4万元时,取值2; 第2年投资C项目2万元时,取值1;第2年不投资C项目时,取值0; 这样我们建立如下的决策变量: 第1年 A x1A B C D x1D 第2年 x2A 第3 年 x3A x3B x2C=20000y2C x2D x3D 第4年 第5年 x4A x4D x5D
8.3整数规划与线性规划的关系


从数学模型上看,整数规划似乎是线性规划的一 种特殊情况,求解只需在线性规划解的基础上, 通过舍入取整,寻求满足整数要求的解即可。 但是实际上整数规划与线性规划之间确实有着很 大的不同,通过舍入取整得到的整数解也不一定 就是整数规划问题的最优解,有时甚至不能保证 所得的解是整数可行解.例98 Nhomakorabea1

整数线性规划理论

整数线性规划理论

整数线性规划理论§1 概论1.1 定义规划中的变量(部分或全部)限制为整数时,称为整数规划。

若在线性规划模型整数线性规划。

目前所流行的求解整数规划的方法,往1.2如不加特殊说明,一般指整数线性规划。

对于整数线性规划模型大致可分为两类: 1o 变量全限制为整数时,称纯(完全)整数规划。

2o 变量部分限制为整数的,称混合整数规划。

1.3 整数规划特点 (i ) 原线性规划有最优解,当自变量限制为整数后,其整数规划解出现下述情况: ①原线性规划最优解全是整数,则整数规划最优解与线性规划最优解一致。

②整数规划无可行解。

例1 原线性规划为 21m in x x z +=0,0,5422121≥≥=+x x x x 其最优实数解为:45min ,45,021===z x x 。

LINGO1.lg4 LINGO11.lg4③有可行解(当然就存在最优解),但最优解值变差。

例2 原线性规划为 21m in x x z +=0,0,6422121≥≥=+x x x x其最优实数解为:23min ,23,021===z x x 。

若限制整数得:2m in ,1,121===z x x 。

LINGO2.lg4 LINGO21.lg4(ii ) 整数规划最优解不能按照实数最优解简单取整而获得。

1.4 求解方法分类:(i )分枝定界法—可求纯或混合整数线性规划。

(ii )割平面法—可求纯或混合整数线性规划。

(iii )隐枚举法—求解“0-1”整数规划: ①过滤隐枚举法; ②分枝隐枚举法。

(iv )匈牙利法—解决指派问题(“0-1”规划特殊情形)。

(v )蒙特卡洛法—求解各种类型规划。

下面将简要介绍常用的几种求解整数规划的方法。

§2 分枝定界法对有约束条件的最优化问题(其可行解为有限数)的所有可行解空间恰当地进行系统搜索,这就是分枝与定界内容。

通常,把全部可行解空间反复地分割为越来越小的子集,称为分枝;并且对每个子集内的解集计算一个目标下界(对于最小值问题),这称为定界。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

max z 20 x1 40 x2 20 x3 15 x4 30 x5 s.t. 5 x1 4 x2 3 x3 7 x4 8 x5 25 x1 7 x2 9 x3 4 x4 6 x5 25 8 x1 10 x2 2 x3 x4 10 x5 25 x1 , x2 , x3 , x4 , x5 (0,1)
整数线性规划的一种特殊情形是0-1规划,它的变量取值 仅限于0或1。指派问题就是一个0-1规划问题。
9
8.1 应用实例介绍
1. 资本预算
在个人项目中投资中,既要考虑这些在个人项目中投资的收益, 又要考虑有限的总预算。
例 在一个3年的规划周期内,有5个项目可供选择。下表给出
了每一项目可以带来的期望收益以及相应每年的支出(单位: 100万没有),那么这个3年规划周期应该选择哪些项目?
2x1+5x2≤13
x1,x2≥0


x1,x2整数

4
它和线性规划问题的区别仅在于最后的条件⑤。现在我们 暂不考虑这一条件,即解①~④(以后我们称这样的问题为 与原问题相应的线性规划问题), 很容易求得最优解为:x1=4.8,x2=0,max z=96

但x1是托运甲种货物的箱数,现在它不是整数,所以不合条件 ⑤的要求。 是否可以把所得的非整数的最优解经过“化整”就可得到合于 条件⑤的整数最优解呢?
如将 (x1=4.8 , x2=0) 凑整为 (x1=5 , x2=0) ,这样就破坏了条件② (关于体积的限制),因而它不是可行解;
如将 (x1=4.8, x2=0) 舍去尾数 0.8 ,变为 (x1=4 ,x2=0) ,这当然满 足各约束条件,因而是可行解,但不是最优解,因为当x1=4, x2=0, 时z=80. 非整数的最优解在C(4.8,0)点达到。
货物 甲 乙 托运限制
体积(m3/箱) 5 4 3 24m
重量(100kg/箱) 2 5 1300kg
利润(100 元/箱) 20 10
3
现在我们解这个问题,设 x1 , x2 分别为甲、乙两种
货物的托运箱数 ( 当然都是非负整数 ) 。这是一个
(纯)整数线性规划问题,用数学式可表示为: max z =20x1+10x2 5x1+4x2≤24 ① ②
90=6表示利润的降低,这是由于变量的不可分性(装箱)所引起的。
7
由上例看出, 将其相应的线性规划的最优解“化整”来解原整数线 性规划,虽是最容易想到的,但往往不可行。
化整后不见得是可行解;或虽是可行解,但不一定是
最优解。 因此有必要对整数线性规划的解法进行专门研究。
8
此类问题为整数线性规划(Integer Linear Programming , ILP),整数线性规划是最近几十年来发展起来的规划论 中的一个分支。
整数线性规划中如果所有的变量都限制为(非负)整数, 就称为纯整数线性规划(pure integer linear programming) 或称为全整数线性规划(all integer linear programming); 如果仅一部分变量限制为整数,则称为混合整数规划 (mixed integer linear programming)。
12
习题
某唱片公司与一位新的歌手签约录制8首歌曲,这8首歌曲 的时间长度分别为8,3,5,5,9,6,7,12分钟,公司希望将所有的 歌曲分配在磁带的两面,使得两面的歌曲时间长度尽量相 同。请建立整数规划模型,求出最优解。
13
2. 集合覆盖问题
在这一类问题中,会有许多的服务装置为一些设备提供 互相重叠的服务,目标就是要确定安装数目最少的装置 来覆盖每一个设备(满足服务需求)。例如,几个污水 处理工厂可以选择建造在几个不同的位置,在不同的位 置可以服务不同的几个城市,但一个城市可以得到几个
不同工厂服务的时候就是重叠服务。
14

为了提高城市校园的安全性,A大学的保安部门希望在校园
的每条主要街道上都至少有一部电话的情况下,使得安装的 电话总数最少,下图给出了校园的主要街道图 1 街道G
街道A
2 街道I
街道B
3 街道K 5 街道J 8
15
4
街道C
街道H
6
街道E
7
街道D
将电话安装在街道的交叉口处是比较合理的,因为这样可以 至少为两条街道提供服务。按照图中街道的设计可以看出, 最多需要8部电话。 定义
最优的整数解是x1= x2= x3= x4=1, x5= 0,对应的最优值z=95.
11
若采用连续的线性规划问题求解,将xj=(0,1), 替换为0≤ xj
≤1,那么最优解为x1=0.5789, x2= x3= x4=1, x5= 0.7368.
有部分变量取小数,这不符合实际,若采用舍入方法,则 x1= x5=1,这意味着5个项目都要选择,显然是不可行解, 对于采用“是否”决策问题,舍入法不可行。
项目 1 2 3 每年支出 1 5 4 3 2 1 7 9 3 8 10 2 收益 20 40 20
4
5 可用资金
7
8 25
4
6 25
1
10 25
15
30
10
问题可以化为一个对于每个项目的选择为“是-否”的决 策,引入二元变量 xj
1, 如果选择项目j xj 0, 如果不选择项目j
那么整数线性规划模型是
第6章 整数线性规划
1
整数线性规划问题的提出
对于某些具体问题,决策变量必须是整数的情形(称为整数
解)。例如,机器台数、人数、装货车数等,含小数的解不合 要求。 为满足整数解要求,能否把已得到的含有分数的解 “圆整”?
2
下例说明单纯形法求得的解不能保证是整数最优解。
例1 COSCO公司拟用集装箱托运甲乙两种货物,每箱的体积、 重量、可获利润以及托运所受限制如下表所示。问两种货物各 托运多少箱,可使获得利润为最大?
6
但当x1=4,x2=1(这也是可行解)时,z=90。 本例还可以用图解法来说明
图中(+) 表示可行整数解。 凑整的(5,0) 不在可行域内, 而C点又不合于条件⑤。
目标函数z的等值线必须向原点平行移动,直到首次遇到带“+” 号B点(x1=4,x2=1)为止。此时,z值就由z=96变到z=90,Δz=96-
相关文档
最新文档